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Abstract 
 

Face recognition is widely held to rely on ‘configural processing’, an analysis of 

spatial relations between facial features. We present three experiments in which 

viewers were shown distorted faces, and asked to resize these to their correct shape.  

Based on configural theories appealing to metric distances between features, we 

reason that this should be an easier task for familiar than unfamiliar faces (whose 

subtle arrangements of features are unknown).  In fact, participants were inaccurate at 

this task, making between 8% and 13% errors across experiments. Importantly, we 

observed no advantage for familiar faces: in one experiment participants were more 

accurate with unfamiliars, and in two experiments there was no difference. These 

findings were not due to general task difficulty – participants were able to resize 

blocks of colour to target shapes (squares) more accurately. We also found an 

advantage of familiarity for resizing other stimuli (brand logos). If configural 

processing does underlie face recognition, these results place constraints on the 

definition of ‘configural’.  Alternatively, familiar face recognition might rely on more 

complex criteria – based on tolerance to within-person variation rather than highly 

specific measurement.  
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The concept of ‘configural processing’ is central to the study of face perception. It is 

widely held that viewers are sensitive to the relationship between facial components, 

and that they recruit this sensitivity to make perceptual judgements.  This concept lies 

at the heart of many proposals concerning face identification (e.g. Diamond & Carey, 

1986; Maurer Le Grand & Mondloch, 2002; Richler, Mack, Gauthier, & Palmeri, 

2009).  It is also a key component of explanations for many other aspects of face 

perception, for example the inversion effect (Searcy & Bartlett, 1996; Leder & Bruce, 

2000; McKone & Yovel, 2009), similarity effects (e.g. Rhodes, 1988) and certain 

aspects of emotional processing (Calder, Young, Keane & Deane, 2000; McKelvie, 

1995). In fact, the term ‘configural processing’ includes a wide range of theoretical 

positions (see below). In this paper, we address one of these: an interpretation of 

configuration in terms of the metric distances between facial features.  We are 

specifically concerned here with familiar faces, and we ask how well this view of 

configural processing is able to account for their recognition.  

 

Maurer et al (2002) provide an influential analysis, which distinguishes between three 

types of configural processing: (i) detection of ‘first-order’ relations, which define the 

basic arrangement of a face (eyes above nose, above mouth); (ii) holistic processing, 

which coheres the features into a perceptual gestalt;  and (iii) sensitivity to second 

order relations, or “perceiving the distances among features”.  Maurer et al 

demonstrate that these three types of processing are behaviourally dissociable, with 

each being involved in different perceptual tasks. However, despite this analysis, 

there is still some ambiguity in the literature, with some authors using ‘holistic’ and 

‘configural’ interchangeably, and some being unclear about which form of configural 

processing is being recruited to explain a particular effect.   

 

To be as clear as possible, we are here concerned only with second-order configural 

processing, and the ways it has been used to explain familiar face recognition.  This is 

posed directly by Richler et al (2009): “Because faces are made from common 

features (eyes, nose, mouth, etc.) arranged in the same general configuration, subtle 

differences in spatial relations between face features being encoded [are] particularly 

useful for successful recognition of a given face.” (p. 2856). This version of 

configural processing is sometimes made even more explicit, for example by Tanaka 

& Gordon (2011) who write “We use the term ‘configural processing’ … to refer to 
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encoding of metric distances between features (i.e. second-order relational 

properties)” (p.178).  

 

This paper presents three experiments that challenge the use of metric distances in 

identification.  In fact, some constraints already exist in the literature, though these 

are often passed over.  In one important demonstration, Hole, George, Eaves, & 

Rasek, (2002) showed that stretching photos by up to 200% vertically, and hence 

destroying their original aspect ratio, had no effect at all on recognition of faces.  This 

is a very striking result.  All relationships between metric distances which cross more 

than one dimension are destroyed by this transformation (i.e. all angles, all ratios of 

distances except in a single dimension).  If we really recognise one another by the 

‘subtle differences in the spatial relations between face features’ then it is perhaps 

surprising that these subtle differences survive such a radical assault. Using very 

different techniques, Taschereau-Dumouchel, Rossion, Schyns & Gosselin (2010) 

showed that the information available from interattribute distances within a face is 

small, by comparison to information available from other sources (e.g. skin 

properties).  Using unfamiliar faces, they demonstrated poor performance in a match-

to-sample test when faces differed on interattribute distances only.  

 

Schwaninger, Ryf, & Hofer, (2003) studied people’s abilities explicitly to gauge 

configural information, and found them poor.  Observers were asked to judge the 

distance between the eyes or between the eyes and mouth of 10 unfamiliar faces. A 

comparison stimulus (a horizontal or vertical line) was adjusted to match these 

distances within a face. Observers made very large errors (39% for eye-mouth 

distance and 11% for inter-ocular distance).  The authors conclude that processing 

information is different in perceptual as opposed to recognition tasks - interestingly 

taking it as read that configural processing is used in recognition tasks.  

