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Abstract. The program of Reverse Mathematics ([18]) has provided us with the insight that

most theorems of ordinary mathematics are either equivalent to one of a select few logical prin-

ciples, or provable in a weak base theory. In this paper, we study the properties of the Dirac

delta function ([3, 15]) in two settings of Reverse Mathematics. In particular, we consider the

Dirac Delta Theorem, which formalizes the well-known property
∫
R
f(x)δ(x) dx = f(0) of the

Dirac delta function. We show that the Dirac Delta Theorem is equivalent to weak weak König’s

Lemma (see [23]) in classical Reverse Mathematics. This further validates the status of WWKL0

as one of the ‘Big’ systems of Reverse Mathematics. In the context of ERNA’s Reverse Mathemat-

ics ([14]), we show that the Dirac Delta Theorem is equivalent to the Universal Transfer Principle.

Since the Universal Transfer Principle corresponds to WKL, it seems that, in ERNA’s Reverse

Mathematics, the principles corresponding to WKL and WWKL coincide. Hence, ERNA’s Re-

verse Mathematics is actually coarser than classical Reverse Mathematics, although the base

theory has lower first-order strength.

1. Introduction

Reverse Mathematics is a program in Foundations of Mathematics initiated around 1975 by

Harvey Friedman ([4] and [5]) and developed intensely by Stephen Simpson and others. For an

overview of the subject, we refer to [18] and [19]. The principal goal of Reverse Mathematics

is to determine the minimal axiom system necessary to prove a particular theorem of ordinary

mathematics. By now, it is well-known that large portions of mathematics (especially so in analysis)

can be carried out in systems far weaker than ZFC, the ‘usual’ background theory for mathematics.

Classifying theorems according to their logical strength reveals the following striking phenomenon:

It turns out that, in many particular cases, if a mathematical theorem is proved from appropriately

weak set existence axioms, then the axioms will be logically equivalent to the theorem ([18, Preface]).

This recurring phenomenon is called the ‘Main theme’ of Reverse Mathematics (see e.g. [16]) and

a good instance of it, is the following theorem from [18, p. 36].

1. Theorem (Reverse Mathematics for WKL0). Within RCA0, one can prove that Weak König’s

Lemma (WKL) is equivalent to each of the following mathematical statements:

1. The Heine-Borel lemma: every covering of [0, 1] by a sequence of open intervals has a finite

subcovering.

2. Every covering of a compact metric space by a sequence of open sets has a finite subcovering.

3. Every continuous real-valued function on [0, 1] is bounded.

4. Every continuous real-valued function on [0, 1] is uniformly continuous.

5. Every continuous real-valued function on [0, 1] is Riemann integrable.
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6. The maximum principle: every continuous real-valued function on [0, 1] is bounded, or

(equivalently) has a supremum or (equivalently) attains its maximum.

7. The Peano existence theorem for ordinary differential equations.

8. Gödel’s completeness theorem: every at most countable consistent set of sentences in the

predicate calculus has a countable model.

9. Every countable commutative ring has a prime ideal.

10. Every countable field (of characteristic 0) has a unique algebraic closure.

11. Every countable formally real field is orderable.

12. Every countable formally real field has a (unique) real closure.

13. Brouwer’s fixed point theorem.

14. The separable Hahn-Banach theorem: if f is a bounded linear functional on a subspace of a

separable Banach space, and if ‖f‖ ≤ 1, then f has an extension f̃ to the whole space such

that ‖f̃‖ ≤ 1.

Here, the theory RCA0 is the ‘base theory’ of Reverse Mathematics. This theory is strong

enough to formalize the notion of e.g. continuous R→ R-function, but RCA0 is too weak to prove

any of the items in the previous theorem. These require WKL, which is the statement that every

infinite 0-1-labeled tree has an infinite path. The theory WKL0 is defined as RCA0 plus WKL and

is strictly stronger than RCA0. By the previous theorem, many theorems of ordinary mathematics

are equivalent to WKL0, given RCA0. There are three more theories (ACA0, ATR0 and Π1
1-CA0)

with the latter property (see [18] for details). The latter theories, together with RCA0 and WKL0,

are called the ‘Big Five’. Although there are infinitely many nonequivalent logical theories, most

theorems of ordinary mathematics (with few exceptions) are equivalent to one of the Big Five, or

provable in RCA0.

In [23], Simpson and Yu introduce ‘weak weak König’s Lemma’ (WWKL). This principle intu-

itively states that if a 0-1-labeled tree has no infinite path, then the probability of having a path

of length n in the tree becomes zero as n tends towards infinity (See Principle 7). As the latter is

a weakened version of WKL, we expect weakened versions of the items in Theorem 1 to be equiv-

alent to WWKL. For instance, consider item 5 from Theorem 1. By Theorem 10 below, we see

that the statement every continuous bounded real-valued function on [0, 1] is Riemann integrable

is equivalent to WWKL. Moreover, several principles of measure theory and Fourier analysis are

equivalent to WWKL (see e.g. [1, 18, 22]). Thus, it seems plausible to extend the ‘Big Five’ with

WWKL0 (which is RCA0 plus WWKL) to the ‘Big Six’. In Section 2, we provide further evidence

to support such an extension. In particular, we consider the Dirac Delta function (see [3, 15]) in

the context of classical1 Reverse Mathematics. The Dirac Delta Theorem (DDT for short) is the

formalization of the Dirac delta function’s essential property
∫

R f(x)δ(x) dx = f(0). In section 2,

we prove that a version of DDT is equivalent to WWKL. Furthermore, we observe that DDT is not

a weakened version of a theorem equivalent to WKL. Thus, we believe this result to be important

evidence for the acceptance of WWKL0 as one of the ‘Big’ systems of Reverse Mathematics.

In Section 3, we consider the Dirac Delta Theorem in the context of ERNA’s Reverse Math-

ematics. The latter was introduced in [14] and we now briefly sketch its main features. In [6]

and [18, X.4.3], it is suggested to reduce the first-order strength of the base theory of Reverse

Mathematics to roughly I∆0 + exp. In [14], Reverse Mathematics was developed in the theory

ERNA (see [9,20]), a nonstandard extension of I∆0 + exp. The main result of [14] is the following

1We use ‘classical Reverse Mathematics’ to refer to the usual subsystems of second-order arithmetic from [18].
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theorem; it contains several statements, translated from Theorem 1 and [18, Chapter IV] into

ERNA’s language, while preserving equivalence. For the definitions, see [14] and Section 3 below.

2. Theorem (Reverse Mathematics for ERNA+Π1-TRANS). The theory ERNA proves the equiv-

alence between Π1-TRANS and each of the following theorems concerning near-standard functions:

1. Every S-continuous function on [0, 1], or on any interval, is bounded.

2. Every S-continuous function on [0, 1], or on any interval, is continuous there.

3. Every S-continuous function on [0, 1], or on any interval, is Riemann integrable.

4. Weierstrass’ theorem: every S-continuous function on [0, 1], or on any interval, has, or

attains a supremum, up to infinitesimals.

5. The uniform Brouwer fixed point theorem: every S-continuous function φ : [0, 1] → [0, 1]

has a fixed point up to infinitesimals of arbitrary depth.

