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In nonstandard mathematics, the predicate ‘x is standard’ is fundamental. Recently, ‘relative’ or ‘stratified’
nonstandard theories have been developed in which this predicate is replaced with ‘x is y-standard’. Thus,
objects are not (non)standard in an absolute sense, but (non)standard relative to other objects and there is a
whole stratified universe of ‘levels’ or ‘degrees’ of standardness. Here, we study stratified nonstandard arith-
metic and the related transfer principle. Using the latter, we obtain the ‘reduction theorem’ which states that
arithmetical formulas can be reduced to equivalent bounded formulas. Surprisingly, the reduction theorem is
also equivalent to the transfer principle. As applications, we obtain a truth definition for arithmetical sentences
and we formalize Nelson’s notion of impredicativity.
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1 Introduction

Nonstandard analysis was developed in the early 1960’s by Abraham Robinson. It was among the first rigorous
theories for calculus with infinitesimals. Although the latter had been used centuries before by Archimedes, Euler,
Leibniz and others, Robinson was the first to produce a formal framework which was free of the inconsistencies
that plagued the earlier ‘intuitive’ infinitesimal calculus (see [16]). There are several different approaches to
nonstandard mathematics: from Robinson’s original type theory ([16]), the superstructure method by Robinson
and Zakon ([17]), and Chang and Keisler ([3]), Luxemburg’s ultrafilter approach ([11]), to axiomatic theories like
Hrbacek’s HST ([6,14]) and Nelson’s IST ([12]). All these theories somehow introduce the concept of standard
and nonstandard objects and, in particular, of finite and infinite numbers. Theories of nonstandard mathematics
which involve this dichotomy of finite versus infinite and standard versus nonstandard will be called ‘classical’
nonstandard theories.

Recently, a new class of theories, called ‘relative’ or ‘stratified’ nonstandard mathematics, has been introduced
(see e.g. [5, 7, 15, 18]). Instead of just two levels of objects (standard and nonstandard), the new theories involve
several ‘levels’ or ‘degrees’ of standardness. To achieve this, the predicate ‘x is standard’ is replaced by ‘x is y-
standard’, which stratifies the two levels ‘standard’ and ‘nonstandard’ into infinitely many levels of standardness.
In this way, an object x can be nonstandard compared to z, but standard relative to another object y. In particular,
the unary number predicate ‘x is infinite’ is replaced with the binary predicate ‘x is y-infinite’. It is clear that
stratified nonstandard mathematics is a refinement of the classical nonstandard framework, not a departure from
it.

There are several convincing arguments why stratified nonstandard mathematics is an improvement over its
classical counterpart. First of all, by renaming the predicate ‘x is y-infinite’ to ‘x is very large compared to y’,
stratified nonstandard analysis becomes a formal framework for physics which preserves physical intuition, in
particular the intuitive calculus of ‘small’ and ‘large’ quantities prevalent in physics (see [8] and [18]). Second,
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2 S. Sanders: Relative arithmetic

calculus (and even analysis) can finally be done in a quantifier-free way in stratified nonstandard analysis ([5]),
even in weak theories of arithmetic (see [18]). In contrast to classical nonstandard mathematics, the stratified
framework is completely free of the ε-δ-method. Third, formulas can be transferred almost without any limita-
tions, greatly reducing the dependence on logic. Indeed, in classical nonstandard mathematics, transfer is limited
to standard formulas and it takes some technical machinery to validate this principle. Hence, there is a greater
reliance on logic than is common in most of mathematics and this seems to be an important obstacle for the
adoption of the nonstandard framework in mainstream mathematics.

In this paper, we study the classical transfer principle in stratified nonstandard arithmetic. The theories at
hand range in strength from I∆0 to Peano arithmetic (see theorem 4.2). Using the transfer principle, we can
prove the ‘reduction theorem’ (see theorem 3.1) which reduces arithmetical formulas to equivalent ∆0-formulas.
Thus, it is possible to collapse the arithmetical hierarchy onto ∆0. Surprisingly, the reduction theorem is also
equivalent to the aforementioned transfer principle (see theorem 5.3). As applications, we define a truth definition
for arithmetical sentences and formalize Nelson’s notion of impredicativity (see [13]).

