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Mass judgments of colliding objects have been used to explore people’s understanding
of the physical world because they are ecologically relevant, yet people display biases
that are most easily explained by a small set of heuristics. Recent work has challenged
the heuristic explanation, by producing the same biases from a model that copes
with perceptual uncertainty by using Bayesian inference with a prior based on the
correct combination rules from Newtonian mechanics (noisy Newton). Here I test
the predictions of the leading heuristic model (Gilden and Proffitt, 1989) against the
noisy Newton model using a novel manipulation of the standard mass judgment task:
making one of the objects invisible post-collision. The noisy Newton model uses the
remaining information to predict above-chance performance, while the leading heuristic
model predicts chance performance when one or the other final velocity is occluded.
An experiment using two different types of occlusion showed better-than-chance
performance and response patterns that followed the predictions of the noisy Newton
model. The results demonstrate that people can make sensible physical judgments even
when information critical for the judgment is missing, and that a Bayesian model can serve
as a guide in these situations. Possible algorithmic-level accounts of this task that more
closely correspond to the noisy Newton model are explored.

Keywords: intuitive physics, Bayesian models, heuristics

INTRODUCTION
The correspondence between people’s intuitive physical judg-
ments and Newtonian mechanics has long provided a fascinating
window into how people understand the physical world. Despite
people’s demonstrated competence in dealing with a complex
physical environment, there are mismatches between intuitive
physics and Newtonian mechanics (Michotte, 1963; McCloskey
et al., 1980; Todd and Warren, 1982). These mismatches have led
to the conclusion that people use heuristics to guide behavior,
rather than using the decision rules derived from an accurate con-
ception of physics (Todd and Warren, 1982; Gilden and Proffitt,
1989).

An interesting case is mass judgments of colliding objects. In
the usual mass judgment experiment, two objects start moving,
make contact, and then move apart. The task of the participant is
to judge which object was heavier, a task that is ecologically rele-
vant and therefore one that participants should be able to perform
(Gibson, 1966; Runeson, 1983). Despite this, participants show
strong biases away from the predictions of Newtonian mechan-
ics, most importantly the motor object bias, a bias to believe that
the object initially moving faster is heavier (Todd and Warren,
1982; Gilden and Proffitt, 1989; Runeson et al., 2000). This bias
has been explained by simple heuristics that incorrectly com-
bine the available information. The leading heuristic model for
this task was introduced by Gilden and Proffitt (1989) and is
referred to here as G&P. This model combines two heuristics:

looking for the object moving faster after contact and looking
for the object that ricochets, both imperfect cues that an object is
lighter.

However, the interpretation of the motor object bias has been
challenged recently by a framework that combines Bayesian infer-
ence with prior beliefs based on the correct combination rules
from Newtonian mechanics (noisy Newton; Sanborn et al., 2013).
This approach also predicts a motor object bias, but does so as
a result of plausible prior beliefs about velocities. Because the
key behavioral evidence can be produced by two approaches with
fundamentally different views of how the mass judgment task is
done, this resurrects the original question: How well does people’s
behavior correspond to the rules of the physical world?

A key difference between the noisy Newton and G&P models
is the level of analysis at which each is cast. The noisy Newton
model gives a computational-level account of the data, describing
what should be done to solve the task, while the G&P model gives
an algorithmic-level account, describing what processes people
use to solve the task (Marr, 1982). While just about any behav-
ior can be produced at either level of analysis (algorithmic-level
approaches that can closely mimic the noisy Newton are dis-
cussed below), the existing versions of the noisy Newton and
G&P model make different predictions for when the mass judg-
ment task is changed. A strong version of the noisy Newton
model predicts that people will always match task demands,
while a strong version of the G&P model predicts that people
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will be limited to using the heuristics that have already been
hypothesized.

I chose to adjust the mass judgment task by making one
of the objects invisible after they make contact, because as I
show below, the two models make very different parameter-free
predictions when one or the other final velocity is occluded.
The final speed heuristic relies on a comparison of the two
final velocities to one another, and the loss of final velocity
information can mean the G&P model predicts chance per-
formance. In contrast, the noisy Newton model combines the
remaining information appropriately to produce above-chance
performance, but predicts that the pattern of results will strongly
depend on which final velocity is occluded. Below, I describe
the task and the normative rule from Newtonian mechanics
and the predictions the G&P model and noisy Newton model
make. An experiment is presented that tests these predictions
using different ways of removing final velocity information and
it confirms the predictions of the noisy Newton model over
the G&P model. These results show that people display good
performance: they conform to task demands when informa-
tion is missing and perform better than the G&P model pre-
dicts. The implication of the results is that algorithmic-level
approaches need to more closely approximate the noisy Newton
model in order to successfully predict human behavior, and
algorithmic-level approaches that can successfully do so are
discussed.

