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Abstract

Noise in behavior is often viewed as a nuisance: while the mind aims to take the best

possible action, it is let down by unreliability in the sensory and response systems. How

researchers study cognition reflects this viewpoint – averaging over trials and participants

to discover the deterministic relationships between experimental manipulations and their

behavioral consequences, with noise represented as additive, often Gaussian, and

independent. Yet a careful look at behavioral noise reveals rich structure that defies easy

explanation. First, both perceptual and preferential judgments show that sensory and

response noise may potentially only play minor roles, with most noise arising in the

cognitive computations. Second, the functional form of the noise is both non-Gaussian and

non-independent, with the distribution of noise being better characterized as heavy-tailed

and as having substantial long-range autocorrelations. It is possible that this structure

results from brains that are, for some reason, bedeviled by a fundamental design flaw,

albeit one with intriguingly distinctive characteristics. Alternatively, noise might not be a

bug but a feature: indeed, we suggest that noise is fundamental to how cognition works.

Specifically, we propose that the brain approximates probabilistic inference with a local

sampling algorithm, one that uses randomness to drive its exploration of alternative

hypotheses. Reframing cognition in this way explains the rich structure of noise and leads

to a surprising conclusion: that noise is not a symptom of cognitive malfunction but plays

a central role in underpinning human intelligence.



NOISE IN COGNITION: BUG OR FEATURE? 3

Noise in Cognition: Bug or Feature?

Psychological scientists constantly battle the variability in human behavior. In

experimental studies, no matter what the participants’ task is, whether it is perceptual, a

choice between monetary gambles, a questionnaire, etc., the responses that are produced

are not constant. This limits the precision with which most psychological effects can be

studied: there are only very few interesting effects that can be studied using a small

number of trials and a small number of participants – instead, researchers need to average

over either large numbers of trials or large numbers of participants (and sometimes both)

to reliably study experimental manipulations.

Individual differences, of course, contribute to this variability, as does randomness in

the environment, but variability also exists within an individual when repeatedly facing

very similar choices – this is what this paper terms noise. Asking participants to perform

the same task on multiple occasions, even when those occasions are close together in time,

produces surprisingly noisy behavior. In perceptual studies, it is perhaps to be expected

that asking participants about difficult-to-perceive stimuli produces noisy responses. But

substantial noise also occurs in tasks in which perceptual acuity is no barrier. For example,

people’s judgments of the probability of the same event vary from one occasion to another,

even when no new information has been observed between judgments (Sundh et al., 2023).

Even people’s preferences between monetary gambles will show considerable noise over

short periods of time (Loomes & Sugden, 1998; Mosteller & Nogee, 1951; Rieskamp et al.,

2006).

Many psychological scientists treat this noise as an afterthought. The mind is often

considered to have a deterministic core, with the interesting aspects of behavior being

changes to mean responses due to experimental manipulations or stable individual

differences in mean responses. Noise is considered a nuisance variable by researchers, and

thus, following common statistical practice for nuisance variables, noise for continuous

responses is often characterized as additive, Gaussian, and independent (Howell, 2017).
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More formally, many models of cognition can be described as producing a response, R, that

is, a deterministic function, f , of the stimulus, S. A random variable, ϵ, is added to each

response, which represents the additive, independent Gaussian noise (with a mean of zero

and a certain variance σ2): R = f(S) + ϵ. Decisions between multiple alternatives are often

treated analogously, with covert estimates of the value of each alternative corrupted by

additive, independent Gaussian noise (e.g., Drugowitsch et al., 2016; Hey & Orme, 1994).

Statistically speaking, this is a reasonable starting point: Gaussian distributions

naturally arise when many random variables (with finite variance) are summed together,

even if the distribution from which they are all drawn is non-Gaussian. This could, for

example, reflect the combination of many errors in the sensory and response systems (e.g.,

Stengård & van den Berg, 2019). However, as we review below, studies investigating noise

at a deeper level have revealed rich structure. What has been increasingly recognized is

that the noise in cognition is often not noise added in either the sensory or response

systems, but the noise present in the cognitive computations themselves. In addition, it has

been shown that noise is often not Gaussian, not independent, and indeed has other

interesting structure.

Explaining these deviations is non-trivial, and doing so can, we will argue, reveal

crucial insights into how the cognitive system works. We discuss how stochastic

approximations to Bayesian inference – local sampling algorithms – have recently been

used to account for many aspects of cognition, and many features of the noise it generates.

For example, and as we discuss in more detail below, local sampling algorithms produce

sample-by-sample autocorrelations in which the next state is often similar to the current

state, which violates independence in a human-like way. More sophisticated local sampling

algorithms have mechanisms to occasionally make bigger steps, and as a result, the overall

distribution of steps is not Gaussian. The success of these approaches implies that an even

stronger change to the common viewpoint is needed: not only is noise unavoidable and

interesting to study, but the presence of noise in cognition may well be essential to
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cognitive functioning – allowing a local sampling algorithm to explore alternative

hypotheses about the world.

Noise Has Rich Structure

While the above simple formulation of the nature of noisy behavior – deterministic

cognition corrupted by independent and additive Gaussian noise – is convenient, it is, as we

have suggested, often wrong. First, we point out that the most obvious sources of noise,

the sensory and response systems, are not always the largest. We then point out that the

common formulation of noise itself is incorrect: noise is often not additive, not Gaussian,

and not independent.

Types of Noise

We will discuss three types of noise: sensory noise, response noise, and

computational noise (see Figure 1). All three types of noise are internal to the individual –

that is, they introduce variability in the response to a fixed stimulusThis stands in contrast

to external noise, that is noise that is added by the experimenter. There are many kinds of

external noise. For example, in investigations of numerosity, participants are very briefly

presented with a large number of “dots” on a computer screen and are asked to guess how

many dots appeared. People’s responses are often measured as a function of the number of

dots that were shown, and confounding aspects of the stimuli such as dot diameter or dot

position are often randomly chosen so as not to be reliable cues – however, as participants

do use them to some extent this will introduce variability into their judgments (Gebuis &

Reynvoet, 2012; Ratcliff et al., 2018). Other kinds of external noise may include the

random ordering of trials in the experiment (if participants’ responses are affected by the

content of neighboring trials, e.g., Stewart et al., 2002), and even the noise in the number

of photons emitted by a visual display. These various kinds of external noise need to be

taken into account when assessing the level and type of internal noise1. Separately,

1 In contrast, one aspect of stimuli that we do not consider to be external noise is the uncertainty it
implies, e.g., the phrases, “a 50% chance of winning” and “a 100% chance of winning” have high and low
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researchers need to account for learning – changes to the mean response of the system –

which is separate from internal noise but will also cause responses to change between

repeated responses to the same stimulus, though in a more predictable way. Venturing now

into our discussion of internal noise, we will keep these potential confounds in mind.