2 Stratified nonstandard arithmetic

In this section, we describe stratified nonstandard arithmetic and its fundamental features. Let L be the language
of arithmetic. We introduce a new binary predicate ‘x v y’ which applies to all natural numbers. For better
readability we write ‘x is y-finite’ instead of x v y. This notation is purely symbolic and we may also read
x v y as e.g. ‘x is not very large compared to y’. The following axiom set describes the properties of x v y.
These axioms are not intended to be minimal.

Axiom 2.1 (NS)

1. The numbers 0, 1 and x are x-finite.

2. If x and y are z-finite, so are x+ y and x× y.

3. If x is y-finite and z ≤ x, then z is y-finite.

4. If x if y-finite and y is z-finite, then x is z-finite.

5. Either x is y-finite or y is x-finite.

6. There is a number y that is not x-finite.

Definition 2.2 A number y is called ‘x-infinite’ if it is not x-finite. We denote this by ‘x � y’. A number is
also called ‘x-standard’ if it is x-finite.

By item (6) of the previous schema, the set of natural numbers is ‘stratified’ in different ‘levels’ or ‘degrees’
of magnitude. Intuitively, numbers of the same level are ‘finite’ (or ‘not very large’) relative to each other and
‘infinite’ (or ‘very large’) compared to numbers of lower levels. The numbers 0 and 1 are at the lowest level.

It should be noted that we do not expand the set of natural numbers; we only define a new predicate x v y
which can be interpreted in several ways (see also section 7). More technically, we use Nelson’s ‘internal’ view of
nonstandard mathematics rather than Robinson’s ‘external’ viewpoint (see [5,12]). This choice is only motivated
by aesthetics.

Definition 2.3 A formula is called ‘internal’ if it does not involve the predicate ‘x is y-finite’ for any x and y.
Non-internal formulas are called ‘external’.

In the following, we assume that the classes ∆0, Σn and Πn of the arithmetical hierarchy are limited to internal
formulas, i.e. they carry their usual meaning. We also assume that all parameters are shown, unless explicitly
stated otherwise.

Notation 2.4 We write ‘(∃x-sty)ϕ(y)’ instead of (∃y)(y is x-finite ∧ ϕ(y)) and we write ‘(∀x-sty)ϕ(y)’ in-
stead of (∀y)(y is x-finite→ ϕ(y)).

Now consider the following transfer principle.
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Axiom schema 2.5 (Σn-TRANS) For every formula ϕ ∈ ∆0 and x-finite ~y,

(∃x1)(∀x2) . . . (Qxn)ϕ(x1, . . . , xn, ~y) (1)

is equivalent to

(∃x-stx1)(∀x-stx2) . . . (Qx-stxn)ϕ(x1, . . . , xn, ~y). (2)

Depending on whether n is odd or even, ‘(Qxn)’ is ‘(∃xn)’ or ‘(∀xn)’.
For fixed x and ϕ ∈ ∆0, the previous schema is just the usual transfer principle for Σn-formulas, relative to

the level of magnitude of x. Thus, Σn-TRANS expresses Leibniz’s principle that the same laws should hold for
all numbers, standard or nonstandard alike, relative to the level at which the numbers occur. For brevity, we write
‘TRANS’ for ‘∪n∈N Σn-TRANS’.

By contraposition, the schema Σn-TRANS immediately yields the following equivalent transfer principle.
Axiom schema 2.6 (Πn-TRANS) For every formula ϕ ∈ ∆0 and x-finite ~y,

(∀x1)(∃x2) . . . (Qxn)ϕ(x1, . . . , xn, ~y) (3)

is equivalent to

(∀x-stx1)(∃x-stx2) . . . (Qx-stxn)ϕ(x1, . . . , xn, ~y). (4)

Depending on whether n is even or odd, ‘(Qxn)’ is (∃xn) or (∀xn).
The following lemma greatly reduces the number of applications of transfer in a proof. We sometimes refer to it
as the ‘transfer lemma’.