NEWTONIAN MECHANICS FOR COLLIDING OBJECTS
Inspired by Michotte (1963), researchers have run a host of
experiments investigating judgments of colliding objects. In its
most common form, as shown in Figure 1, one of the objects,
the motor object, a, begins moving with an initial velocity ua.
The motor object comes into contact with an initially station-
ary object, the projectile object, b. After contact, the motor and
projectile objects move apart with final velocities va and vb respec-
tively. Newtonian mechanics, assuming point masses and no
external forces, gives the final velocities

va =
ua

(
ma

mb
−e

)

ma

mb
+1

(1)

vb =
ua

ma

mb
(1 + e)

ma

mb
+ 1

where ma and mb are the masses of the motor and projectile
objects respectively and e is the coefficient of restitution. The
coefficient of restitution reflects the kinetic energy retained rel-
ative to the joint center of mass, ranging from e = 1, similar
to colliding billiard balls, to e = 0, similar to colliding balls of
wet clay.

The object with the greater mass can be determined from con-
servation of momentum using the initial and final velocities, and
for all collisions in the experiment below

ma > mb if and only if va + vb>ua. (2)

The comparison of the sums of initial and final velocities provides
a normative answer to the question of which object is heavier.
However, the normative rule does not predict a motor object
bias and it does not naturally give an answer if one of the final
velocities is missing.

HEURISTIC MODEL PREDICTIONS
The G&P model uses a combination of two heuristics to explain
the motor object bias: the object that moves faster after colli-
sion is lighter and the object that ricochets is lighter (Gilden and
Proffitt, 1989). The final speed heuristic produces a strong bias to
pick the motor object and the ricochet heuristic allows the bias
to be overcome when the projectile object is much heavier than
the motor object. Further details are given in the Appendix in
Supplementary material.

The G&P model relies on the availability of the velocities,
mainly the final velocities, to produce an answer. In previous
work, if not enough information was available to determine the
ricochet heuristic, then that heuristic was not used (Gilden and
Proffitt, 1994). As a result, I assumed that if either final velocity is
missing, then the final-speed heuristic cannot be used1. If the final
velocity of the motor object is missing, then there is no possibility

1A version of the G&P model that loosens the assumptions about when
heuristics can be used is presented in the discussion.

FIGURE 1 | Schematic of the trials shown in the experiment. The
pre-collision event occurred in every trial with only the mass ratio and ua

varying. Velocities to the right are defined as positive and to the left as negative.

At contact, either the motor (motor occluded), projectile (projectile occluded)
or neither object (unoccluded) disappeared. The method of disappearance
differed in the background change and object change conditions.
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of observing a ricochet either, and as no heuristics apply chance
performance is predicted for all mass ratios and values of e (see
Figure 2).

NOISY NEWTON MODEL PREDICTIONS
The noisy Newton model treats object masses as hidden vari-
ables that are inferred from noisy observations of the velocities.
Combining the observed velocities with prior beliefs, Bayesian
inference is used to calculate the probability that ma > mb. The
parameters used in Sanborn et al. (2013) that define the plau-
sible prior distributions and psychophysically motivated noise
were carried over to this work; details are given in the Appendix
in Supplementary material. As in that paper noisy perception
was approximated by noisy decision making—instead of feed-
ing noisy values into the model and making a deterministic
response, the noiseless values were fed into the model and
the probability of the outcome was taken as the probability of
response.

The motor-object bias is produced by plausible prior distri-
butions on the velocities interacting with Newtonian mechan-
ics. The prior distribution on ua was set so that slower
objects were considered more likely than faster objects, as moti-
vated by velocity judgment experiments (Weiss et al., 2002;
Stocker and Simoncelli, 2006). As the prior distribution on
ua is both narrower than the prior distribution on va + vb

and centered around zero, this results in a bias to believe
ua is less than va + vb. As can be seen in Equation 2, this
bias in beliefs about the velocities is equivalent to a bias in

believing the motor-object is heavier than the projectile object
(Sanborn et al., 2013).