Figure 1
Illustration of information processing stages and points at which sensory, computational,
and response noise are introduced. These three forms of noise are internal to the organism,
in contrast to external noise, which is added to the stimulus.

Sensory Noise

Sensory noise, which we define functionally as noise occurring before the important

cognitive computations, has been long investigated and identified as a fundamental

component of perception (Ashby & Lee, 1993). Often, the key dependent variable in such

studies is the psychophysical threshold: the magnitude of a stimulus property necessary for

choices to reach a desired accuracy level. As illustrated by both of the curves in Figure 2A,

implicit uncertainty respectively. We consider implicit uncertainty to not be external noise because a fixed
deterministic system would produce the same response to each presentation, while it would not do so in the
presence of external noise.
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accuracy in identifying one of two stimuli is generally a smooth function of the difference

between stimuli, and the psychophysical threshold is the difference between stimuli that

produces a target accuracy/consistency level (e.g., 75% correct). A basic paradigm for

investigating sensory noise has thus been detection or discrimination tasks: in visual tasks,

asking participants to report the presence or absence of a very low-contrast stimulus, or to

choose which of a set of presented stimuli have higher contrast2 (Pelli & Farell, 1995).

One limiting factor on human performance is the noise introduced by the sensory

organs; for example, the number of photons that reach the retina from a light source (e.g.,

a stimulus presented on a computer screen) follows a Poisson distribution. Initial models

supposed that decisions were made optimally and only limited by this external photon

noise (de Vries, 1943; Rose, 1948), while later ideal observer approaches modelled internal

inefficiencies in the early visual system, such as information loss due to the optics of the

eye and noise in photoreceptors. These ideal observer models describe the task faced by the

agent and the structure inherent in the task environment and derive optimal solutions, and

these normative benchmarks are then compared to empirical data (for variants of this

research program, see for example Chase et al., 1998; Chater & Oaksford, 1999; Geisler,

2011). Both these approaches, however, predicted psychophysical thresholds that were

much lower (i.e., meaning better performance) than that shown by experimental

participants (Geisler, 2003): instead, the results pointed to later internal noise, perhaps in

the sensory pathways, that affects sensory information (Barlow, 1957).

While the obvious approach for controlling for external noise is to reduce it to the

lowest level possible, a methodological insight for investigating internal noise was to instead

add enough external noise to swamp the uncontrollable effects of photon noise and early

visual inefficiencies, and in this way separate the effect of internal noise from sub-optimal

calculation. This approach was used in influential models of perceptual decision making –

2 While here we focus on the visual system, there have been parallel investigations of internal noise in the
auditory and haptic systems (e.g., Jepsen et al., 2008; Jones & Tan, 2012).
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based on ideal observers – with perceptual templates to convert a stimulus into a

single-dimensional signal, followed by additive internal noise and a decision threshold.

However, in simple versions it was not identifiable if the noise was sensory or occurred later

(Ahumada & Watson, 1985; Barlow, 1978; Gold et al., 1999).

Response Noise

Later work in perception, with more complex models, demonstrated that sensory

noise alone was insufficient to account for human data. Instead, response noise, acting

between the perceptual template and the decision threshold, was deemed necessary to

account for experimental data (Lu & Dosher, 1998). Response noise is variability

introduced after the important cognitive computations; for continuous responses, response

noise can be added to the continuous value of the intended response, while for discrete

responses, it can be captured by the probability of making an unintended response (e.g.,

general lapses, sometimes termed ‘tremble noise’). In addition, a second source of response

noise can arise by assuming that participants make a continuous covert estimate for each

response alternative before choosing a response based on these covert estimates (e.g.,

estimating the numerosity, that is, the number of dots, in a briefly-presented display before

deciding whether it is higher or lower than a threshold, or estimating the numerosity of two

stimuli separately before choosing the stimulus with the higher numerosity). Response noise

can also be the noise added to these covert estimates, and this noise, unlike general lapses,

means that a pair of stimuli with more similar covert estimates will have more variable

binary responses (see the shape of the curves in Figure 2; Blavatskyy & Pogrebna, 2010)3.

While we have thus far focused on perceptual decision making, studying the noise in

3 More formally, for each of the two alternatives a value, V1 or V2, is assumed to be covertly computed.
Each value has independent Gaussian noise added on: V1 = f(S1) + ϵ1 and V2 = f(S2) + ϵ2 where S1 and
S2 are the signals associated with the two alternatives and ϵ1 and ϵ2 are independent random Gaussian
variables. The intended response in the decision-making task is then the alternative with the highest
(noisy) value, and errors are more likely the closer that V1 and V2 are to one another. This formulation
corresponds to a probit model of strength-dependent noise. A popular alternative is the logistic model,
which corresponds to additive Gumbel-distributed noise on values (McFadden, 1974; Yellott Jr, 1977).
However, these two formulations do not differ much in binary choice tasks (Luce, 1959).
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preferential decision making provides an interesting complement. In preferential

decision-making tasks, participants can be given full information about the gamble, and the

information needed to make a decision can be presented symbolically (e.g., using Arabic

numerals). Therefore, aside from occasional lapses of attention, sensory noise is close to

zero for the calculations that are behaviorally relevant. This makes testing for other types

of noise easier, though as experimenters ask for participants’ preferences rather than correct

answers, there is an additional difficulty in modelling what participants intend to choose.

The classic study of Mosteller and Nogee (1951) established that participants show

inconsistent preferences between options even when there is clear sensory information.

Here, participants were given the choice of whether to play a game in which they needed to

beat a particular hand of poker (played with dice), with fixed gains and losses if they

played and no change if they declined. Not only were participants’ choices inconsistent, but

they were less consistent the closer the expected values of the two alternatives were to one

another, as illustrated in Figure 2B. A subsequent review of the literature established that

when choosing between two alternatives with similar expected values, participants reversed

their preferences on approximately 25% of trials when faced with the same alternatives a

second time (Rieskamp et al., 2006). Responses have also been found to be more

unpredictable when participants are under cognitive load (Olschewski et al., 2018).