Lemma 2.7 For every formula ϕ ∈ ∆0 and x-finite ~y, if Σn-TRANS is available,

(∃x1)(∀x2) . . . (Qxn)ϕ(x1, . . . , xn, ~y) (5)

is equivalent to

(∃x-stx1)(∀x2) . . . (Qxn)ϕ(x1, . . . , xn, ~y), (6)

and, for y � x, to

(∃y-stx1)(∀y-stx2) . . . (Qy-stxn)ϕ(x1, . . . , xn, ~y). (7)

P r o o f. The equivalence between (5) and (7) follows immediately from Σn-TRANS and the implication ‘(6)
→ (5)’ is trivial. For the implication ‘(5) → (6)’, by Σn-transfer, (5) implies (2). Fix x-finite x′1 such that
(∀x-stx2) . . . (Qx-stxn)ϕ(x′1, . . . , xn, ~y) and apply Πn−1-transfer. The resulting formula implies (6).

3 The reduction theorem

In this section, we describe a procedure which reduces a Σn-formula with x-standard parameters to a ∆0-formula.
The resulting formula is equivalent to the original one, if Σn-TRANS is available. Thus, the following theorem
is proved in the theory I∆0 + NS + Σn-TRANS.

Theorem 3.1 For ϕ ∈ ∆0 and x-standard ~y, the formula

(∃x1)(∀x2) . . . (Qxn)ϕ(x1, . . . , xn, ~y) (8)

is equivalent to

(∃x1 ≤ c1)(∀x2 ≤ c2) . . . (Qxn ≤ cn)ϕ(x1, . . . , xn, ~y), (9)

whenever x� c1 � . . .� cn.
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4 S. Sanders: Relative arithmetic

P r o o f. Let ϕ, x and ~y be as stated and fix numbers ci such that x� c1 � . . .� cn. For better readability,
we suppress the x-standard parameters ~y in ϕ. We first prove the implication ‘(8)→ (9)’. Assume n is even. The
case for odd n is treated below. From

(∃x1)(∀x2) . . . (∀xn)ϕ(x1, . . . , xn), (10)

there follows, by the transfer lemma,

(∃x-stx1)(∀x2)(∃x3) . . . (∀xn)ϕ(x1, x2, . . . , xn).

As x� c1, this implies

(∃x1 ≤ c1)(∀x2 ≤ c2)(∃x3)(∀x4) . . . (∀xn)ϕ(x1, x2, x3 . . . , xn). (11)

Fix suitable x′1 ≤ c1 such that for all x′2 ≤ c2 there holds

(∃x3)(∀x4)(∃x5) . . . (∀xn)ϕ(x′1, x
′
2, x3 . . . , xn).

This formula is in Σn−2 and x′1 and x′2 are now amongst its parameters. Repeat the steps that produce (11) from
(10), with x = c2. This yields

(∃x3 ≤ c3)(∀x4 ≤ c4)(∃x5) . . . (∀xn)ϕ(x′1, x
′
2, x3 . . . , xn),

which implies

(∃x1 ≤ c1)(∀x2 ≤ c2)(∃x3 ≤ c3)(∀x4 ≤ c4)(∃x5) . . . (∀xn)ϕ(x1, . . . , xn).

Now keep repeating the above process until we obtain (9).

If n is odd, we apply the same process as in the even case to obtain

(∃x1 ≤ c1)(∀x2 ≤ c2) . . . (∀xn−1 ≤ cn−1)(∃xn)ϕ(x1, . . . , xn).

Applying Σ1-transfer to the innermost existential formula yields

(∃x1 ≤ c1)(∀x2 ≤ c2) . . . (∀xn−1 ≤ cn−1)(∃cn−1−stxn)ϕ(x1, . . . , xn),

and since cn � cn−1, this implies (9).

For the reverse implication, we treat the case where n is even; the case where n is odd can be treated analo-
gously. In the former case, we have

(∃x1 ≤ c1)(∀x2 ≤ c2) . . . (∃xn−1 ≤ cn−1)(∀xn ≤ cn)ϕ(x1, . . . , xn).