Figure 2 shows the predictions of the noisy Newton model for
the occlusion conditions. Unlike the strong version of the G&P
model, this model flexibly uses the available information to make
inferences about the mass ratio, which allows the noisy Newton
model to predict above chance performance if either final velocity
is missing.

In addition, Figure 2 shows the how the predictions of the
noisy Newton model depends on which final velocity is miss-
ing. First, depending on which final velocity is missing, there will
be a reversal in whether e = 1 or e = 0.1 result in more choices
of the motor object. This prediction follows from Newtonian
mechanics: a larger va or vb means a higher probability the
motor object is heavier. Equation 1 shows that increasing e
increases vb, but decreases va. Thus, when the motor object
is occluded a higher e results in a vb which is more likely to
exceed ua, and so by Equation 2 the motor object is predicted
to be chosen more with e = 1. Conversely, in the projectile
object occluded condition a higher e results in a va that is less
likely to exceed ua, and thus the prediction that the motor
object is chosen more with e = 0.1. I ran a parameter search
across all positive values of the noisy Newton parameters for
parameters that reversed the order of the effects, but none were
found.

Second, in addition to the reversal in order, the noisy Newton
model predicts that which object is occluded will determine
whether the e = 1 condition produces a motor object or a

FIGURE 2 | Predictions of the heuristic and noisy Newton models for

different types of occlusion conditions in Experiment 1. The horizontal
axis is the mass ratio of the motor object to the projectile object. The vertical
axis is the proportion of trials on which participants decided the motor object

was heavier. Each plot shows lines for two separate coefficients of
restitution: e = 1 and e = 0.1. A bias is shown if the data lines do not cross
the horizontal dotted line at the vertical dotted line. Acc refers to the
predicted accuracy in mass judgment.

www.frontiersin.org August 2014 | Volume 5 | Article 938 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Sanborn Testing Bayesian predictions

projectile object bias. A motor object bias is predicted if the
motor object is occluded, but a projectile object bias is predicted
if the projectile object is occluded. This prediction is parameter
dependent 2.

EXPERIMENT
To test the predictions of the G&P and the noisy Newton model,
the motor or the projectile object needs to be occluded after
contact. This occlusion was performed as shown in Figure 1:
either the occluder suddenly appeared at contact (background
change) or one of the objects suddenly disappeared at contact
(object change). Both types of occlusion were run in a between-
participants design in order to make sure that the results did not
depend on the details of the display.

METHODS
Participants
Forty-two participants were recruited from the University of
Warwick community for this study. Each participant received
£5 for one-half hour of participation. Participants viewed one
of two types of occlusion: twenty participants viewed object
change occlusions and twenty-two participants viewed back-
ground change occlusions.

Stimuli
Squares in the object change condition were white or gray and
squares in the background change condition were red or blue. In
both conditions squares were 1 cm in length. Movies started with
the projectile object in the center. The motor object moved toward
the projectile object until the edges of the two squares touched,
then the objects immediately separated.

On each trial either the motor object, the projectile object, or
neither object was occluded. In the object change condition, an
occluded object was set to the black background color at contact,
rendering it invisible. In the background change condition, the
red and blue objects traveled along a white field until contact,
at which time the field could change color to match one of the
objects, rendering that object invisible.

The mass ratio of the heavier to lighter object was set to be
either 1.25 or 3.0. On each trial, the heavier object was set to be the
right or left object with equal probability. The initial velocity of
the motor object (always the left square) was drawn on each trial
from a uniform distribution that ranged from 1.91 to 4.45 cm/s in
steps of 0.13 cm/s, while the initial velocity of the projectile object
was always zero. The coefficients of restitution used were 1.0 and
0.1 and this parameter was a hidden variable: like the masses it
was only discernable through the presented velocities. The final
velocities of the two objects were calculated from Equation 1.

Procedure
Participants were instructed that the squares were blocks slid-
ing along an invisible smooth surface, to keep their eyes on the
left hand object, and to press a key corresponding to whichever

2The projectile object bias does not occur if there is a much smaller stan-
dard deviation of the Gaussian prior on velocity or a much larger standard
deviation of the noise.

block they thought was heavier. A trial would end automatically
after one second, but participants could end the trial at any point
by responding. No feedback was given to participants during the
experiment.