Establishing that these inconsistencies are due to noise requires removing the

potential confounds of short-term or long-term deterministic changes in preference. A

careful analysis showed that even when accounting for the long-term effect of participants

tending to choose less risky alternatives when making repeated choices, more than 14% of

repeated responses remained inconsistent with one another, indicating stochastic choice

(Bardsley et al., 2009; Loomes et al., 2002, Chapter 7). Other work controlled for both

short-term learning based on the identity of the previous trial as well as long-term learning,

finding that a substantial amount of inconsistency remained even between the 11th and

12th repetition of choice trials presented in a consistent order (Spicer et al., 2024).
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Both types of response noise discussed above have been used to explain these

inconsistencies. Constant (or tremble) noise, which results in pressing the wrong key on a

fixed percentage of trials regardless of the stimuli, has been thought to arise from sensory

noise (e.g., when probabilities are presented via pie charts instead of Arabic numbers), lack

of attention, misreading, etc. Multiplicative noise (termed Fechnerian noise in this domain

because of the multiplicative noise embodied in the Weber-Fechner Law) has been thought

to arise from imprecision in calculation. These types of response noise added to a

deterministic core, often the normatively-motivated subjective expected utility model, have

been called true-and-error models (Becker et al., 1963; Birnbaum & Bahra, 2012; Harless &

Camerer, 1994).

Computational Noise

In contrast to sensory and response noise, computational noise is noise arising from

the cognitive operations that map from sensory input to responses. Drugowitsch et al.

(2016) investigated whether noise also occurred in the cognitive computations. The

experimental design was based on the classic weather prediction task in which probabilistic

cues needed to be combined to determine which response is correct, but with the number of

cues and the number of responses both manipulated. Using an ideal observer model of the

task, sensory noise was assumed to be Gaussian noise in the perception of the cue (i.e., the

orientation of a Gabor patch) that influenced the posterior probability of every response

category. Response noise was assumed to be Gaussian noise independently added to the

final accumulated posterior probability for each response category. Computational noise

was subtly different: it was assumed to be Gaussian noise independently added to the

log-likelihood of each category separately after each piece of evidence was observed,

allowing it to accumulate over the sequence of cues. Multiple cues had higher thresholds

than single cues (illustrated in Figure 2A) and in such a way that extensive model

comparison revealed that almost all of the deviations from the ideal Bayesian model could

be explained by computational noise.
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Figure 2
Consistency of choices depending task complexity in A) perceptual and B) preferential
choice tasks.

As these computational inefficiencies could potentially also be explained by

deterministic calculations that were poorly adapted to the task (e.g., Beck et al., 2012),

Drugowitsch et al. (2016) also included the key manipulation of presenting the exact same

trials to participants on multiple occasions. Supplemental analyses demonstrated that

participants did not change how they did the task, and so the analysis was able to

decompose the extent to which deviations from the correct Bayesian model (aside from

sensory and response noise) were either deterministic or stochastic. Two-thirds of the noise

in behavior was due to stochasticity in inference – thus, the leading cause of inefficiency

was computational noise. Stengård and van den Berg (2019) later generalized this result to

visual search, finding a similar magnitude of computational imperfections under unlimited

viewing conditions, but a higher percentage contribution of sensory noise when viewing

time was limited.

Separately, there is evidence for computational noise in addition to response noise in

risky choice. An empirical fact that argues against the sufficiency of response noise in
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explaining choice inconsistency is the reliability of choice when one option dominates the

other. Dominance, specifically, first-order stochastic dominance, means that one alternative

has a higher probability of providing an outcome at least as good as its alternative on any

potential comparison value. For example, one alternative with a 15% chance of £30 and a

10% chance of £10 and otherwise nothing would exhibit dominance over an alternative

with a 10% chance of £30 and a 15% chance of £10 and otherwise nothing. In these cases,

participants are very rarely inconsistent (e.g., 2.39% in Loomes and Sugden, 1998, and

5.48% in Spicer et al., 2024).

This fact, combined with the greater inconsistency without dominant alternatives,

suggests that response noise alone is insufficient to explain variability in preferential choice,

as the relationship between conditions echoes that found in perceptual choice (illustrated in

Figure 2). Explanations include a more complex process that modulates response noise

depending on the option pairs (Blavatskyy, 2011) or the inclusion of a dominance-detection

mechanism in the model (Kahneman & Tversky, 1979). But a more parsimonious solution

is to go beyond adding variability to the utilities, and make the function used to convert

stated values to utilities itself variable (Becker et al., 1963). For these kinds of random

preference models, there is a strict ordering of the utilities of alternatives for a given utility

function, but a different utility function is sampled each time a choice is made. If every

possible utility function respects dominance, a response based on sampled utility functions

will respect dominance, while more ambiguous choices will lead to noisy responses

(Loomes, 2015), though this assumption can be softened so that a different utility function

is sampled at each time step in a decision process (Navarro-Martinez et al., 2018). The

random selection of utility functions in these models is a form of computational noise.

Preferential choice studies have also investigated noise in situations in which

participants learn about decision alternatives from experience, instead of through

description, for example, by giving participants experience of two options which are

rewarded with different probabilities. Behavior in these bandit tasks is known to be noisy,
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with participants tending not to always select the alternative that provides the highest

probability of reward, but instead selecting alternatives roughly proportional to their

probabilities (Vulkan, 2000). More recent work investigated a bandit task in which

participants selected between options whose values smoothly changed over time. Different

reinforcement learning models were compared, with the model that matched human

behavior the best included multiplicative noise in the updates made to value functions

(Findling et al., 2019). Follow-up work showed that multiplicative computational noise

played an adaptive role in tasks in which the rewards changed in volatile ways. This type

of noise is also computational because the noise values do not transiently affect responses

but appear to be incorporated into participants’ representations (Findling et al., 2021).

Functional Form of the Noise

While the above studies have provided evidence for the existence of computational

noise, it is difficult to determine its exact characteristics. This is because different noise

distributions can produce very similar effects with binary choices (e.g., Luce, 1959).

Therefore, for the purposes of investigating the functional form of the noise, such as

whether it is Gaussian and independent, it is more revealing to investigate the variability of

people’s estimates.