6. The first fundamental theorem of calculus.

7. The Peano existence theorem for ordinary differential equations.

8. The Cauchy completeness, up to infinitesimals, of ERNA’s field.

9. Every S-continuous function on [0, 1] has a modulus of uniform continuity.

10. The Weierstrass approximation theorem.

A common feature of the items in the previous theorem is that strict equality has been replaced

with ≈, i.e. equality up to infinitesimals. This seems the price to be paid for ‘pushing down’

into ERNA the theorems equivalent to WKL. For instance, item 7 guarantees that there exists

φ(x) such that φ′(x) ≈ f(x, φ(x)), i.e. a solution, up to infinitesimals, of the differential equation

y′ = f(x, y). However, in general, there is no function ψ(x) such that ψ′(x) = f(x, ψ(x)). In this

way, we say that the Reverse Mathematics of ERNA + Π1-TRANS is a ‘copy up to infinitesimals’

of the Reverse Mathematics of WKL0. Moreover, it can be shown that ERNA + Π1-TRANS is

conservative over BΣ2. The latter is Π3-conservative over IΣ1, the first-order theory of WKL0.

Below, we prove that ERNA’s version of DDT is equivalent to the Universal Transfer Principle

Π1-TRANS. Together with Theorems 10, 12, and 31, this suggests that WKL and WWKL coincide

in the setting of ERNA’s Reverse Mathematics. We also consider the Heaviside function H(x) and

its main distributional property dH
dx = δ(x).

2. The Dirac Delta in classical Reverse Mathematics

In this section, we consider the Dirac delta function in second-order arithmetic, i.e. in classical

Reverse Mathematics. We prove that WWKL0 is essentially needed to handle the Dirac delta

function. Indeed, by Theorem 12, a version of the Dirac Delta Theorem is equivalent to weak weak

König’s Lemma, within RCA0.

2.1. Preliminaries. For the rest of this section, we adopt the usual definition for continuous

functions on R in second-order arithmetic (see [18, Chapter II]). The notions of modulus of uniform

continuity and derivative are also defined as usual in second-order arithmetic (see also [22]). We

first define C1, Cr and C∞-functions in R.

3. Definition (C1-, Cr- and C∞-functions). The following definitions are made in RCA0.

1. Let U be an open subset of R, and let f , f ′ be continuous functions from U to R. Then a

pair (f, f ′) is said to be of C1 if and only if

∀x ∈ U lim
u→x

f(u)− f(x)

u− x
= f ′(x).



4 THE DIRAC DELTA FUNCTION IN TWO SETTINGS OF REVERSE MATHEMATICS

2. Let U be an open subset of R, and let {f (n)}n≤r be a finite sequence of continuous functions

from U to R. Then {f (n)}n≤r is said to be of Cr if and only if for any n less than r,

(f (n), f (n+1)) is of C1.

3. Let U be an open subset of R, and let {f (n)}n∈N be an infinite sequence of continuous

functions from U to R. Then {f (n)}n∈N is said to be of C∞ if and only if for any r ∈ N,

{f (n)}n≤r is of Cr.

4. Notation. We usually write f for f (0) when {f (n)}n≤r is of Cr or {f (n)}n∈N is of C∞. If (f, f ′)

is of C1, {f (n)}n≤r is of Cr or {f (n)}n∈N is of C∞, f is said to be of C1, Cr, or C∞, respectively.

Note that we cannot ensure the existence of the derivative function f ′ even if f is continuously

differentiable at each point. Indeed, this requires ACA0 (see [22, Theorem 3.8]).

We recall the definition of Riemann integral and effective integrability in RCA0.

5. Definition (Riemann integral in RCA0). Let f be a continuous function from [a, b] to R.

1. The set ∆ = {a = x0 ≤ ξ1 ≤ x1 ≤ · · · ≤ ξn ≤ xn = b} is called a partition of [a, b] and the

number |∆| = max{xk − xk−1 | 1 ≤ k ≤ n} is called the mesh of ∆.

2. The sum S∆(f) =
∑n
k=1 f(ξk)(xk − xk−1) is called a Riemann sum.

3. The limit
∫ b
a
f(x) dx = lim|∆|→0 S∆(f), if it exists, is called the Riemann integral.

6. Definition. The following definition is made in RCA0. A function f is effectively integrable if

there exists h : N→ N such that for any n ∈ N and for any partitions ∆1,∆2 of [a, b],

|∆1| <
2−h(n)

b− a
∧ |∆2| <

2−h(n)

b− a
→ |S∆1

(f)− S∆2
(f)| < 2−n+1.

For effectively integrable functions, We can prove the usual ‘integration by parts’ formulas

and other basic calculus results in the standard way within RCA0. On the other hand, it can

be shown, with substantial effort, that RCA0 proves that the existence of the Riemann integral

implies effective integrability (see [22]).

We now recall weak weak König’s lemma

7. Principle (WWKL). If T is a subtree of 2N with no infinite path, then

lim
n→∞

|{σ ∈ T |lh(σ) = n}|
2n

= 0.

The theory WWKL0 is RCA0 plus WWKL. By Theorem 1, WKL0 is exactly what is required to

integrate a continuous function over a compact interval. However, to integrate bounded functions,

we only need WWKL0. Note that within RCA0, we can easily show that the existence of a modulus

of uniform continuity implies the effective integrability, but the converse is not true even if a

function is bounded.

8. Lemma. The following assertions are equivalent over RCA0.

1. WWKL0.

2. Let 〈B(ak, rk) | k ∈ N〉 be a sequence of rational open balls such that [0, 1] ⊆
⋃
k∈N B(ak, rk).

For any ε > 0, there is i ∈ N and a finite sequence of open intervals {(cj , dj)}j≤l such that,

[0, 1] ⊆
⋃
k<i

B(ak, rk) ∪
⋃
j≤l

(cj , dj) and
∑
j≤l

|dj − cj | < ε.
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3. Let 〈Tn | n ∈ N〉 be a sequence of subtrees of 2N. If each of Tn has no infinite path, then

there is a double sequence of rational numbers 〈pnk | n ∈ N, k ∈ N〉 such that for any n ∈ N,

|{σ ∈ Tk | lh(σ) = n}| ≤ pnk2n ∧ lim
k→infty

pnk = 0.

4. Let 〈B(ank, rnk) | n ∈ N, k ∈ N〉 be a double sequence of rational open balls such that

[0, 1] ⊆
⋃
k∈N B(ank, rnk) for all n ∈ N. There is a double sequence of finite sequences of

open intervals 〈{(cnij , dnij)}j≤lni | n ∈ N, i ∈ N〉 such that, for any n ∈ N,

[0, 1] ⊆
⋃
k<i

B(ank, rnk) ∪
⋃
j≤lni

(cnij , dnij) and lim
i→∞

∑
j≤lni

|dnij − cnij | = 0.

Proof. 1 ↔ 2 is just the restatement of [1, Theorem 3.3]. To show 1 → 3, define pnk = |{σ ∈ Tk |
lh(σ) = n}|/2n. 3 → 1 is trivial. 3 ↔ 4 is just an easy generalization of 1 ↔ 2. �

9. Remark. Lemma 8 shows that a sequential version of the weak Heine/Borel theorem (item 4)

corresponding to WWKL is provable from a trivial sequential version of WWKL (item 3). On the

other hand, the following stronger sequential version of WWKL is equivalent to WKL0 over RCA0;

Let 〈Tn | n ∈ N〉 be a sequence of subtrees of 2N such that limn→∞ |{σ ∈ Tn|lh(σ) = k}|/2k >
0 for all k ∈ N. There is a sequence 〈fn | n ∈ N〉 such that each fn is a path of Tn.