 

There have also been challenges in the ERP literature.  For example, Bindemann, 

Burton, Leuthold, and Schweinberger, (2008), showed a lack of sensitivity to linear 

distortion in the face-identity-sensitive ERP component, N250r. Furthermore, 

Caharel, Fiori, Bernard, Lalonde, and Rebaï (2006) demonstrated that altering 

distances between features in famous faces did have a significant effect on the N170 

component, but did not affect recognition. These results seem to support the idea that, 
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while metric distance change does affect the appearance of a face, and can have an 

affect on early face processing (Caharel et al, 2006), they may not be critical in face 

identification.  

 

In recent work, we have begun to focus on the issue of within person variability 

(Jenkins, White, van Montfort, & Burton, 2011; Burton, 2013). The central 

observation is that different pictures of the same face are highly variable.  Indeed, for 

many measures, within-person variability exceeds between-person variability (Jenkins 

et al, 2011). This raises an interesting problem: if we recognise people by their 

characteristic ‘metric distances between features’, then how are we to find such 

distances in highly variable images of the same person? Alternatively, we might 

expect that as we become familiar with a face, we actually become more tolerant of 

differences between images – it is well-established that unfamiliar face-matching is 

more closely tied to superficial image characteristics than familiar face matching.  For 

example, Clutterbuck and Johnston (2004) demonstrate that viewers’ ability to match 

two different photos of a face is a good index of their level of familiarity with that 

person.  This suggests that learning a face actually involves learning the range of 

variability that it can adopt – rather than learning highly specific representations of 

distances between features.   

 

In the experiments below, we test a hypothesis derived from a configural processing 

view of familiar face recognition (in the sense of metric distances, described above). 

We employ a task which is intended to access people’s representations of familiar 

faces: Viewers are shown faces in the wrong aspect ratio, and simply asked to adjust 

these images to eliminate the distortion.  Our prediction, derived from configural 

processing, is that viewers will be good at this task for familiar faces. The core 

premise of face recognition is the acquisition of a cognitive representation of a 

person’s unique identity which can be used in subsequent encounters for recognition 

purposes. Therefore, if face recognition relies on ‘subtle differences of spatial 

relations between face features’ then recognizers must have a good representation of 

these subtle differences, on which to base their judgments, leading to accurate 

performance with familiar faces.  On the other hand, there seems no reason to predict 

that people will be very good at this task for unfamiliar faces.  It should be relatively 

easy to adjust images to roughly face-shape (perhaps relying on knowledge of first-
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order configuration), but detailed spatial differences should be unknown – for 

example a viewer would not know whether a distorted unfamiliar face depicted 

someone with a relatively long face or a relatively fat face.  We therefore predict that 

there will be a clear advantage for familiar over unfamiliar faces in this task.   

 

 

Experiment 1 

 

Methods 

 

Participants 

Thirty undergraduate students (19 female; average age 22.3 years) participated 

in exchange for course credit. All participants were native to the UK and had normal 

or corrected-to-normal vision. 

 

Stimuli 

 

 
Figure 1: Examples of stimuli to resize (top), and correct aspect ratio (bottom) 
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Images of 15 familiar (British) and 15 unfamiliar (Australian) celebrities were taken 

from a UK/Australian database, developed for cooperative research. Pre-checks with 

UK participants from the same population (but not used in the main experiments) 

confirmed that they were familiar with the British, but not the Australian faces. 

Images were front-view or near front-view, under various luminance conditions and 

with no constraint on expressions. External features were kept intact, and other 

extraneous details (i.e. clothing and background) were cropped. Images were 

presented in grayscale against a light gray background and the originals measured 

269px x 312px (9.49cm x 10.97cm), subtending approximately 7.76° x 8.96° of visual 

angle at a viewing distance of 70cm. Copyright restrictions prevent us from 

reproducing the images of these celebrities. A list is given in the Appendix, and 

Figure 1 shows examples of faces presented in the same way.  

 

Procedure 

Images were presented individually in an arbitrary aspect ratio.  For each trial, x and y 

dimensions were scaled to random values between 50% and 200% of their original 

(generated and presented by an underlying Matlab program).  Participants were asked 

to re-size the window in the normal manner, using a mouse controlling a cursor. They 

were instructed: “Please adjust the window until the image looks right”. Participants 

completed 4 practice trials that presented front-view images of cars followed by 30 

trials of faces (15 familiar), in random order.  The experiment was self-paced, and 

participants were asked to be as accurate as possible. 