Non-Gaussian Noise

Probabilities form a component of normative models of perceptual and preferential

decision making, and are often directly presented to participants in studies of preferential

decision making. Therefore, the noise in probabilities is of interest to researchers in both

perceptual and preferential domains, and a reasonable starting point is to assume that

probability estimates are affected by Gaussian noise.

However, in a task in which participants were repeatedly asked to estimate the

relative frequency of geometric objects on a screen, the variability of probability judgments

peaked for probability estimates in the center of the range (i.e., close to 0.5), and was

well-described by a binomial distribution instead of a Gaussian distribution (Howe &
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Costello, 2020). While these results were based on perceptual stimuli for which sensory

noise could play a role, a later study found the same results when participants were

estimating probabilities from memory, e.g., estimating the probability of rain on a random

day in England, and also showed that additive Gaussian noise could not explain the

inverted u-shape, even if responses were censored at the edges of the response range (see

Figure 3A1 and Figure 3A2; Sundh et al., 2023).

The appropriateness of additive Gaussian noise has also been questioned in studies

of time interval estimation. In these studies, participants are given a short demonstration

of a target time interval, such as 3 seconds, and then asked to reproduce it repeatedly,

without feedback, as if they were ‘drumming’ a keyboard key. A plot of successive time

interval estimates from a single participant attempting to hit a key every 3 seconds for

1,000 trials in an experiment from Zhu et al. (2022) is shown in Figure 3B1. The

distribution of responses looks different from what would occur with Gaussian noise (see

Figure 3B2 for comparison).

We can quantify this by looking at the distribution of changes in the time estimate

between successive responses. If Gaussian noise is added onto participants’ responses, then

the difference between successive estimates will also follow a Gaussian distribution4. A

non-parametric method to investigate this distribution of changes in successive estimates is

to investigate the quantiles of the standardized distribution (i.e., subtracting the mean

from each estimate and then dividing each by the standard deviation, ordering the

estimates from smallest to largest, and then finding the value that separates the 1st

percentile of estimates from the rest, the value that separates the 2nd percentile of

estimates from the rest, etc.). These empirical quantiles can be compared to the quantiles

4 The advantage of looking at changes in successive estimates, rather than just the distribution of
estimates, is that it provides a more stringent test. If a participant’s estimates are constantly increasing or
decreasing by a set amount on each trial with Gaussian error added on, then the distribution of changes in
successive estimates will still be Gaussian, though with a non-zero mean. If participants are changing their
time estimate according to a Gaussian random walk, which would be an indication of computational noise
as errors are incorporated into the next estimate, then the distribution of changes between successive time
interval estimates will also follow a Gaussian distribution.
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generated from the normal distribution (Wilk & Gnanadesikan, 1968), such as the

standard normal distribution with mean zero and standard deviation of one. If the

successive estimates showed Gaussian noise, then subtracting the standard normal

quantiles from the empirical quantiles would, on average, produce zeros for each difference

in quantiles, and they would not deviate significantly from zero (as in Figure 3C2).

However, the results in Figure 3C1 show curved deviations with a positive slope because

the empirical quantiles are further from their mean than predicted by a Gaussian

distribution (e.g., the standard normal quantile that is three standard deviations below the

mean at -3 is actually two more standard deviations below the mean in the empirical

distribution, and likewise the standard normal quantile that is three standard deviations

about the mean is an additional two standard deviations above the mean in the empirical

data). Thus, the distribution of successive changes in time interval estimates has heavy

tails: most changes are small, but some changes are very large, more than can be

accounted for by a Gaussian distribution (Zhu et al., 2022).

The heavy-tailed nature of changes in successive estimates also occurs when

participants are given a new time estimation target on each trial, which changes slowly

according to a Gaussian random walk (on log time; Zhu et al., 2021). Heavy-tailed changes

also occur in price prediction tasks in which the feedback follows a Gaussian random walk

(on log price): participants’ successive price estimates show heavy-tailed changes (Zhu

et al., 2021).

Non-independent Noise

Perhaps an even more fundamental assumption than that of Gaussian errors is that

the noise in one trial does not depend on the noise in previous trials. However, it has been

found that noise does, in fact, depend on previous trials, and not just on the immediately

preceding trial. Gilden et al. (1995) showed this in a temporal estimation task with a fixed

target using the diagnostic tool of plotting the power spectral density of each frequency on

a log-log plot. In this analysis, a Fourier transform is used to decompose the time series of
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Figure 3
Illustrations of the functional form of the noise in cognition. (A) The mean and variance of
repeated probability estimates shows an inverted-u relationship (data from Experiment 3 of Sundh
et al. (2023)), while Gaussian error (even if restricted to the response range) produces a flatter
function at the level of noise observed in participants. MC3 samples fed through the probability
estimation function of the autocorrelated Bayesian sampler model (see Figure 4) show an
inverted-U relationship due to their binomial noise. (B) Plots of how estimates change over time
from an example participant making repeated estimates of a fixed time interval (3 seconds; data
from Zhu et al., 2022), independent samples drawn from a Gaussian distribution, and MC3

samples drawn from a Gaussian distribution. Estimate data are analyzed in different ways in C-E,
with lines for the mean and shaded regions for the 95% confidence intervals. (C) The deviation of
empirical quantiles from standard Gaussian quantiles plotted against standard Gaussian quantiles.
A flat line indicates a Gaussian distribution, and a positive slope indicates a heavy-tailed
distribution. (D) Spectral density analyses. A flat line indicates independent noise, while a slope
of 1/f on the log-log plot indicates long-range autocorrelations. (E) Autocorrelations in the
magnitude of change between successive estimates. Independent noise shows zero autocorrelation
at any lag beyond zero, while positive autocorrelations indicate volatility clustering.
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estimates into a weighted sum of a set of oscillating functions, each operating at a different

frequency. The weight calculated for each function is the spectral power at that frequency,

with power at lower frequencies indicating dependencies at longer times scales (see Gilden,

2001; Wagenmakers et al., 2004, for further details of this analysis). Independent noise will

show a flat line in this plot because it has equal power at all frequencies, as shown for

independent Gaussian noise in Figure 3D2. However, as shown in Figure 3D1, participants

instead show a slope close to −1, also termed 1/f noise, which indicates long-range

autocorrelations5. Later work showed that long-range autocorrelations and heavy-tailed

changes co-occur in both a temporal estimation task as well as a semantic association task

(Zhu et al., 2022). Beyond temporal estimation, long-range autocorrelations have been

found in the response times of a variety of tasks, and surprisingly, the autocorrelations can

explain more of the variance in response time than the experimental manipulations do

(Gilden, 1997).