A total of 192 trials were presented to each participant. There
were twelve possible combinations of mass ratio, coefficient of
restitution, and occlusion. One example of each combination was
shown at the beginning of the experiment to familiarize partici-
pants with the displays. No feedback was given and these practice
trials were discarded. The test trials consisted of 15 replications
of each combination of mass ratio, coefficient of restitution,
and occlusion with order of presentation randomized for each
participant.

RESULTS
Results are shown in Figure 3. Accuracy was examined with t-tests
and Bayesian t-tests (Rouder et al., 2009; measured by the Bayes
Factor (BF) likelihood ratio of the alternative model over the null
model assuming width r = 1). For both the object change and
background change occlusions, participants were significantly
more accurate than chance when the motor object was occluded
(Ms = 0.62 and 0.68 respectively; ts = 5.7 and 12.1 respectively;
both ps < 0.001; both BFs > 103), supporting the noisy Newton
model over the heuristic model. Participants were also signifi-
cantly more accurate than chance when the projectile object was
occluded (Ms = 0.65 and 0.66 respectively; ts = 7.6 and 12.5
respectively; both ps <.001; both BFs > 103).

The dependence of response bias on the final velocity occluded
was examined by subtracting the proportion of motor object
responses when e = 0.1 from the proportion of motor object
choices when e = 1. For the projectile object occluded condition,
both the object change and background change data showed more
choices of the motor object for e = 0.1 than e = 1 (Ms = −0.25
and −0.29 respectively; ts = −8.82 and −8.15 respectively; both
ps < 0.001; both BFs > 105). For the motor object occluded con-
dition the opposite result was found: both the object change and
background change data showed more choices of the motor object
for e = 1 than e = 0.1 (Ms = 0.21 and 0.27 respectively; ts =
6.65 and 11.2 respectively; both ps < 0.001; both BFs > 104).
This reversal confirmed the first specific prediction of the noisy
Newton model.

A motor object bias was found in the motor object occluded

condition: when
ma

mb
= 4

5
and e = 1, participants chose the

motor object more than chance for both the object change
and background change data (Ms = 0.86 and 0.84 respec-
tively; ts = 8.81 and 9.90 respectively; both ps < 0.001; both
BFs > 105). A projectile object bias was found in the projectile

object occluded condition: when
ma

mb
= 5

4
and e = 1, partici-

pants chose the motor object less than chance for both the object
change and background change data (Ms = 0.24 and 0.27 respec-
tively; ts = −3.88 and −4.03 respectively; both ps < 0.001; both
BFs > 39). These biases confirmed the second specific prediction
of the noisy Newton model.

A surprising effect occurred in the neither occluded condi-
tion. Previous experiments show a stronger motor object bias for
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FIGURE 3 | Data from the object change and background change

participants for different types of occlusion conditions. The horizontal
axis is the mass ratio of the motor object to the projectile object. The vertical
axis is the proportion of trials on which participants decided the motor object

was heavier. Each plot shows lines for two separate coefficients of
restitution: e = 1 and e = 0.1. A bias is shown if the data lines do not cross
the horizontal dotted line at the vertical dotted line. Acc refers to the accuracy
in mass judgment.

lower values of e (Todd and Warren, 1982; Sanborn et al., 2013),
an effect which was missing or perhaps reversed here. This was
predicted by neither model and is a topic for future research.

The quantitative match of the model predictions to the data
was assessed by finding the probability of the data in Experiment
1 with the parameters used to fit the data in Sanborn et al.
(2013). For the object change data, the noisy Newton model
predicted more accurately (negative log likelihood (NLL) of 937
where lower is better) than the G&P model (NLL = 1186). The
noisy Newton model (NLL = 869) also predicted the background
change data better than the G&P model (NLL = 1208).

DISCUSSION
The noisy Newton and G&P models are fundamentally differ-
ent explanations of how people combine information to make
mass judgments, but both have been able to explain the main
features of existing data. To test them I introduced the novel
manipulation of occluding one of the final velocities, a manipula-
tion for which these models make strongly divergent predictions.
The noisy Newton model predicted the experiment’s results better
than the G&P model.