 

Results & Discussion 

 

Aspect ratio accuracy was measured by  (Yfinal/Xfinal)/(Yoriginal/Xoriginal).  Under this 

definition, absolute size of the adjusted image is irrelevant to accuracy – which 

depends on aspect ratio alone. Perfect accuracy gives a value of 1, with larger values 

represent images ‘too tall’, and values less than one being ‘too wide’.  

 

Mean absolute errors ( abs(aspect ratio accuracy -1) ), are shown in table 1. A paired 

samples t-test showed that errors were significantly greater in the familiar than the 

unfamiliar condition, t(29) = 3.20, p < .01, ηp
2

 = .26. 
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Table 1. Experiment 1: Mean absolute error by condition (SDs in parentheses) 

 

 Mean Absolute Error 

Familiar   0.134 (0.037) 

Unfamiliar   0.119 (0.024) 

 

 

This is rather a surprising result.  First, participants made greater errors for familiar 

than unfamiliar faces, directly counter to our prediction derived from a configural 

processing account of familiar face recognition.   Second, the size of the errors 

(13.4% and 11.9%) each differed significantly from zero (one-sample t-tests for 

familiar faces, t(29) = 19.99, p < .001, ηp
2

 = .93, and unfamiliar faces, t(29) = 27.37, p 

< .001, ηp
2

 = .96 respectively). 

 

Absolute error rates do not give an indication about whether participants showed 

consistent bias, generally scaling images ‘too tall’ or ‘too wide’, and so the following 

analysis examines this.  We were also interested to know whether the aspect ratio of 

the initial presentation had an effect on participants’ behaviour.  For example, in trials 

where the initial presentation was ‘too tall’, might participants tend to rescale the 

image ‘too wide’, in a way analogous to facial adaptation? To examine this, we 

compared mean aspect ratio (preserving sign) as rescaled by participants. Trials were 

broken down into those for which images had originally been presented ‘too tall’ and 

those which had originally been presented ‘too wide’. Table 2 gives mean rescaled 

aspect ratios. 

 

Table 2. Experiment 1: Mean scaled aspect ratios by condition (SDs in parentheses). 
 

 Initially too tall Initially too wide 

Familiar faces 1.122 (0.067) 1.015 (0.084) 

Unfamiliar faces 1.090 (0.072) 0.992 (0.182) 

 

A 2 (familiarity) x 2 (initial aspect ratio) ANOVA showed a main effect of initial 

aspect ratio, F(1, 29) = 31.0, p < .001, ηp
2

 = .517, but no main effect of familiarity, 

F(1, 29) = 2.8, p = .106, ηp
2

 = .088, and no interaction, F(1, 29) < 1.  So, images 
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originally seen ‘too tall’ tended to be rescaled taller than those seen too wide. 

However, there was no evidence of an adaptation effect. (We repeated this analysis 

for experiments 2 and 3 below, but as there was no suggestion of adaptation, we do 

not report this data further.) 

 

In sum, participants were worse at performing the aspect ratio task for familiar than 

for unfamiliar faces (table 1).  Explanations of face recognition based on metric 

distances between features seem to imply that observers should be very accurate in 

representing the aspect ratio of familiar faces, making fewer – or, indeed, no – errors. 

Because this is a rather counter-intuitive result, we replicated it in Experiment 2, 

using a slightly different presentation mode.  In Experiment 1, all source photos had 

the same overall size and aspect ratio, because each face had been dropped into the 

same size grey background.  It is therefore possible that participants could learn the 

‘correct’ aspect ratio over the course of the whole experiment, and aim to readjust all 

images to this. Although such a strategy would not seem to affect the prediction 

derived from configural processing (an advantage for familiar faces), in the second 

experiment we eliminated this feature of the stimuli, using source photos with a wide 

variety of sizes and aspect ratios. We also examined whether the task could be 

insufficiently sensitive to reveal any systematic differences.  Perhaps participants are 

simply inaccurate when resizing windows in general, and the noise this produces 

means that it is impossible to detect any underlying differences between familiar and 

unfamiliar faces.  In Experiment 2 we test this possibility by comparing participants’ 

ability to resize faces with their performance on a non-face pattern, specifically a 

simple geometric color patch.  

 

 

Experiment 2 

 

Methods 

 

Participants 

 

Thirty undergraduate students (20 female; average age 21.1 years) participated 
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in exchange for course credit. All were native to the UK and had normal or corrected-

to-normal vision. 