Another demonstration of the non-independence of noise can be found by inspecting

the autocorrelations in changes between successive estimates. Interestingly, while there are

almost no autocorrelations in the changes between estimates6, there are autocorrelations in

the magnitude of the changes between estimates. Though the direction of change of an

estimate is hard to predict, large changes (in either direction) are more likely to be followed

by large changes, and small changes by small changes. This effect, known as volatility

clustering (this terminology is drawn from finance; Cont, 2001), occurs in estimates of fixed

time intervals (see Figure 3E1), despite this effect not occurring for Gaussian noise (see

Figure 3E2). It also occurs for participants’ estimates in tasks in which the (log) target

time changes from trial to trial as a Gaussian random walk, and in individual price

prediction time series when participants predict a Gaussian random walk (on log price; Zhu

5 A random walk, which could be thought of as a simple form of computational noise in which Gaussian
noise is added to the immediately preceding estimate, has limited autocorrelations, and would show a slope
of −2 on this plot.
6 This is outside of the first lag, in which a negative autocorrelation can be explained by adjusting an
estimate as the result of feedback.
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et al., 2021), despite Gaussian random walks also not exhibiting volatility clustering.

Finally, additional non-independence can be found in tasks in which participants are

asked to generate random sequences. For example, they are asked to randomly generate a

sequence using the numbers from one to ten, as if drawing numbers from a hat (with

replacement). In this task, people deviate from independence by showing too few

repetitions, too many transitions between adjacent numbers, and they too often continue

along the same direction on the number line (Wagenaar, 1972). While many of the results

in this section so far have only been established for estimates and not for binary choice, the

lack of repetitions in random generation is one that has also been observed with binary

outcomes (Rapoport & Budescu, 1997).

Towards a Unifying Explanation of Computational Noise

From the above discussion, sensory and response noise, either individually or

combined, are insufficient to explain the noise in human behavior, and therefore a

substantial proportion of the noise has to occur in the cognitive computations instead. We

also have seen that noise does not have a simple form and instead is non-Gaussian and

shows intricate dependencies. What could account for such complex-seeming noise across

such a broad range of tasks?

One approach is to assume that random errors are made in each cognitive

calculation, and these errors propagate through subsequent calculations. This approach

characterizes models of computational noise both in perceptual and preferential decision

making (Drugowitsch et al., 2016; Findling et al., 2019, 2021). However, so far, there is no

unified approach: in perceptual decision making, an ideal observer model was used, and the

noise was applied independently to probabilities, while in preferential decision making, a

reinforcement learning model was used, and the noise was applied independently to the

inferred values of options. A challenge for this approach of directly adding noise to specific

cognitive computations is also to explain why the functional form of the noise in estimates

is non-Gaussian and non-independent in the specific way that has been observed.
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A second approach is to assume that participants are randomly selecting different

rules or heuristics to apply on each trial (Becker et al., 1963; Rieskamp & Otto, 2006).

This approach can explain why variability can be much larger for some kinds of choices

(e.g., dominance in preferential choice) than others, but, like directly adding noise to

computations, it also would need to explain why the noise in estimates has specific

non-Gaussian and non-independent characteristics.

A third approach is to use sequential sampling models, such as drift-diffusion

models. These models are based on the sequential probability ratio test, though these

models relax the assumption that all noise is sensory noise. Sequential sampling models

have shown much success in fitting data in both perceptual and preferential decision

making (Busemeyer & Townsend, 1993; Navarro-Martinez et al., 2018; Ratcliff & McKoon,

2008). These models have also been augmented with computational noise to explain

long-range autocorrelations in response times (Wagenmakers et al., 2004) and can be

modified to also produce estimates (Kvam et al., 2022). While a promising basis, the

sequential sampling models that fit these different tasks are hard to reconcile as they differ

in what they accumulate (e.g., evidence or utility), and do not as of yet offer an account of

why the noise in estimates is non-Gaussian and non-independent.

Each of these existing frameworks has had success in explaining specific results

based on noise in cognitive computations, but is a more general explanation of noise

possible? One principled route to producing such a general explanation is to start with

probabilistic models about the world, such as Bayesian or ideal observer models7, but to

acknowledge that the brain cannot possibly apply such probabilistic models using exact

symbolic calculations using the mathematics of probability theory, as these would be

computationally intractable. This means an approximation is needed, and one of the most

7 Similarity-based models, which calculate the summed similarity of a new item to each of the response
categories and respond as a function of the relative summed similarity (e.g., Medin & Schaffer, 1978;
Nosofsky, 1984), can be reinterpreted as probability distributions over stimuli (Ashby & Alfonso-Reese,
1995), though responses are assumed to be drawn independently of one another.
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widespread approaches to approximation in computational statistics and machine learning

is sampling. Often it is possible to successfully draw samples from a probability distribution

even when it is far too complex to represent the full distribution (e.g., keeping in mind the

probabilities of every possible interpretation of an image). Sampling typically involves

using some variant of so-called Markov chain Monte Carlo sampling, a sampling algorithm

that starts with a particular hypothesis (e.g., this image shows a cheetah) and makes

stochastic and local changes to the hypothesis (e.g., this image shows a leopard). When

implemented correctly, this algorithm generates samples from the probability distribution

over possible hypotheses, while remaining psychologically more plausible than representing

the entire probability distribution (Griffiths et al., 2012; Zhu, Chater, et al., 2023).

This viewpoint predicts that the brain will roughly follow Bayesian probability

theory but will be subject to systematic biases due to computational constraints on

cognition limiting the number of samples drawn. These biases will arise in a variety of

ways: first, small samples will depend on their starting point (because the choice of

starting point will only ‘wash out’ after a large sequence of samples has been drawn, so

that the entire probability space has been explored) – this dependence on starting point

has been argued to account for effects such as anchoring and adjustment, sub- and

super-additivity, and causal reasoning errors (Dasgupta et al., 2017; Davis & Rehder, 2020;

Lieder et al., 2018; Sanborn & Chater, 2016; Spicer et al., 2022a; Zhu, Sundh, et al., 2023).