There are many other algorithmic-level possibilities for how
people make mass judgments, some that are closer to the G&P
model and some that are closer to the noisy Newton model. One
possibility is that a slight change to the G&P model would allow
it to predict mass judgments with occluded final velocities. For
example, instead of occlusion rendering heuristics inoperable, it

is possible that participants fill in missing final velocity informa-
tion with a plausible estimate. Assuming that the filled-in missing
value is the mean of that particular velocity when it is visible, the
fit of the heuristic model to the data in the experiment is shown
in Figure 4. Filling in allows the model to predict slightly above
chance performance in the motor-object occluded condition, but
the predictions for the projectile-object occluded condition still
miss qualitative aspects of the data especially when e = 0.1.

A second possibility, one that abandons the G&P model’s col-
lection of heuristics, is that people use a pure logistic regression
based on the observable velocities. Logistic regression using a
linear combination of the observed velocities must be an approx-
imation because the correct combination rule is nonlinear. This
model does very well, predicting all of the main qualitative effects
of the data, using an intercept of −1.0, a weight of −0.10 for ua,
a weight of 0.85 for va, and a weight of 0.78 for vb. The signs of
the coefficients are in the same direction as in Equation 2, but the
magnitudes of the coefficients allow a better fit to the data. In par-
ticular the motor-object bias arises from a smaller absolute weight
for ua than the absolute weights for va or vb. Of course while the
fit to the data is good, as shown in Figure 4, it is very much a
descriptive model because there is no easy explanation for why
people would have learned these particular coefficients—training
with veridical feedback should result in equal coefficients for each
of the velocities.

A third possibility is a weak version of the noisy Newton
model, in which people directly approximate the noisy Newton
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FIGURE 4 | Three alternative models for the occlusion conditions.

The horizontal axis is the mass ratio of the motor object to the projectile
object. The vertical axis is the proportion of trials on which participants
decided the motor object was heavier. Each plot shows lines for two

separate coefficients of restitution: e = 1 and e = 0.1. A bias is shown if
the data lines do not cross the horizontal dotted line at the vertical dotted
line. Acc refers to the predicted accuracy in mass judgment. Each
alternative model is described in the text.

model using an approximation from computer science and
statistics. For the mass judgment task, an approximation called
importance sampling is appropriate. With importance sampling,
memories of previous collisions are used as a stand-in for an
explicit model of Newtonian mechanics, similar to the way
that an exemplar model would (Cohen, 2006; Shi et al., 2010;
Sanborn et al., 2013)3. For the mass judgment task, the impor-
tance sampling approximation works by first comparing the
current collision to each remembered to collision to determine
the probability that they are the same. Then the judgment is based

3Other proposals are that people have internal physical simulators available
for making these judgments (e.g., Hamrick et al., 2011; Smith and Vul, 2013).

on the summed probabilities that the current collision is the same
as the memories in which the motor object was heavier com-
pared to the summed probabilities that the current collision is the
same as the memories in which the projectile object was heav-
ier. Using memories to approximate inference could also explain
a deviation from the strong version of the noisy Newton model:
people are more accurate when classic intuitive physics tasks are
presented in more naturalistic contexts (Kaiser et al., 1985, 1986).
This could result from importance sampling if the probability that
the current situation is the same as previous experiences depends
on surface features of the task. Each simulated participant took
50 noisy samples from the prior (using the same psychophysi-
cal noise assumed for the noisy Newton model) and the average
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over 500 simulated participants matches both the noisy Newton
predictions as well as the human data, as shown in Figure 4.

The fits of these three intermediate possibilities illustrate how
much the data tell us about the correspondence between people’s
judgments and physical law: it is strong enough to eliminate the
G&P model and very close cousins, but not strong enough to
distinguish between algorithmic-level models, such as the logis-
tic regression model or the importance sampling approximation,
that have a closer correspondence to the noisy Newton model.

More generally, this work stands as a response to a partic-
ular critique about Bayesian models of cognition, namely that
Bayesian models provide just-so stories, do not predict new
behavior, and are rarely directly compared to extant heuristic
models (Sakamoto et al., 2008; Jones and Love, 2011; Bowers
and Davis, 2012a,b). Bowers and Davis (2012b) in particular
described the need for Bayesian models that make novel predic-
tions that existing non-Bayesian models miss. This work points
toward one type of design, namely those with complex inter-
actions between variables and missing information, for which
Bayesian models may well predict interesting new behavior better
than existing heuristics.
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