This is related to the results of Sakamoto and Yamazaki in [12].

10. Theorem. The following assertions are equivalent over RCA0.

1. WWKL0.

2. Every bounded continuous function on [a, b] is (effectively) Riemann integrable.

Proof. We first show 1→ 2. We reason within WWKL0. Let f be a bounded continuous function on

[a, b]. For details concerning the coding of continuous functions in RCA0, we refer to [18, II.6.1].

Without loss of generality, we can assume [a, b] = [0, 1] and f(x) ∈ [−1, 1] for x ∈ [0, 1]. Let

F ⊆ N× Q× Q+ × Q× Q+ be a code for f . Define the Σ0
1-formula ϕ(n, a, r) as

a ∈ Q ∧ r ∈ Q+ ∧ (∃b ∈ Q)(∃s ∈ Q+)
[
(a, 2r)F (b, s) ∧ s < 2−n−2

]
.

Now, using ∆0
1-comprehension, define the sequence {(ank, rnk)}k∈N,n∈N such that

(∀n)(∀a)(∀r)
[
ϕ(n, a, r)↔ (∃k)[(a, r) = (ank, rnk)]

]
.

Note that [0, 1] ⊆
⋃
k∈N B(ank, rnk) for all n ∈ N. Thus, by Lemma 8, there exists a double

sequence of finite sequences of open intervals 〈{(cnij , dnij)}j≤lni | n ∈ N, i ∈ N〉 such that for any

n ∈ N,

[0, 1] ⊆
⋃
k<i

B(ank, rnk) ∪
⋃
j≤lni

(cnij , dnij),

lim
i→∞

∑
j≤lni

|dnij − cnij | = 0.

By the above, we can define a sequence {̂in}n∈N such that
∑
j≤lnîn

|dnînj − cnînj | < 2−n−2 and

put l̂n := lnîn . Finally, define the function h as

h(n) := min{q ∈ N | 2−q < min{rnk | k ≤ l̂n}}.

Then, we can show that for any n ∈ N and for any partitions ∆1,∆2 of [0, 1], we have

|∆1| < 2−h(n) ∧ |∆2| < 2−h(n) → |S∆1
(f)− S∆2

(f)| < 2−n+1. (1)

This implies that f is (effectively) Riemann integrable.
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To show (1), we only need to show the following: for any n ∈ N and for any partitions ∆,∆′ of

[0, 1], if |∆| < 2−h(n) and ∆′ is a refinement of ∆, then,

|S∆(f)− S∆′(f)| < 2−n. (2)

(Taking a common refinement of ∆1 and ∆2, (2) implies (1) immediately.) Fix n ∈ N. Let

∆ = {0 = x0 < x1 < · · · < xN+1 = 1} be a partition of [0, 1] such that |∆| < 2−h(n), and let

∆′ be its refinement. Put δm := [xm, xm+1]. To show (2), we only need to show that for any

{ξm}m≤N , {ξ′m}m≤N such that ξm, ξ
′
m ∈ δm, we have

N∑
m=0

|f(ξm)− f(ξ′m)|(xm+1 − xm) < 2−n.

Define I ⊆ {0, · · ·N} as

I =: {m ≤ N | δm ∩
⋃
k<în

B(ank, rnk) = ∅}.

Then, ⋃
m∈I

δm ⊆ [0, 1] \
⋃
k<în

B(ank, rnk),

thus, ∑
m∈I

(xm+1 − xm) ≤
∑
j≤l̂n

|dnînj − cnînj |.

On the other hand, if m /∈ I, then, by the definition of h, we have ξm, ξ
′
m ∈ δm ⊆ B(ank, 2rnk).

Thus, by the definition of {(ank, rnk)}n∈N,k∈N, we have |f(ξm) − f(ξ′m)| < 2−n−1 for all m /∈ I.

Therefore,

N∑
m=0

|f(ξm)− f(ξ′m)|(xm+1 − xm)

≤
∑
m∈I

2(xm+1 − xm) +
∑
m 6∈I

2−n−1(xm+1 − xm)

≤ 2
∑
j≤lnîn

|dnînj − cnînj |+ 2−n−1

< 2−n.

This completes the proof of 1 → 2.

To show 2 → 1, we adopt the following notation. For a tree T ⊆ 2<N, define a set ST ⊆ 2<N

and λTn ∈ N as

ST := {σ ∈ 2<N | σ /∈ T ∧ ∀τ ⊆ σ(τ 6= σ → τ ∈ T )};

λTn := |{σ ∈ T | lh(σ) = n}|.

For a finite sequence σ ∈ 2<N, define aσ, bσ ∈ Q as

aσ :=
∑

i<lh(σ)

σ(i)

2i+1
;

bσ := aσ +
1

2lh(σ)
.

Thus, if σ, τ ∈ ST , then, bτ ≤ aσ or bσ ≤ aτ . Note that a tree T has a path if and only if

[0, 1] 6⊆
⋃
σ∈ST [aσ, bσ].
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Now, we show ¬1 → ¬2. We reason within RCA0. Assume ¬WWKL. Then, there exists a

number q > 0 and a tree T which has no path such that

(∀n ∈ N)
(
λTn/2

n > q
)
.

Since [0, 1] ⊆
⋃
σ∈ST [aσ, bσ], we can define a continuous function f from [0, 1] to [0, 1] as

f(x) :=

 x−aσ
cσ−aσ x ∈ [aσ, cσ] ∧ σ ∈ ST ,
bσ−x
bσ−cσ x ∈ [cσ, bσ] ∧ σ ∈ ST

(3)

where cσ := (bσ + aσ)/2. To prove the continuity of f , note that for any σ ∈ ST such that

0 < aσ < bσ<1, we can effectively find τ, τ ′ ∈ ST such that bτ = aσ and bσ = aτ ′ since T does

not have a path. Thus, we can find a code for a continuous function f . See also the proof of

[18, Theorem IV.2.3].

We show that the function f(x) is not Riemann integrable. Define partitions ∆k of [0, 1] as

∆k :=
{

0 ≤ 1

2k
≤ 2

2k
≤ · · · ≤ 2k − 1

2k
≤ 1
}

= {[aη, bη] | η ∈ 2<N ∧ lh(η) = k}.

Note that we can easily define Mσ := max{f(x) | x ∈ [aσ, bσ]} and mσ := min{f(x) | x ∈ [aσ, bσ]}.
We show that, for any k ∈ N, ∑

η∈2<N∧lh(η)=k

(Mη −mη)2−k > q.

If η ∈ T , there exists σ ∈ ST such that σ ⊇ η, implying [aη, bη] ⊇ [aσ, bσ]. Therefore, η ∈ T implies

Mη −mη = 1. Hence, for any k ∈ N,∑
η∈2<N∧lh(η)=k

(Mη −mη)2−k ≥
∑

η∈T∧lh(η)=k

2−k ≥ λTn2−n > q.

This completes the proof of 2 → 1. �

2.2. The Dirac delta function. In this subsection, we consider the Dirac delta function. Within

RCA0, we first define the Dirac delta functional u on a class of Ck-functions as u(f) = f(0) for a

Ck-function f . Moreover, for i ≤ k, we define the i-th derivative u(i) as u(i)(f) = (−1)if (i)(0).