Moreover, the brain needs to make appropriate inferences in the light of small samples (for

example, not simply assuming that an event that happens, say, twice in a sample of two,

must occur with certainty). Appropriate correction for small samples leads to regression of

probability values from extreme values, which can provide an explanation for the

conjunction fallacy, among other effects (Zhu, Sundh, et al., 2023; Zhu et al., 2020).

Moreover, given small samples, the brain has to extrapolate the probability of new items

based on their similarity to the small number of items that have been sampled (in

computational statistics, a method known as approximate Bayesian computation), which
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provides an elegant explanation of the close relationship between judgments of probability

and similarity that underlies the representativeness heuristic (Kahneman & Tversky, 1972).

More broadly, the idea that human probabilistic reasoning uses a sampling approximation

provides an effective explanation of many classic effects in the experimental literature on

probability judgments (Chater et al., 2020).

In many ways, the idea of statistical sampling is a generalization of the ideas

proposed to explain computational noise. Random errors in a calculation that are

subsequently incorporated into later calculations are hallmarks of multi-stage sampling

processes, such as ancestral sampling or sequential Monte Carlo (Daw & Courville, 2008;

Prat-Carrabin et al., 2021; Sanborn et al., 2010). Randomly selecting a rule on each trial is

a form of sampling too. Additionally, random walk models can be formulated from

sampling hypotheses instead of data, providing a link between these approaches and

drift-diffusion models (Hamrick et al., 2015; Vul et al., 2014; Zhu, Sundh, et al., 2023).

Indeed, regarding the observations about cognitive noise we reviewed above, Findling and

Wyart (2021) commented that sampling was a potential contributor to the computational

noise found in their task. Stengård and van den Berg (2019) found that simple sampling on

its own was the third-best model in their model competition for explaining computational

noise in perception.

However, while the idea of sampling seems generally well-suited to explaining the

noise in cognitive computations, to make further headway, the idea of sampling needs to be

fleshed out by identifying specific sampling algorithms and quantifying how the outputs of

these algorithms map onto behavior. Fortunately, there has been progress made toward

both of these goals, particularly when it comes to explaining the functional form of the

noise.

Sampling Algorithms with Human-like Noise

Markov Chain Monte Carlo (MCMC) is a family of algorithms that allow

statisticians and researchers to generate samples from an arbitrary target probability
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distribution. Importantly, MCMC can produce samples from high-dimensional and

complex target distributions as long as local information about the likelihood of data

points is available. Given its flexibility, MCMC is used widely in statistical inference and

indeed has been acknowledged as one of the most important algorithms of the 20th century

(Cipra, 2000). Intuitively, MCMC proceeds by iteratively creating a sequence, or chain, of

states, where each state is a sample of the target probability distribution. In each iteration,

a proposed state is generated by randomly modifying the last state. Then the previous

state and the newly proposed state are compared by calculating the ratio of the likelihood

of the proposed state given the target distribution to the likelihood of the previous state.

In the algorithm’s most common form, Metropolis-Hastings, this ratio is used to

stochastically decide if the proposed state is used as the next state in the sequence of

MCMC states or if the last state is retained. Whenever the proposed state is more likely

given the target distribution, the proposal is accepted. However, if the proposed state is

not more likely, the proposed state is accepted with a probability proportional to the ratio

of likelihoods of the proposed and the previous state (Hastings, 1970; Metropolis et al.,

1953). Therefore, MCMC will not simply seek the mode of the target distribution using

random search but will navigate the target distribution proportionally to its likelihood —

usually moving closer towards the target mode but also exploring areas of lower likelihood.

It can be shown that, given mild assumptions about the way that proposals are

produced, after many iterations, the generated states correspond to samples from the

target distribution. Thus, these samples can be used to estimate properties of the target

distribution, such as its mean or variance. However, it is important to stress that the

sequence of MCMC states only perfectly matches the target distribution in the limit of an

infinite number of samples. For example, since the MCMC procedure needs an arbitrary

starting point, the first states in the MCMC sample do not correspond to the target

distribution and are commonly discarded. Finally, the samples produced by MCMC are

not independent, as each sample is produced given its predecessor. As a result, the number
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of effective samples of an MCMC chain (the number of independent samples that the chain

contains) can often be considerably lower than the number of MCMC iterations (Kass

et al., 1998).

The standard Metropolis-Hastings MCMC algorithm produces non-independent

samples with the changes between samples not necessarily corresponding to the

distribution from which it is drawn. However, an elaboration of this algorithm,

Metropolis-coupled Markov Chain Monte Carlo (MC3; Geyer, 1991), was developed for the

purpose of searching probability distributions with many modes rather than a single peak.

This algorithm works by running multiple MCMC chains simultaneously, with one chain

drawing samples from the correct target distribution, while the remaining chains draw

samples from a ‘melted’ version of the distribution in which it is easier to move between

modes of a probability distribution that are separated by regions of very low probability.

The remaining chains are useful for exploring the distribution, because, when appropriate,

one of these remaining chains can swap positions with the MCMC chain sampling from the

correct target distribution. In this way, MC3 can make occasional large jumps across the

hypothesis space, allowing it to also produce heavy-tailed changes even when sampling

from a fixed Gaussian distribution (see Figure 3B3 and 3C3, though sampling from a

heavy-tailed distribution may be necessary to produce tails as heavy as those observed in

Figure 3B1 and Figure 3C1; Zhu et al., 2022), or when the target follows a Gaussian

random walk in either time interval estimation tasks or price prediction tasks (Spicer et al.,

2022b; Zhu et al., 2021).

The multiple chains of MC3 introduce human-like long-range autocorrelations (see

Figure 3D3), and surprisingly, in both fixed target and random walk target tasks, this local

sampling algorithm also produces almost no autocorrelations in the changes between

estimates, but does show autocorrelations in the magnitude of these changes (see

Figure 3E3; Zhu et al., 2021). MC3 better fit the overwhelming majority of participants in

a price prediction task than non-sampling models of human behavior (Spicer et al., 2022b).
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In this analysis, response noise was also included, though it played a minor role, and

generally it is important to consider the possibility of all three types of noise when fitting

human behavior.