As cn � cn−1, this implies

(∃x1 ≤ c1) . . . (∃xn−3 ≤ cn−3)(∀xn−2 ≤ cn−2)(∃cn−1-stxn−1)(∀cn−1-stxn)ϕ(x1, . . . , xn),

and the transfer lemma, applied to the innermost Σ2-formula, yields

(∃x1 ≤ c1) . . . (∃xn−3 ≤ cn−3)(∀xn−2 ≤ cn−2)(∃cn−2-stxn−1)(∀cn−2-stxn)ϕ(x1, . . . , xn).

As cn−2 � cn−3, this implies

(∃x1 ≤ c1) . . . (∃cn−3-stxn−3)(∀cn−3-stxn−2)(∃cn−2-stxn−1)(∀cn−2-stxn)ϕ(x1, . . . , xn),

Again applying the transfer lemma to the innermost Σ2-formula yields

(∃x1 ≤ c1) . . . (∃cn−3-stxn−3)(∀cn−3-stxn−2)(∃cn−3-stxn−1)(∀cn−3-stxn)ϕ(x1, . . . , xn).

Repeat this process until all n quantifiers are exhausted. Note that at later stages it will be the innermost Σ4, Σ6,
etc. subformulas that have to be transferred. Thus, we obtain

(∃c1-stx1)(∀c1-stx2) . . . (∃c1-stxn−1)(∀c1-stxn)ϕ(x1, . . . , xn),

and Σn-transfer with x = c1 yields (8).
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Theorem 3.1 states that a Σn-statement (with x-finite parameters) about all numbers can be reduced to a
∆0-statement about a certain initial segment. Thus, this theorem is called the ‘Σn-reduction theorem’ or just
‘reduction theorem’, if the class of formulas is clear from the context. If we interpret ‘y � z’ as ‘z is very large
compared to y’, then the reduction theorem tells us that a Σn-statement about numbers of size at most x can be
reduced to a bounded statement if we have access to n-many higher levels of ‘largeness’.

The best-known way to remove quantifiers from a formula is by introducing Herbrand or Skolem functions
(see [1] or [4]). However, the predicate x v y makes it possible to remove all quantifiers simultaneously while
keeping the newly introduced objects simple. Indeed, in contrast to Skolemization or Herbrandization, the re-
duction theorem only introduces new constants ci. On the other hand, Skolemization removes quantifiers from
all formulas of the skolemized language, while our procedure only works for formulas of the original language
(without v).

To conclude this section, we point out an application of the reduction theorem in Reverse Mathematics (see
[19]). In [10], Keisler presents a nonstandard version of each of the ‘Big Five’ theories of Reverse Mathemat-
ics. To this end, he formalizes nonstandard arithmetic in second-order arithmetic (see [10, §3 and §4]), using
Robinson’s external view. After formalizing the stratified framework in second-order arithmetic in the same way
(in particular, the natural numbers are exactly the 0-finite numbers), we can obtain ACA− (the comprehension
schema for arithmetical formulas without set parameters) with a minimum of comprehension axioms. Indeed,
if TRANS is available, the reduction theorem yields that every arithmetical formula with 0-finite parameters is
equivalent to a ∆0-formula. Thus, comprehension for ∆0-formulas suffices to obtain ACA−, if TRANS is avail-
able. The latter is not a strong requirement, as, by [10, Corollary 7.11], TRANS is not a strong schema in the
context of ACA0. It should be noted, however, that in order to work in second-order arithmetic, we have to adopt
Robinson’s external view of nonstandard mathematics.

4 Approaching Peano arithmetic

In this section, we obtain lower bounds for the strength of Σn-TRANS. First, we prove that Σn-TRANS, when
added to I∆0 + NS, makes the resulting theory at least as strong as IΣn. Thus, TRANS takes us all the way up
from bounded arithmetic to Peano arithmetic.

In arithmetic, the basic operations + and× are introduced in Robinson’s theoryQ. To obtain stronger theories,
different flavours of induction can be added, like the following schema (see [1, 4]). The set Φ contains formulas
in the language L of arithmetic.