Within RCA0, these functionals can be considered as continuous linear operator on an appro-

priate functional space in the following sense. For k ∈ N, let Ck0 (R) be the class of all functions f

on R which satisfy the following:

• f is of Ck and for any i ≤ k, f (i) has a modulus of uniform continuity,

• f has a bounded support, i.e. (∃K ∈ N)(∀x ∈ R )(|x| ≥ K → f(x) = 0).

Imitating [18, Exercise IV.2.13], we can consider Ck0 (R) as a separable Banach space within RCA0.

Then, we define the continuous linear operator u : Ck0 (R)→ R as u(f) = f(0). Moreover, for i ≤ k,

we can define the i-th derivative u(i) : Ck0 (R) → R (as a distribution) as u(i)(f) = (−1)if (i)(0).

Here, v is said to be the derivative of u if v(g) = −u(g′) for any g ∈ ∩kCk0 (R). However, within

RCA0, a Ck-function f may not be an element of Ck0 (R), even if it has a bounded support. So, we

will consider two versions of the Dirac delta function, on Ck0 (R) and on all Ck-functions.

Now we consider the Dirac delta function theorem, i.e. a limit representation of the Dirac delta

function. We fix a smooth function η : R→ R which satisfies the following:

• η is of C∞ and for any i ∈ N, η(i) has a modulus of uniform continuity,

• supp(η) ⊆ [−1, 1], i.e. η(x) = 0 for any x /∈ (−1, 1),

•
∫

R η(x) dx = 1 and η(x) > 0 for x ∈ [− 1
2 ,

1
2 ].
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Define a sequence of smooth functions {δn}n∈N as δn(x) = 2nη(2nx). Then, the limit of {δn}n∈N

can be considered as the Dirac delta function δ(x) in the following sense.

11. Theorem. The following is provable within RCA0. Let k ∈ N and f ∈ Ck0 (R). Then, for any

n ∈ N and for any i ≤ k,
∫

R f(x)δ
(i)
n (x)dx exists and

lim
n→∞

∫
R
f(x)δ(i)

n (x)dx = (−1)if (i)(0) (= u(i)(f)).

Proof. Since both f and η(i) have a modulus of uniform continuity, we can integrate f(x)δ
(i)
n (x)

within RCA0. Thus, we can prove this theorem in the usual way within RCA0. �

Now, we apply the Dirac delta function to a larger class of functions (e.g. continuous or Ck).

By [22], we know that Fourier analysis can be developed in RCA0 or WWKL0, depending on the

underlying class of functions. As the Dirac delta function is an important tool in Fourier analysis,

we can expect the properties of this function to be provable in WWKL0.

12. Theorem. The following assertions are pairwise equivalent over RCA0.

1. WWKL0.

2. For any bounded support continuous function f on R, and large enough n, the integral∫
R f(x)δn(x)dx exists and

lim
n→∞

∫
R
f(x)δn(x)dx = f(0) (= u(f)).

3. For any bounded support Ck function f on R, for large enough n, and for any i ≤ k, the

integral
∫

R f(x)δ
(i)
n (x)dx exists and

lim
n→∞

∫
R
f(x)δ(i)

n (x)dx = (−1)if (i)(0) (= u(i)(f)).

Proof. We first show 1 → 3. We argue in WWKL0. Let f be a Ck function. By the definition of

Ck functions, we can find K ∈ N such that sup{|f (i)(x) − f (i)(0)| | x ∈ [−2−K , 2−K ], i ≤ k} < 1.

Indeed, we can find such K ∈ N since
⋂
i≤k(f (i))−1(B(f (i)(0); 1)) is a non-empty open set. By

Theorem 10, for any n ≥ K and for any i ≤ k,
∫

R f(x)δ
(i)
n (x)dx exists. Then, we can prove

limn→∞
∫

R f(x)δ
(i)
n (x)dx = (−1)if (i)(0) as usual.

The implication 3 → 2 is trivial, so we show ¬1 → ¬2. We argue in RCA0, assuming ¬WWKL.

Consider the bounded continuous function f : [0, 1] → R constructed in (3) in the proof of Theo-

rem 10. Note that f is not Riemann integrable and that f(0) = f(1) = 0. Define the continuous

function g : R→ R with bounded support as

g(x) =

0 if x ≤ 0 or x ≥ 1,

2−mf(t) if x = 2−m−1 + 2−m−1t for some m ∈ N and t ∈ [0, 1].

Now, assume that for some n ∈ N,
∫

R g(x)δn(x)dx exists. Then, for some m ∈ N, [2−m−1, 2−m] ⊆
[0, 2−n−1]. Since δn(x) > 0 on [0, 2−n−1], the integral

∫ 2−m

2−m−1 g(x)dx exists. This implies that∫ 1

0
f(x)dx exists, which contradicts the definition of f . This completes the proof of ¬1 → ¬2. �

13. Remark. Defining Hn(x) =
∫ x
−∞ δn(t)dt, the limit of {Hn}n∈N (as a distribution) can be

considered as the Heaviside function H(x). Within RCA0, we can prove that the derivative of the

Heaviside function (as a distribution) is the Dirac delta function for Ck0 (R)-functions. However,

for a bounded support continuous (or Ck) function f , we need WKL0 to show the existence of∫
R f(x)Hn(x)dx. Thus, we need WKL0 to handle the Heaviside function. Moreover, we can show
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that a version of the distributional property dH
dx = δ(x) of the Heaviside function for Ck-functions

is equivalent to WKL0.

14. Remark. In nonstandard second-order arithmetic, we can consider the Dirac delta function as

δω(x) for a nonstandard number ω. The nonstandard versions of items 2 and 3 of Theorem 12 can

be formalized within a system of nonstandard second-order arithmetic ns-WWKL0 (for ns-WWKL0,

see [17]). It is still open whether the nonstandard versions of items 2 and 3 are equivalent to

ns-WWKL0. In the setting of ERNA’s Reverse Mathematics, the nonstandard version of item (2)

is equivalent to Π1-TRANS. This is the topic of the next section.

3. The Dirac Delta in ERNA’s Reverse Mathematics

In this section, we consider the Dirac Delta function in the context of ERNA’s Reverse Mathe-

matics. For details concerning the latter, we refer the reader to [14]. For an introduction to ERNA,

we refer to [9,20]. In two words, ERNA (or Elementary Recursive Nonstandard Analysis) is a sys-

tem of Nonstandard Analysis based on the weak system I∆0 + exp. The ‘ER’ in ERNA refers to

the fact that new functions may be defined in ERNA using primitive recursion (e.g. summation,

yielding the Riemann integral) as long as the resulting function is bounded by a fixed iteration

of the exponential function. In this way, most functions of calculus are available in ERNA. For

instance, in [21, Section 13], Suppes and Chuaqui derive the equation of the catenary, determine

the flux in a blood vessel, study the Poisson process, and consider the Fresnel integral for diffrac-

tion phenomena, all in (a predecessor of) ERNA. In [2], a good deal of calculus is developed in

the same system, including the first fundamental theorem of integration. As discussed above for

Peano’s theorem, all results hold ‘up to infinitesimals’.