Castillo et al. (2024) showed that ‘volitional’ random generation could be explained

as resulting from a related MCMC algorithm. Participants were asked to say the heights of

people at random, and several measures of serial independence were calculated from their

sequences. For example, they replicated past results that when compared to true

randomness, people generate sequences with very small distances between successive items,

and with long runs following the same ascending or descending direction (Towse & Neil,

1998). They compared these deviations to those produced by several MCMC algorithms

and found that algorithms running multiple chains with autocorrelated proposals explained

people’s sequences best, and better than an existing random generation model.

Furthermore, people’s responses reflected the true distribution of heights, as MCMC

algorithms do. This result was bolstered in León-Villagrá et al. (2022), who found that

when asked to generate random samples from environmental distributions, people’s

sequences reflected both coarse and fine-grained statistics of the environment (e.g., of NFL

football scores).

Mapping Samples onto Other Behavior

The above comparison of MC3 to the functional form of noise in participants’

estimates uses a simple mapping from the sampling algorithm to behavior: each successive

estimate is a new sample generated by the algorithm. Recently, we have proposed,

moreover, that a wide range of empirical findings ranging from psychophysics to high-level

cognition can be captured by a cognitive modelling framework which we call the

autocorrelated Bayesian sampler (see Figure 4; Zhu, Sundh, et al., 2023), which captures

the above judgments, response times, confidence and many other aspects of behavior

within a single framework. According to this framework, the mind first samples hypotheses

using an MCMC algorithm such as MC3, with the number of samples determining response
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times. For example, when briefly presented with a display showing many dots on a screen,

samples of the number of dots will be drawn using the algorithm. With the drawn samples,

the mind then integrates these hypotheses to make responses, with different types of

responses involving different types of integration. For example, it might calculate the

relative proportion of samples that belong to a given category to produce a probability

judgment, average the sample values to produce a point estimate, or compute quantiles to

produce confidence intervals.

Although these responses could be made with the drawn samples alone, doing so

would occasionally lead to extreme responses due to high sampling error with a small

number of samples, and so instead, a prior on responses is incorporated. In intuitive terms,

this prior can be seen as a count of assumed samples held before any actual samples are

drawn, and it acts as a useful bias: while it causes a form of conservatism and results in

conjunction fallacies, it robustly improves the accuracy of probability judgments overall

(Zhu et al., 2020, Appendix C). For example, if judging the probability of rain, the

estimate is the number of rainy days sampled plus the prior count of rainy days divided by

the total number of samples and prior counts for all responses (see Figure 4). If the counts

are adjusted for the autocorrelation in the samples, then the counts will follow a binomial

distribution that produces an inverse u-shaped relationship between mean probability

judgments of an event and the variance of the judgments of that event, as shown in the

human data (see Figure 3A3). Furthermore, the observations that there are very few

extreme responses and the mean-variance curve falls to zero before reaching the edge of the

range can be explained by a prior over responses: knowledge that probabilities tend not to

always be zero or one (Kolvoort et al., 2023; Sundh et al., 2023).

This unifying perspective can thus explain the functional form of the noise observed

in behavior, and this approach has been extended to binary perceptual choice. In

perceptual choice, samples of hypotheses are accumulated until there is enough evidence for

one response over the other, borrowing this formulation from sequential sampling models.
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The autocorrelations of the local sampling algorithm introduce interesting effects,

particularly that errors will be, on average, slower than correct responses in specific

conditions, as found in human data (Ratcliff & Rouder, 1998). However, this approach has

not been used in the tasks used to demonstrate computational noise in perceptual

judgment, and will need to be combined with the right ideal observer models to evaluate

how well they account for noise, and behavior more broadly, in those tasks. Further, this

framework will need to be extended to preferential decision making, though the success of

sequential sampling models in this domain, including demonstrations of stable individual

differences in parameters across perceptual and preferential choice, suggests that a

unification is possible (Busemeyer & Townsend, 1993; Frydman & Nave, 2017;

Navarro-Martinez et al., 2018). The hope for the sampling approach is that it not only can

explain empirical effects, but could be used to characterize an individual in one task, and

make accurate predictions about their behavior in very different tasks.

Is Noise in Cognition a Bug or a Feature?

We have argued that computational noise is a major contributor to the substantial

variability in human behavior. It is natural to see noise as the enemy of successful

computation, and something to be minimized as far as possible (e.g., Kahneman et al.,

2022). In everyday life, it limits the ability of an individual to perceive a stimulus correctly,

and noise in responding means that an individual’s intended action cannot be perfectly

executed. It is clear that when in situations such as needing to identify oncoming traffic

and press the correct pedal while driving or perceiving the location of each stair and

reliably placing your foot upon it, too much noise is harmful. Reducing noise beyond what

others do can also be incredibly rewarding: it is part of what separates the highest-paid

sports professionals, surgeons or craftspeople from their peers.

From this point of view, the prevalence of computational noise in the brain is

viewed as an unavoidable side-effect of the noisy nature of individual neurons, or some

other aspect of the hardware of the brain (Faisal et al., 2008; Rolls & Deco, 2010). This is
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Figure 4
Schematic depiction of the autocorrelated Bayesian sampler (Zhu, Sundh, et al., 2023) and
its versatility in accounting for different types of responses, with reference to an example
numerosity task. The stimulus (left panel) is first converted into a psychological distribution
(reflected by the Gaussian curve), which can then be sampled to answer various potential
queries, including estimates (here, the last sample), decisions (whether the count is
above/below 25 based on which is supported by most samples), probability/confidence
judgments (the relative proportion of samples for each response plus a prior count of 1 for
each alternative that acts as the generic prior), confidence intervals (the empirical quantiles
for a given range), and reaction times (based on the total number of samples before
reaching the decision boundary).

the point of view even of optimal Bayesian models of perception and memory which

assume that the mind understands the noise that it faces. These models construct the best

possible response from noisy input (Ernst & Banks, 2002; Shiffrin & Steyvers, 1997), but

will perform better when noise is lower. As an alternative, efficient coding approaches also

attempt to mitigate the detrimental effects of noise, by encoding information in such a way

as to be minimally affected by the noise (Sims, 2016). These two approaches can even be

combined so that encoding is efficient and decoding is optimal (Wei & Stocker, 2015), but

again, additional noise will negatively affect the resulting behavior.