Axiom schema 4.1 (Φ-IND) For every formula ϕ ∈ Φ, there holds[
ϕ(0) ∧ (∀n)(ϕ(n)→ ϕ(n+ 1))

]
→ (∀n)ϕ(n). (12)

The theory Q+ Σn-IND is usually denoted IΣn. The union of all these theories is called Peano arithmetic, or
PA for short.

Theorem 4.2 The theory I∆0 + NS + Σn-TRANS proves Σn-IND.

P r o o f. Let ϕ be a Σn-formula in the language of arithmetic and assume the antecedent of Σn-IND holds for
this formula, i.e. we have

ϕ(0, ~y) ∧ (∀n)(ϕ(n, ~y)→ ϕ(n+ 1, ~y)). (13)

To increase readability, we suppress the parameters ~y in this proof. It is an elementary verification that we may
do this without loss of generality. Also, it is easily proved that ∆0-MIN is available in I∆0 (see e.g. [1]). Thus,
we can calculate the least n such that φ(n), if such there are, for all φ ∈ ∆0.

Now suppose there is an n0 such that ¬ϕ(n0). By theorem 3.1, there is a ∆0-formula ψ(n) such that ¬ϕ(n)
is equivalent to ψ(n) for n ≤ n0. Let n2 be the least n ≤ n0 such that ψ(n). Thus, there holds ψ(n2) and also
¬ψ(n2 − 1) if n2 > 0. But ψ(n2) is equivalent to ¬ϕ(n2) and by (13), there holds ϕ(0). This implies n2 > 0
and hence we have ¬ψ(n2 − 1), which is equivalent to ϕ(n2 − 1). But then there holds ϕ(n2 − 1) ∧ ¬ϕ(n2),
which contradicts (13). Hence, ϕ(n) must hold for all n and we have proved (12) for Φ equal to Σn.
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6 S. Sanders: Relative arithmetic

Besides induction, there are other ways of axiomatizing arithmetic. In particular, the so-called ‘collection’ or
‘replacement’ axiom schemas yield a series of theories similar to IΣn.

Axiom schema 4.3 (Φ-REPL) For every formula ϕ ∈ Φ, there holds

(∀x ≤ t)(∃y)ϕ(x, y)→ (∃z)(∀x ≤ t)(∃y ≤ z)ϕ(x, y). (14)

The theory I∆0 + Σn-REPL is usually denoted BΣn. It is well-known that IΣn+1 implies BΣn+1 and that
the latter implies IΣn (see e.g. [1]). Thus, the theories BΣn also form a hierarchy of Peano arithmetic. Together
with these facts, theorem 4.2 implies that I∆0 +NS+Σn+1-TRANS proves Σn+1-REPL. The following theorem
proves this directly.

Theorem 4.4 The theory I∆0 + NS + Σn+1-TRANS proves Σn+1-REPL.

P r o o f. Let ϕ be a Σn+1-formula and assume the antecedent of Σn+1-REPL holds for this formula, i.e. we
have (∀x ≤ t)(∃y)ϕ(x, y). Again, we suppress most parameters (but not t) to increase readability. Assume
ϕ(x, y) is of the form (∃x1)(∀x2) . . . (Qxn+1)φ(x, y, x1, . . . , xn+1), where φ ∈ ∆0. Fix c1, . . . , cn+1 such that
x� c1 � · · · � cn+1. By theorem 3.1, for all x ≤ t, the formula (∃y)ϕ(x, y) is equivalent to

(∃y ≤ c1)(∃x1 ≤ c1)(∀x2 ≤ c2) . . . (Qxn+1 ≤ cn+1)φ(x, y, x1, . . . , xn+1),

where t� c1 � . . .� cn+1. Thus, for all x ≤ t, there are y′, x′1 ≤ c1 such that

(∀x2 ≤ c2) . . . (Qxn+1 ≤ cn+1)φ(x, y′, x′1, x2, . . . , xn+1).

By the reduction theorem for x = c1, this formula is equivalent to

(∀x2) . . . (Qxn+1)φ(x, y′, x′1, x2, . . . , xn+1),

which yields the consequent of Σn+1-REPL with z = c1.