Here, we will prove that ERNA’s version of the Dirac Delta Theorem is equivalent to Π1-TRANS.

First, we recall the latter transfer principle and some of its essential features. Then, we develop

some necessary analysis. Finally, we prove the equivalence between the Dirac Delta Theorem (or

DDT) and Π1-TRANS. Unless explicitly stated otherwise, theorems are proved in ERNA.

3.1. Universal Transfer. In this paragraph, we recall the transfer principle for universal formulas

and its properties (see [9, 14]). This principle expresses Leibniz’ law that the ‘same laws’ should

hold for standard and nonstandard numbers alike.

Let Lst be ERNA’s language L without the symbols ω, ε, ≈ and min. Note that standard

parameters are allowed in the formula ϕ(x) in the following transfer principle.

15. Principle (Π1-TRANS). Let ϕ(x) ∈ Lst be quantifier-free. Then

(∀stx)ϕ(x)→ (∀x)ϕ(x). (4)

Obviously, the scope of this principle (also called ‘universal transfer’ or ‘Π1-transfer’) is quite

limited. Indeed, Π1-transfer is limited to formulas of Lst. Hence, a formula cannot be transferred

if it contains, for instance, ERNA’s exponential function
∑ω
n=0

xn

n! or similar objects not definable

in Lst. This is quite a limitation, especially for the development of basic analysis. In [14], the

scope of Π1-transfer was expanded so as to be applicable to objects like ERNA’s exponential. We

briefly sketch these results here.

First, we label some terms which, though not part of Lst, are ‘nearly as good’ as standard for

the purpose of transfer. As in [9, Notation 57], the variable ω′ in (∀ω′) runs over the infinite
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hypernaturals. As in [14], we assume that no term involves ERNA’s minimum2 operator, unless

explicitly stated otherwise.

16. Definition. Let the term τ(n, ~x) be standard, i.e. not involve ω or ≈. We say that τ(ω, ~x) is

near-standard if ERNA proves

(∀~x)(∀ω′)(τ(ω, ~x) ≈ τ(ω′, ~x)). (5)

An atomic inequality τ(ω, ~x) ≤ σ(ω, ~x) is called near-standard if both members are. Since x = y is

equivalent to x ≤ y ∧ x ≥ y, and N (x) to dxe = |x|, any internal formula ϕ(ω, ~x) can be assumed

to consist entirely of atomic inequalities; it is called near-standard if it is made up of near-standard

atomic inequalities.

We list several examples of near-standard terms and formulas.

17. Example. Consider
√
x which satisfies

(√
x
)2 ≈ x for x ∈ [0, 1]. This ‘square root function’

is defined as
√
x := (µn ≤ ω)

[
(nω )2 ≥ x

]
/ω (see also [8, Example 5.2.4] and [9, Theorem 58]). The

following formula is near-standard:

0 < x < y2 < 1→
√
x < y. (6)

It is worth mentioning that there is no number q in ERNA+Π1-TRANS such that q2 = 2. Thus,

no computational process can ever produce
√

2, not even in principle. Similarly, most results in

Theorem 2 only yield solutions with an infinitesimal error. This suggests that ERNA corresponds

better to ‘computation in the real world’ than other frameworks, as suggested by Sommer and

Suppes in [20]. For the following example, we need some notation.

18. Notation. We write a� b for a ≤ b ∧ a 6≈ b and a / b for a ≤ b ∨ a ≈ b.

19. Example. Consider arctanx :=
∫ x

0
1

1+t2 dρt, where ρ is an infinitely fine partition (see Defini-

tions 27, 28 and 29 below). Defining π := 4
∑ω
k=0

(−1)k

2k+1 , the following formula is near-standard:

x > 0→ arctanx ≤ π
2 . (7)

In stronger theories of Nonstandard Analysis, near-standard terms such as arctanx and
√
x

would be converted to standard terms by the ‘standard part map’ st(x) which satisfies st(x+ε) = x,

for ε ≈ 0 and standard x. However, ERNA does not have such a map and hence functions of basic

analysis like arctanx and
√
x, defined above, are not allowed in Π1-TRANS. Moreover, full transfer

for near-standard formulas is actually impossible: formulas (6) and (7) are true for all rational x, y,

but there are hyperrational counterexamples. Nonetheless, the following formulas hold for all x, y

x > 0→ arctanx / π
2 and 0 < x < y2 < 1→

√
x / y.

Replacing ‘≤’ with ‘/’ for near-standard formulas is the key idea behind generalizing the scope of

transfer, as is clear from Definition 20 and (8) below.

20. Definition. Given a near-standard formula ϕ(~x), let ϕ(~x) be the formula obtained by replacing

every positive (negative) occurrence of a near-standard inequality ≤ with / (�).

Now consider the following principle, called ‘bar transfer’.

2The minimum operator allows us to convert certain existential formulas into quantifier-free ones. Thus, without

the imposed limitation, not all internal quantifier-free formulas would be decidable as proved in [9, Theorem 50].



THE DIRAC DELTA FUNCTION IN TWO SETTINGS OF REVERSE MATHEMATICS 11

21. Principle (Π1-TRANS). Let ϕ(x) be near-standard and quantifier-free. Then

(∀stx)ϕ(x)→ (∀x)ϕ(x). (8)

As for Π1-transfer, standard parameters are allowed in the previous transfer principle. Despite

its much wider scope, bar transfer is equivalent to Π1-transfer.

22. Theorem. In ERNA, the schemas Π1-TRANS and Π1-TRANS are equivalent.

Proof. For special Π1-formulas, this was done in [10, §3] with a relatively easy proof. For general

Π1-formulas, the proof becomes significantly more involved (see [14, Theorem 9]). Ironically, we

have to resort to ε-δ techniques. �

The following theorem guarantees that near-standard terms are automatically finite for finite

arguments. This is surprising, since Definition 16 does not mention the (in)finitude of near-standard

terms. Thus, near-standardness seems to be a natural property.

23. Theorem. A near-standard term τ(~x, ω) is finite for finite ~x.

Proof. To improve readability, we assume that ~x is just n. The following sentence expresses that

τ(n, ω) is near-standard: (∀n)(∀ω′)(τ(n, ω′) ≈ τ(n, ω)). This implies

(∀stk)(∀n)(∀ω′)(|τ(n, ω′)− τ(n, ω)| < 1/k),

and also

(∀stk)(∀ω′)(∀n ≤ ω1)(|τ(n, ω′)− τ(n, ω)| < 1/k),

where ω1 is a fixed infinite hypernatural number. By underflow (see [9, Theorem 54]), we have

(∀stk)(∃stM)(∀m ≥M)(∀n ≤ ω1)(|τ(n,m)− τ(n, ω)| < 1/k).

Apply this formula for k = 1 to obtain finite M1 such that (∀stn)(|τ(n,M1) − τ(n, ω)| < 1. By

[9, Theorem 27], the term τ(n,M1) is finite for finite n and we are finished. �

The Big five systems of Reverse Mathematics are part of second-order arithmetic. Thus, objects

of ordinary mathematics, like functions from R to R, are coded into sets of natural numbers. In

ERNA, we take a different approach: We observe that most objects of ordinary mathematics can

be approximated to within infinitesimal error by ERNA’s near-standard terms. As shown in this

section, near-standard terms also have good logical properties.