However, the view of noise has not always been negative, as researchers studying
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noise have identified situations in which it could be useful. The most obvious case is in

competitive contexts in which being unpredictable is important (e.g., selecting where to

kick a football in a penalty shootout), but the noise can also be useful in the individual

tasks we discuss here. For example, Faisal et al. (2008) and others have pointed out that

noise is useful in stochastic resonance theory, which assumes that the mind contains a

detector that only responds when signal strengths reach a certain threshold: for

intermediate signal strengths, a moderate level of noise enhances the chance that they

reach threshold without swamping the signal. However, in this account, noise is not useful

above this threshold, as it is in the sampling approaches we advocate here. Likewise,

Findling et al. (2021) argued that computational noise that scales with value is useful,

though perhaps only for making predictions about value in changing environments, and

there are other situations in which randomness could be useful (Icard, 2021).

But we argue that noise may better be viewed as a feature, rather than a bug, even

outside of the restricted scenarios discussed above. Our specific proposal is that the brain

manages the probabilistic inference required to deal with a highly uncertain world through

sampling – and this process of sampling is, by its very nature, noisy. Indeed, when we view

the brain as a Bayesian sampler, the noisiness of human thought and behavior is not a

failure to be ironed out, but is central to the basic operation of human cognition. This

argument expands upon the point made by Renart and Machens (2014) that if the brain

approximates probabilistic inference through sampling, then noise in the brain is a feature

rather than a bug – it allows the brain to consider only one or a small number of

hypotheses at a time and with probabilities proportional to the relative time spent

considering each hypothesis8. This is more psychologically plausible than implementing

exact Bayesian inference, and is congruent with psychological ideas about considering a

single hypothesis at a time (e.g., the singularity principle; Evans, 2007).

8 A similar argument is that the noise in neurons allows it to encode probabilistic information (Echeveste
& Lengyel, 2018; W. J. Ma et al., 2006).
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The autocorrelations in human behavior are linked to an additional and very

plausible constraint – as in theories of mental foraging (Hills et al., 2012), the brain will

very often make only small changes to the hypothesis currently under consideration. In this

conception, finding the most probable hypothesis is like searching through the hypothesis

space, akin to how someone might try to find the highest point in a landscape when it is

dark. A natural starting point is ‘hill climbing’: always moving to the most likely

hypothesis you can currently reach, which will eventually result in reaching a ‘peak’ of the

probability distribution. However, there is no guarantee that the probability distribution

we wish to explore has a single peak – likely hypotheses can cluster together and so mental

representations can have multiple peaks. An example is multistable perception, in which

there are multiple likely interpretations of a visual stimulus, but a compromise between the

two is very unlikely (Gershman et al., 2012). For this kind of landscape, stochastic search

may be more efficient than hill climbing as it offers the chance to find new peaks (Y.-A. Ma

et al., 2019). This is congruent with the argument that noise could allow the cognitive

system to move away from idiosyncratic biases or allow more transitions between strong

attractor states in a neural system (Findling & Wyart, 2021). Our demonstration of how

sampling algorithms developed to deal with probability distributions with multiple peaks

(e.g., MC3) can explain the functional form of noise in cognition amplifies and strengthens

this argument (Zhu et al., 2022).

Even when the most probable hypothesis has been found, noise can still play a

useful role. Noise allows for integrating over hypotheses that point toward the same action

as the most likely hypothesis may not necessarily point to the most likely action. For

example, there may be a crowd of geese running across the road, and while hitting any

single goose with your car is unlikely, integrating over all the possibilities means the right

decision is to stop. Going further, even in situations in which the best action is already

known, noise enables useful metacognitive judgments such as confidence by checking how

often hypotheses that point to the best action are represented. More generally, considering
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all the ways that a candidate action might be wrong is necessary to not be overconfident,

and it is a difficult problem not just for human cognition but for any thinking system

(Moore, 2022). Indeed, it is suggestive that even advanced AI systems that internally

represent probability distributions over responses tend to sample responses rather than

simply choosing the most likely response, as sampling in a particular way produces more

realistic output (Holtzman et al., 2020)9.

Viewed through this lens, the noise in cognitive operations is necessary, and it is

unclear how much sensory or response noise are necessary to explain human behavior.

Certainly, there is noise in the sensory information, and we reviewed the idea of models

limited by photon noise above. Also, response noise could be due to stochasticity in the

environment – e.g., sometimes the keys stick on the keyboard. But these sources could

potentially be minor contributors, as argued by Drugowitsch et al. (2016). Moreover,

variability that has been characterized as sensory or response noise in past studies could

potentially be computational noise instead. Response noise can be imitated by noise earlier

in the system: a common type of response noise is to assume that participants make a

response according to the probability it is correct, and as we discussed above, this

probability-matching behavior can be accounted for by the computational noise induced by

sampling. This could help explain why cognitive load and time pressure increase

probability matching behavior (Olschewski et al., 2018; Seitz et al., 2023) – fewer samples

are generated, which results in more unpredictable responding (Vul et al., 2014). What has

been labelled as sensory noise could be occurring after important computations have

occurred – even activity in early visual areas of the brain and the retina is adaptive and

could involve an inference process (Aitchison & Lengyel, 2017; Spratling, 2017). However,

this is speculative, and sensory noise remains useful for explaining Weber’s Law scaling of

9 Many large language models proceed in a sequential way by sampling each token (i.e., basic unit of text)
conditioned on all previous tokens (Holtzman et al., 2020). While for the first token this would therefore be
response noise, the initial noise will be incorporated in later computations and so would be computational
noise.
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noise with stimulus magnitudes, as it is not obvious why that would arise from the

sampling from hypotheses. Refining models of computational noise will, in the future,

allow for more accurate partitioning of the different sources of noise. In addition,

investigations of computational noise may help shed new light on the representational

systems used – giving new targets for which cognitive mechanisms such as similarity and

rules would need to account.

Conclusions

If this viewpoint is right, then the ‘noisy’ nature of cognition arises from its very

essence. If perception and cognition involve probabilistic inference, and that inference is

carried out through sampling, then when asking a question again, different samples will, of

course, generate different outcomes. Thus, we should expect human thought and behavior

to be variable through and through, as a reflection of the computational noise that drives

the basic ‘engine’ of cognition. Not only could one say that ‘noise’ in cognition is a feature

and not a bug, but even that it is an essential feature, which underpins our ability to deal

with an uncertain world of such complexity that precise analysis is computationally

impossible.
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