Using the appropriate maximization axioms it is possible to make the bound z a t-standard number. It is
well-known that such axioms are available in I∆0.

5 Reducing transfer to the reduction theorem

In the third section, we showed that Σn-transfer suffices to obtain the Σn-reduction theorem. Interestingly, the
former is also equivalent to the latter, by theorem 5.3 below. However, we need the following nonstandard tool,
provable in I∆0 + NS. Note that x-infinite parameters are allowed in the formula ϕ.

Theorem 5.1 (Stratified Overflow and Underflow) Assume ϕ ∈ ∆0.

1. If ϕ(n) holds for all x-finite n, it holds for all n up to some x-infinite n. (overflow).

2. If ϕ(n) holds for all x-infinite n, it holds for all n from some x-finite n on. (underflow).

P r o o f. For the first item, assume ϕ(n) ∈ ∆0 holds for all x-finite n. Then calculate the least n0 such that
¬ϕ(n0), which must be x-infinite. Define n as n0 − 1. Likewise for the second item.

Corollary 5.2 Assume ϕ ∈ ∆0. If ϕ(n) holds for all x-infinite n ≤ n0, with n0 x-infinite, it holds for all
n ≤ n0 from some x-finite n on.

P r o o f. Define ψ(n) as ϕ(n) ∨ n ≥ n0 and apply underflow.

In the following, the previous corollary is also referred to as ‘underflow’.

Theorem 5.3 In I∆0 + NS, the Σn-reduction theorem is equivalent to the transfer principle Σn-TRANS.
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P r o o f. By theorem 3.1, the inverse implication is immediate. For the forward implication, we proceed by
induction on n. For better readability, we suppress the x-standard parameters ~y in both Σn-TRANS and the
Σn-reduction theorem.

For the case n = 1, let ϕ be as in Σ1-TRANS and assume (∃x1)ϕ(x1). By the reduction theorem, we have
(∃x1 ≤ c1)ϕ(x1), for all c1 � x. By underflow with c1 as n0, there holds (∃x-stx1)ϕ(x1). This proves the
downward implication in Σ1-TRANS, i.e. that (1) implies (2) for n = 1. The upward implication is trivial and
this case is done.

For the case n = 2, let ϕ be as in Σ2-TRANS and assume (∃x1)(∀x2)ϕ(x1, x2). By the reduction theorem,
we have (∃x1 ≤ c1)(∀x2 ≤ c2)ϕ(x1, x2), for all c2 � c1 � x. Fix c′2 and c′1 such that c′2 � c′1 � x. For
all x-infinite d ≤ c′1, there holds (∃x1 ≤ d)(∀x2 ≤ c′2)ϕ(x1, x2). By underflow, there is an x-finite d such
that (∃x1 ≤ d)(∀x2 ≤ c′2)ϕ(x1, x2). As c′2 � x, this implies (∃x-stx1)(∀x-stx2)ϕ(x1, x2). This proves the
downward implication in Σ2-TRANS, i.e. that (1) implies (2) for n = 2. The upward implication is easily proved
using Σ1-TRANS, obtained earlier.

For the case n > 2, let ϕ be as in Σn-TRANS and assume (1) holds. By the Σn-reduction theorem, (9)
follows, for all c1, . . . , cn such that x� c1 � . . .� cn. Now fix c′1, . . . , c

′
n such that x� c′1 � . . .� c′n. For

all x-infinite d ≤ c′1, there holds

(∃x1 ≤ d)(∀x2 ≤ c′2) . . . (Qxn ≤ c′n)ϕ(x1, . . . , xn),

and underflow implies (∃x-stx1)(∀x2 ≤ c′2) . . . (Qxn ≤ c′n)ϕ(x1, . . . , xn). Fix suitable x-finite x′1 such that for
all x-finite x′2, we have

(∃x3 ≤ c′3)(∀x4 ≤ c′4) . . . (Qxn ≤ c′n)ϕ(x′1, x
′
2, x3, x4, . . . , xn). (15)

By the Σn−2-reduction theorem, (15) becomes

(∃x3)(∀x4) . . . (Qxn)ϕ(x′1, x
′
2, x3, x4, . . . , xn). (16)

By the induction hypothesis, the Σn−2-reduction theorem yields Σn−2-TRANS, and Σn−2-transfer applied to
(16) yields

(∃x-stx3)(∀x-stx4) . . . (Qx-stxn)ϕ(x′1, x
′
2, x3, x4, . . . , xn).