3.2. Continuity and integration. In this paragraph, we sketch the development of Riemann

integration and continuity inside ERNA. First, we introduce two notions of continuity in ERNA.

We always assume a and b to be finite.

24. Definition. A function f(x) is ‘continuous over [a, b]’ if

(∀x, y ∈ [a, b])(x ≈ y → f(x) ≈ f(y)). (9)

A function f(x) is called ‘S-continuous over [a, b]’ if

(∀stk)(∃stN)(∀stx, y ∈ [a, b])(|x− y| < 1/N → |f(x)− f(y)| < 1/k). (10)

The attentive reader has noted that (9) and (10) pertain to uniform continuity. We believe this

to be justified for the following reason. If we limit the variable x in (9) to Q, the function 1
x2−2

satisfies the resulting formula, although this function is infinite in the interval [−2, 2]. Similarly,

the function g(x), defined as 1 if x2 < 2 and 0 if x2 ≥ 2, satisfies (9) with x limited to Q, but this
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function has a jump in its graph. The same holds for pointwise ε-δ continuity. Thus, both are not

suitable for our purposes. Note that a similar situation occurs in constructive analysis.

Now consider the following ‘continuity principle’.

25. Principle. A near-standard function is continuous over [a, b] if it is S-continuous over [a, b].

In the mathematical practice of Physics, an intuitive ‘calculus with infinitesimals’ is used, in

favour of Weierstrass’ ε-δ analysis. In particular, the notion of continuity expressed by (9) is used,

rather than (10). Thus, one could argue that Physicists implicitly make use of the continuity

principle, and hence of Π1-TRANS, by the following theorem.

26. Theorem. In ERNA, the continuity principle is equivalent to Π1-TRANS.

Proof. See [14, Theorem 43]. �

Next, we define Riemann integration inside ERNA.

27. Definition. A partition π of [a, b] is a vector (x1, . . . , xn+1, t1, . . . tn) such that xi ≤ ti ≤ xi+1

for all 1 ≤ i ≤ n and a = x1 and b = xn+1. The ‘mesh’ of π is |π| := max1≤i≤n(xi+1 − xi). The

partition π is ‘infinitely fine’ if |π| ≈ 0.

By the remark after [14, Theorem 17], we know that ERNA can code partitions into hypernat-

urals and vice versa. Thus, the following definition is inside ERNA.

28. Definition (Riemann Integration). Let f be a function defined on [a, b].

1. The Riemann sum Sπ(f) corresponding to a partition π = (x1, . . . , xn+1, t1, . . . , tn) is de-

fined as the sum
∑n
i=1 f(ti)(xi+1 − xi).

2. The function f is called ‘Riemann integrable on [a, b]’ if all Riemann sums of infinitely fine

partitions are finite and infinitely close to each other. If so, the Riemann sum corresponding

to the infinitely fine partition π of [a, b] is denoted by
∫ b
a
f(x) dπx.

3. A function f is called ‘absolutely integrable over [a, b]’ if |f | is Riemann integrable there.

4. A function is called ‘everywhere integrable’ if it is Riemann integrable over the interval

[−ω, ω] for all infinite ω and all integrals are infinitely close.

If π is a partition of [a, b] and a < c < d < b, we sometimes write
∫ d
c
f(x) dπx instead of∫ d

c
f(x) dρx, where ρ is π limited to [c, d].

29. Definition. If π is an infinitely fine partition of [a, b], we denote by x the least partition point

not exceeding x. If f is integrable over [a, b], we define

Fπ(x) :=

∫ x

a

f(t) dπt. (11)

For completeness, we recall ERNA’s weight function ‖x‖ which is defined as ‖±n/m‖ = max(n,m),

for hypernatural n,m with m 6= 0 (see [9, Theorem 23]).

By [14, Theorem 50], we know that the statement a near-standard function is integrable over

[a, b] if it is S-continuous there is equivalent to Π1-TRANS. Now consider the following, seemingly

weaker principle.

30. Principle. A near-standard function which is S-continuous and bounded over [0, 1], is inte-

grable there.
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Although this principle seems weaker than the Riemann integrability principle, we have the

following theorem.

31. Theorem. In ERNA, Principle 30 is equivalent to Π1-TRANS.

Proof. The reverse implication is immediate from Theorems 16 and 36 in [14]. Conversely, assume

that Principle 30 holds and consider a quantifier-free formula ϕ of Lst such that ϕ(n) is valid for

all n ∈ N. Let f be near-standard, S-continuous and bounded over [0, 1], with Riemann integral

infinitely close to 1. By cases, we define the near-standard function

g(x) =

f(x) (∀n ≤ ‖x‖)ϕ(n)

x otherwise
. (12)

It is clear that g(x) is bounded on [0, 1]. As ϕ(n) is true for all standard n, we have g(x) = f(x) for

all standard x, by definition. Hence g(x) is also S-continuous over [0, 1]. In particular, Principle 30

applies to g. Overflow (see [9, Theorem 54]) applied to (∀stn)ϕ(n) yields (∀n ≤ ω1)ϕ(n) and hence

g(x) = f(x) for all x such that ‖x‖ ≤ ω1. Then put ω2 = bω1/2c and consider the equidistant

partition with mesh 1/ω2 and points ti = xi+1+xi
2 . As ‖ti‖ ≤ ω1, it is clear that g(ti) = f(ti) for

1 ≤ i ≤ ω2 and hence the Riemann sum of g corresponding to this partition is infinitely close to 1.

Now suppose there is a (necessarily infinite) hypernatural n1 such that ¬ϕ(n1). As Euclid’s

proof of the infinitude of the prime numbers can easily be formalised in ERNA, there is an n0 ≥ n1

which is prime. By the definition of g(x), there follows g(x) = x if ‖x‖ ≥ n1. Then consider the

equidistant partition with mesh 1/n0 and points ti = xi+1+xi
2 . The corresponding Riemann sum is

easily calculated and has value 1
2 . By Principle 30, there holds 1 ≈ 1

2 . Obviously, this is impossible

and the assumption that there is a number n1 such that ¬ϕ(n1) is false. Hence, we have ϕ(n) for

all hypernatural n. This implies Π1-TRANS and we are done. �

In classical Reverse Mathematics, the statement a function is integrable over [a, b] if it is contin-

uous over [a, b] is equivalent to WKL. Restricting to bounded functions results in a statement that

is equivalent to WWKL (see Theorem 10), and the latter is strictly weaker than WKL. By the pre-

vious theorem, it seems that in ERNA’s Reverse Mathematics, the principles WKL and WWKL

coincide. This explains why, in classical Reverse Mathematics, DDT is equivalent to WWKL,

whereas in ERNA’s Reverse Mathematics, DDT is equivalent to Π1-TRANS (see Theorem 38).

3.3. Dirac delta function. In this paragraph, we introduce the Dirac delta function and prove

that ERNA’s version of the Dirac Delta Theorem is equivalent to Π1-TRANS.

32. Definition (Delta function). Let f(x) be absolutely integrable everywhere with integral infin-

itely close to one. For nonzero ε ≈ 0, δε(x) := f(x/ε)/ε is called a ‘delta function’.

Note that, with this definition, δε(x) is indeed a function. Theorem 35 below shows that delta

functions exhibit the typical ‘infinite at zero and zero everywhere else’ behaviour. The following

definition and theorem are concerned with the integration of delta functions.