This can be done for all x-standard x′2 and thus we obtain (2). This settles the downward implication in
Σn-TRANS, i.e. that (1) implies (2). The upward implication is easily proved using Σn−1-TRANS, which is
available thanks to the induction hypothesis.

6 Arithmetical truth

In this section, we investigate the so-called ‘truth predicate’ or ‘truth definition’ T in our stratified framework.
This unary predicate has the property that

ψ ↔ T(pψq), for all sentences ψ. (T)

Thus, the formula T(pψq) simply expresses that ψ is true (or false). As truth is one of the fundamental properties
of logic, such predicate T is a most interesting object of study. For instance, in IΣn+1, there is a truth predicate for
Σn-sentences which respects the logical connectives and this allows for a smooth proof of IΣn+1 ` Con(IΣn)
(see [1, p. 137]). However, by Tarski’s well-known theorem on the undefinability of truth, there is no arithmetical
formula T with the property (T) for all arithmetical sentences. Nonetheless, by the reduction theorem, the truth
of an arithmetical formula (with x-standard parameters) is equivalent to that of a bounded formula and the truth
of the latter can be expressed quite easily. Based on this heuristic idea, we shall obtain an external, i.e. non-
arithmetical, formula T with the property (T) for all arithmetical sentences.

Theorem 6.1 In I∆0 + NS + TRANS, there is a truth definition for all arithmetical sentences.
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8 S. Sanders: Relative arithmetic

P r o o f. By theorem 4.2, I∆0+NS+Σn-TRANS is at least as strong as IΣn and thus the exponential function
is available. Hence, we may assume without loss of generality that blocks of existential and universal quantifiers
are coded into single quantifiers. In particular, if c is a code for a vector (c1, . . . , cn), then the projection function
[x]y is defined as [c]i = ci for 1 ≤ i ≤ n. Furthermore, following Buss’ arithmetization of metamathematics (see
[1, Chapter II]), we may assume that the predicate ‘FormΣn∪Πn

(x)’ which is true if and only if x is the Gödel
number of either a Σn or Πn-formula, is available. Now define the predicate BF(x, y, c, n) as follows. If x is the
Gödel number of the Σn ∪Πn-formula

(Qx1)(Qx2) . . . (Qxk)ϕ(x1, . . . , xk, ~y),

with k ≤ n and y is the Gödel number of a vector ~z with the same length as ~y, then BF(x, y, c, n) is defined as
true if

(Qx1 ≤ [c]1)(Qx2 ≤ [c]2) . . . (Qxk ≤ [c]k)ϕ(x1, . . . , xk, ~z).

Define BF(x, y, c, n) as ‘false’ otherwise. As I∆0 + exp has a truth definition for ∆0-formulas (see e.g. [9,
Corollary 52]), it is clear that the predicate BF(x, y, c, n) is available. Now define the formula T(x, y) as

(∃c)(∃n)
[
FormΣn∪Πn

(x) ∧ y = [c]0 ∧ (∀i ≤ n)([c]i � [c]i+1) ∧ BF(x, y, c, n)
]
. (17)

By the reduction theorem, the arithmetical sentence ψ(~z) is true if and only if T(pψq, p~z q).

As formula (17) explicitly involves the predicate ‘�’, Tarski’s theorem does not contradict the previous corol-
lary. Indeed, the reduction theorem does not apply to external formulas and thus the usual diagonalization argu-
ment does not go through.

In Latin, ‘infinite’ literally means ‘the absence of limitation’. In the stratified framework, where the ‘infinite’
abounds, there is indeed no limitation to our knowledge of arithmetical truth.

7 Philosophical considerations

In the final section, we argue that the reduction theorem yields a formalization of Nelson’s notion of impredica-
tivity (see [13]). The latter is a key ingredient of Nelson’s philosophy of mathematics, which is described by Buss
as ‘radical constructivism’ (see [2]).

In Nelson’s philosophy, there is no finished set of natural numbers. The only numbers that ‘exist’ for him,
are numbers which have been constructed (thus, finitely many, at any given time). By rejecting the ‘platonic’
existence of the natural numbers as a finished totality, the induction principle also becomes suspect. This is best
expressed in the following quote by Nelson himself ([13, p. 1])

The reason for mistrusting the induction principle is that it involves an impredicative concept of number.
It is not correct to argue that induction only involves the numbers from 0 to n; the property of n being
established may be a formula with bound variables that are thought of as ranging over all numbers. That
is, the induction principle assumes that the natural number system is given. A number is conceived to
be an object satisfying every inductive formula; for a particular inductive formula, therefore, the bound
variables are conceived to range over objects satisfying every inductive formula, including the one in
question.

As an example, take Σ1-induction as in (12) where ϕ(n) is (∃m)ψ(m,n), with ψ ∈ ∆0. Even if n only ranges
over numbers that have been constructed so far, the existential quantifier (∃m) may refer to numbers that have
not been defined at this point. For this reason, Σ1-induction is considered meaningless by Nelson. In general,
any statement that potentially refers to numbers that have not been defined at that point, is called ‘impredicative’
and Nelson only deems predicative (i.e. not impredicative) mathematics to be meaningful. Next, we attempt to
formalize this notion of impredicativity. As is to be expected, such formalization requires us to step outside of
predicative mathematics.
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We work in I∆0 + NS + Σ1-TRANS. According to Nelson, there are only finitely many numbers available
at any given time. Thus, assume that all numbers that are available at this moment in predicative arithmetic are
x-finite, for some x. Now consider the following induction axiom, which is essentially Σ1-IND for ψ, limited to
x-finite numbers,[

(∃n)ψ(n, 0) ∧ (∀x-stm)((∃n)ψ(n,m)→ (∃n)ψ(n,m+ 1))
]
→ (∀x-stm)(∃n)ψ(n,m). (18)

Here, ψ is in ∆0 and the possible x-standard parameters have been surpressed. Fix a number c � x. In
I∆0 + NS + Σ1-TRANS, formula 18 is equivalent to[

(∃n ≤ c)ψ(n, 0)∧(∀x-stm)((∃n ≤ c)ψ(n,m)→ (∃n ≤ c)ψ(n,m+1))
]
→ (∀x-stm)(∃n ≤ c)ψ(n,m).

Although induction for bounded formulas is acceptable in predicative arithmetic, the previous formula is not: the
bound c used to bound ‘(∃n)’ is not x-finite and hence this number is not available in predicative arithmetic yet.
Thus, we see that in I∆0 + NS + Σ1-TRANS, the limited Σ1-induction axiom (18) indeed refers to numbers
which are not available at this point in predicative mathematics and as such, Σ1-IND is not acceptable in the
latter. Again, we stress that the previous steps take us outside of predicative arithmetic, i.e. the formalization of
impredicativity goes beyond predicative arithmetic.

Obviously, this generalizes to Σn-induction, for all n ∈ N. However, Σn+1-induction is also impredicative (in
the sense of Nelson) ‘relative’ to Σn-induction. Indeed, fix numbers x � c1 � · · · � cn+1. By the reduction
theorem, a Σn+1-formula (with x-finite parameters) is equivalent to a ∆0-statement about numbers below cn+1,
whereas a Σn-formula (with x-finite parameters) is equivalent to a ∆0-statement about numbers below cn. Hence,
both Σn-IND and Σn+1-IND, limited to x-standard numbers, can be written in a similar equivalent form as the
previous centered formula. Thus, even if we regard this limited form of Σn-induction (and hence all numbers
below cn) as ‘basic’, the limited form of Σn+1-induction refers to numbers which are not basic, namely cn+1.

In light of the above, we may also interpret x v y as ‘x is available when y is’. This interpretation makes the
impredicative character of induction apparent.
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