33. Definition. A function is called ‘ε-integrable over [a, b]’ if there is a finite q such that for all

hyperfine partitions π of [a, b] such that |π|ε ≈ 0, we have Sπ(f) ≈ q.

The condition |π|ε ≈ 0 in the definition guarantees that a hyperfine partition is fine enough to

allow rescaling by ε without affecting its ‘hyperfineness’. This is clear from the following theorem.
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34. Theorem. Let f be integrable over [a/ε, b/ε] with 0 < ε ≈ 0. Then f(x/ε)/ε is ε-integrable

over [a, b] and we have ∫ b
a
f(xε ) 1

εdπx ≈
∫ b/ε
a/ε

f(x)dρx,

for any hyperfine partition π of [a, b] such that |π|ε ≈ 0.

Proof. Let π = (x1, . . . , xk+1, t1, . . . , tk), a, b and f be as in the theorem. Then Sπ(f) =∑k
i=1 f(ti/ε)/ε(xi+1 − xi) and define yi = xi/ε and si = ti/ε. Since |π|ε ≈ 0, the list π′ =

(y1, . . . , yk+1, s1, . . . , sk) is a hyperfine partition of [a/ε, b/ε]. As f is integrable over the latter

interval, we have

Sπ(f) =

k∑
i=1

f(ti/ε)/ε(xi+1 − xi) =

k∑
i=1

f(si)(yi+1 − yi) ≈
∫ b/ε

a/ε

f(x)dρx,

where ρ is a hyperfine partition of [a/ε, b/ε]. This finishes the proof. �

35. Theorem. The delta function δε(x) is ε-integrable. Moreover, for all a < −ε′ < ε′ < b with

ε/ε′ ≈ 0, we have
∫ b
a
δε(x) dπx ≈

∫ ε′
−ε′ δε(x) dπx ≈ 1.

Proof. Let δε(x) = f(x/ε)/ε be a delta function and fix 0 < ε′ ≈ 0 such that ε′/ε is infinite. Let

a, b be as in the theorem and let ρ be a partition of [a/ε, b/ε]. As f(x) is integrable everywhere, we

have
∫ b/ε
a/ε

f(x) dρx ≈
∫ ε′/ε
−ε′/ε f(x) dρx ≈ 1. Let π be a partition of [a, b] such that |π|ε ≈ 0. By the

previous theorem, we have
∫ b/ε
a/ε

f(x) dρx ≈
∫ b
a
f(xε ) 1

εdπx and
∫ ε′/ε
−ε′/ε f(x) dρx ≈

∫ ε′
−ε′ f(xε ) 1

ε dπx. �

Thus, we see that δε(x) must be infinitesimal almost everywhere outside of an infinitely small

region around zero, where it is infinite. Now consider the following principle, called ‘Dirac Delta

Theorem’, or ‘DDT’ for short. It shows that delta functions select the value f(0) of a function f .

36. Principle (DDT). Let g be near-standard and S-continuous on [a, b] and let π be a hyperfine

partition of [a, b]. If |π|ε ≈ 0 and a� 0� b and δε(x) is a delta function, then∫ b

a

g(x)δε(x) dπx ≈ g(0).

37. Theorem. The Dirac Delta Theorem is provable in ERNA + Π1-TRANS.

Proof. Let g and π be as in the theorem. By Theorem 35, there is an ε′ ≈ 0 such that
∫ b
a
δε(x) dπ(x) ≈∫ ε′

−ε′ δε(x) dπx ≈ 1. This implies that
∫ −ε′
a

δε(x) dπ(x) ≈ 0, which in turn yields∫ −ε′
a

g(x)δε(x) dπ(x) /M1

∫ −ε′
a

δε(x) dπ(x) ≈ 0,

where M1 is the finite maximum of g on [a,−ε′], provided by ERNA’s Weierstrass Extremum

Theorem (see [14, Theorem 12]). Similarly, we prove
∫ b
ε′
g(x)δε(x) dπ(x) ≈ 0.

Now let tj1 (tj2) be the least (largest) point in the partition π such that tj1 ≥ ε′ (tj2 ≤ −ε′).
Define the finite numbers M and m as maxj2≤i≤j1 g(ti) and leastj2≤i≤j1g(ti), respectively. By

[9, §5.1], these terms are available in ERNA. This yields∫ b

a

g(x)δε(x) dπx ≈
∫ ε′

−ε′
g(x)δε(x) dπx /M

∫ ε′

−ε′
δε(x) dπx ≈M.

Similarly, one proves m /
∫ b
a
g(x)δε(x) dπx. By the continuity principle, g is continuous, implying

m ≈ g(0) ≈M , and the theorem follows. �
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Note that we may replace a and b with infinite numbers, if we assume that f is zero outside

an interval with finite extremes or is integrable everywhere. In [14], conditions similar to |π|ε ≈
0 appear in ERNA’s version of the Fundamental Theorem of Calculus and Peano’s Theorem.

Actually, these conditions hide ε-δ statements in an elegant way. Intuitively, they express that

|π| is infinitesimal, even compared to ε. In [13], a framework is presented that removes these

conditions by incorporating different degrees of magnitude directly into the theory ERNA.

38. Theorem. In ERNA, DDT is equivalent to Π1-TRANS.

Proof. The reverse implication is immediate from Theorem 37. Conversely, assume that DDT

holds and consider a quantifier-free formula ϕ of Lst such that ϕ(n) is true for all n ∈ N. Let g be

near-standard and S-continuous over [a, b]. By cases, we define the near-standard function

h(x) =

g(x) (∀n ≤ ‖x‖)ϕ(n)

‖x‖ otherwise
. (13)

As ϕ(n) is true for all n ∈ N, we have h(x) = g(x) for all standard x and hence h(x) is also

S-continuous. In particular, DDT applies to h.

Now suppose there is a (necessarily infinite) hypernatural n1 such that ¬ϕ(n1) and let n0 ≥ n1

be prime and large enough such that 1
n0ε
≈ 0. By the definition of h(x), we have h(x) = ‖x‖ if

‖x‖ ≥ n0. Then consider the equidistant partition π of [a, b] with mesh 1/n0 and points ti = xi+1+xi
2

for 1 ≤ i ≤ m0. Note that |π|ε ≈ 0. The corresponding Riemann sum is easily calculated:∫ b

a

h(x)δε(x) dπx =

m0∑
i=1

h(ti)δε(ti)(xi − xi−1) =

m0∑
i=1

‖ti‖δε(ti)(xi − xi−1)

≥ 2n0

m0∑
i=1

δε(ti)(xi − xi−1)

= 2n0

∫ b

a

δε(x) dπx� n0 (14)

By DDT, we have
∫ b
a
h(x)δε(x) dπx ≈ h(0), but, by definition, h(0) = g(0). By Theorem 23, g(0) is

a finite number, whereas, by (14), the integral
∫ b
a
h(x)δε(x) dπx is infinite. This is a contradiction

and hence, the assumption that there is a number n1 such that ¬ϕ(n1) is false. Thus, we have

ϕ(n) for all n. This implies Π1-TRANS and we are done. �

3.4. Heaviside function. In this paragraph, we introduce the Heaviside function and prove

ERNA’s version of the essential property
∫
dH
dx (x) · f(x) dx = f(0). Thus, we observe that the

derivative of the Heaviside function is a delta function. We also show that this property is equiv-

alent to Π1-TRANS.

First, we introduce the notions of differentiability and derivative in ERNA. For brevity, we

sometimes write ‘∆hf(x)’ instead of f(x+h)−f(x)
h .

39. Definition. A function is called ‘differentiable over (a, b)’ if

(∀stk)(∃stN)(∀sth, h′)(∀stx ∈ (a, b))[
x+ h ∈ [a, b] ∧ x+ h′ ∈ [a, b] ∧ 0 < |h|, |h′| < 1

N → |∆hf(x)−∆h′f(x)| < 1
k

]
. (15)

For ε ≈ 0, the function ∆εf(x) is the called ‘the derivative of f ’. By the following theorem,

proved in ERNA + Π1-TRANS, the derivative is uniquely defined, up to infinitesimals. Thus,
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f ′(x) is called ‘the derivative of f(x)’. Like in the case of continuity, we use the uniform notion of

differentiability. Thus, it is not surprising that the derivative is also continuous.

40. Theorem. A near-standard function, differentiable over (a, b), satisfies ∆εf(x) ≈ ∆ε′f(x),

for all a� x� b and ε, ε′ ≈ 0. Moreover, for all ε ≈ 0, ∆εf(x) is continuous for a� x� b.

Proof. By Theorem 22, we may use bar transfer. In (15), fix finite k = k0 + 1 and find a finite

number N0 such that the innermost universal formula holds. Applying bar transfer to the resulting

formula yields, for all h, h′ and all x ∈ (a, b), that

x+ h ∈ [a, b] ∧ x+ h′ ∈ [a, b] ∧ 0 < |h|, |h′| < 1
N0
→ |∆hf(x)−∆h′f(x)| / 1

k0+1

Thus, we see that for h, h′ ≈ 0 and a � x � b, we have |∆hf(x) − ∆h′f(x)| < 1
k0

. The latter

formula is true for arbitrary k0 and we have ∆hf(x) ≈ ∆h′f(x) if h, h′ ≈ 0.

Now choose two points x ≈ y such that a� x < y � b. If y − x = ε, then

∆εf(x) = f(x+ε)−f(x)
ε = f(y)−f(y−ε)

ε = f(y−ε)−f(y)
−ε = ∆−εf(y) ≈ ∆εf(y),

and thus, ∆ε′f(x) ≈ ∆εf(x) ≈ ∆εf(y) ≈ ∆ε′f(y), for all nonzero ε′ ≈ 0. �

Thus, we are ready to introduce the Heaviside function.

41. Definition. [Heaviside function] Let f be differentiable on (−1, 1), with f(x) = 1 for x ≥ 1,

f(x) = 0 for x ≤ −1, and
∫ 1

−1
f ′(x)dπx ≈ 1. For ε ≈ 0, the function Hε(x) := f(x/ε) is called a

‘Heaviside function’.

We first consider two examples of Heaviside functions.

42. Example. The function H1
ε(x) (resp. H2

ε(x)) is defined as x
2ε + 1

2 (resp. 3
2 (−x

3

6ε3 + x
2ε ) + 1

2 ) for

x ∈ [−ε, ε], 0 for x ≤ −ε and 1 for x ≥ ε.

We could require f to be differentiable at 1 and −1, but then we would exclude the functions

H1
ε(x) and H2

ε(x) as Heaviside functions. Furthermore, the function d1
ε(x) (resp. d2

ε(x)), defined as
1
2ε (resp. 3

2 (−x
2

2ε3 + 1
2ε )) if x ∈ [−ε, ε] and 0 otherwise, is a delta function. If we ignore the points ε

and −ε, it is clear that ∆ε′Hiε(x) ≈ diε(x) for i = 1, 2 and ε′/ε ≈ 0. Thus, we make the following

notational convention.

43. Notation. For a Heaviside function Hε(x) and ε′/ε ≈ 0, we define �ε′Hε(x), the derivative of

Hε(x), as ∆ε′Hε(x) if x ∈ [−ε+ 2ε′, ε− 2ε′] and 0 otherwise.

With this notation, we only ignore an interval that has infinitesimal length compared to ε ≈ 0.

Thus, the integral will not change more than an infinitesimal, even if ∆ε′Hε(x) is infinite of

magnitude 1/ε around ε and/or −ε. This notation is also motivated by the practice of measure

theory, where an integral is not influenced by ignoring ‘small’ sets (i.e. sets of measure zero).

Now consider the following principle, called the ‘Heaviside Theorem’, or ‘HEAT’, for short. It

states that the derivative of a Heaviside function is a delta function.

44. Principle (HEAT). Let f be near-standard and continuous on [a, b]. If |π|ε ≈ 0, ε′

ε ≈ 0 and

a� 0� b, then ∫ b

a

�ε′Hε(x) · f(x) dπx ≈ f(0).

45. Theorem. The Heaviside Theorem is provable in ERNA + Π1-TRANS.
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Proof. Let f , π and ε′ be as in the theorem and let Hε(x) = g(x/ε) be a Heaviside function. For

x ∈ [−ε+ 2ε′, ε− 2ε′] and σ := ε′/ε ≈ 0, we can calculate

Hε(x+ε′)−H(x)
ε′ =

g
(
x+ε′
ε

)
−g( xε )

ε′ = 1
ε
g(x/ε+σ)−g(x/ε)

σ = 1
ε ·∆σg(x/ε).

By definition, the function ∆σg(x) is integrable over [−1, 1]. Now apply Theorem 34 with a =

−ε + 2ε′ and b = ε − 2ε′. Thus, 1
ε∆σg(x/ε) is ε-integrable over [−ε + 2ε′, ε − 2ε′], and, for

η := 2ε′

ε ≈ 0, we have ∫ ε−2ε′

−ε+2ε′
∆σg(x/ε)1/ε dπx ≈

∫ 1−η

−1+η

∆σg(x) dρx ≈ 1.

Using ERNA’s Weierstrass Extremum principle, the theorem follows in the same way as for Theo-

rem 37. Alternatively, apply Theorem 34 to the integrand �ε′Hε(x) · f(x), yielding
∫ 1−η
−1+η

∆σg(x) ·
f(εx) dπx. The latter is clearly infinitely close to f(0). �

Finally, we have the following theorem.

46. Theorem. In ERNA, HEAT is equivalent to Π1-TRANS.

Proof. The reverse direction follows immediately from Theorem 45. The forward direction is proved

in the same way as in Theorem 38. �

Principle 44 contains the conditions |π|ε ≈ 0 and ε′

ε ≈ 0. If we wanted to treat n-th order

derivatives of suitable Hε(x), we would require n+ 1 such conditions. Similarly, for suitable delta

functions δε(x), we could consider ∆ε′δε(x) for ε′/ε ≈ 0 and higher-order derivatives. This would

result in the property
∫ b
a
δ

(n)
ε (x) · f(x) dπx ≈ (−1)nf (n)(0). From the above, it is clear that the

latter formula gives rise to theorems equivalent to Π1-TRANS. However, the amount of technical

detail becomes unmanageable, suggesting the need for a more suitable framework. For ERNA,

such a framework was introduced in [13], where infinitesimals of different magnitude are built into

the theory ERNA. This fundamental insight goes back to Péraire and Hrbacek ([7, 11]).
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