 

Stimuli 

 
Figure 2: Examples of stimuli to resize (top), and correct aspect ratio (bottom) 

 

Stimuli were taken from the same database of faces as Experiment 1.  However, 

whereas stimuli for Experiment 1 had been dropped into a standard sized rectangle, 

the stimuli used here were cropped from the original images (sourced from the 

internet) and had a range of sizes and aspect ratios (smallest 195x281 to largest 

1059x1188). Once again, copyright restrictions prevent us from reproducing the 

images of these celebrities, but figure 2 shows examples of faces presented in the 

same way. In this experiment we also used square color blocks. Fifteen squares were 

created and filled with different gray levels. The square dimensions measured a range 

from 225x225px to 754x754 pixels (see figure 2). 

 

Procedure 

The experimental procedure was the same as in Experiment 1. For each trial, x and y 

dimensions were scaled to random values between 50% and 200% of their original. If 
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this led to an image exceeding the screen display size, the whole image was rescaled 

to fit the display (maintaining the aspect ratio determined by the trial-by-trial 

randomization procedure). Each participant completed 8 practice trials. There 

followed 45 experimental trials of faces and squares (15 familiar and 15 unfamiliar 

faces, 15 squares) intermixed and presented in separate random order for each 

participant. Participants were instructed: “For faces, please adjust the window until 

the image looks right. For color blocks, please adjust the window until the block 

shows a square”. 

  

Results and Discussion 

 

Mean absolute errors are shown in Table 3. Repeated measures ANOVA revealed a 

significant effect of stimulus type, F(2,58) = 15.0, p < .001, ηp
2

 = .34. Planned 

comparisons (Bonferroni corrected) showed no difference between familiar and 

unfamiliar faces (t(58) < 1). However, adjustment of squares was significantly more 

accurate than adjustment of either of the face conditions (familiar faces v. squares: 

t(58) = 4.64, p < .001, ηp
2

 = .27; unfamiliar faces v. squares (t(58) = 4.49, p < .001, 

ηp
2

 = .26). 

 

Table 3. Experiment 2: Mean absolute errors by condition (SDs in parentheses) 

 

 Observer Absolute Errors 

Familiar Faces  0.083 (0.029) 

Unfamiliar Faces  0.082 (0.026) 

Squares  0.057 (0.019) 

 

 

This is a different task to Experiment 1, in that participants were not trying to rescale 

all images to the same size – instead every image had its own unique aspect ratio.  

However, we have once again failed to find any evidence for an advantage of familiar 

over unfamiliar faces in this task. Both were significantly worse than a condition in 

which participants were asked to re-scale a geometric patch of colour – suggesting 

that the task is sensitive enough to reveal real differences where they exist.  
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Having established that this image-rescaling task is sensitive to gross stimulus 

differences (faces v. squares), we now ask whether it is sensitive to familiarity in 

stimuli other than faces.  Perhaps the reason we have found no advantage for familiar 

over unfamiliar faces is that viewers are simply insensitive to the aspect ratio in 

stimuli encountered day to day.  In the next experiment, we showed participants brand 

logos that would be familiar or unfamiliar to them, and once again asked them to 

correct aspect ratio-distorted images.  The presentation of such logos (for example, 

the ‘tick’ of a famous sports brand) is tightly controlled by companies using them, and 

we can assume wide exposure to the correct versions.  Using familiar and unfamiliar 

logos therefore allows us to test for the effects of familiarity in a non-face stimulus 

set.  

 

Experiment 3 

 

Methods 

 

Participants 

Sixty undergraduate students (28 female; average age 21.6 years) participated 

in exchange for course credit. Participants who saw the face stimuli were native to the 

UK. All participants had normal or corrected-to-normal vision. 

 

Stimuli and Procedure  

 

In Experiment 3, we used the same face images as in Experiment 2 plus thirty 

company logos, half familiar and half unfamiliar (see figure 3).  The familiar logos 

were chosen to be well-known in the UK, and therefore by our UK participants.  The 

unfamiliar logos were chosen to be of similar complexity, but for companies not well 

known in the UK (these were mostly large Canadian organisations). A list is given in 

the appendix. A post-experiment check showed that participants could, on average, 

correctly name 14.0 of the familiar logos, and 0.23 of the unfamiliar logos.  

 

Half the subjects completed trials using faces, and half completed logo trials.  Other 

than that, the experimental procedure was the same as in Experiment 2. For each trial, 
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x and y dimensions were scaled to random values between 50% and 200% of their 

original value. If this led to an image exceeding the screen display size, the image was 

rescaled to fit the screen, maintaining the aspect ratio determined by the trial-by-trial 

randomization procedure.  For all stimuli (faces and logos), participants were 

instructed: “Please adjust the window until the image looks right”. 

 

Results and Discussion 

 

Mean absolute errors are shown in table 4. A mixed model ANOVA (between 

subjects factor: Stimulus type, faces/logos; within subjects factor: Familiarity, 

familiar/unfamiliar) showed significant main effects of stimulus type, F(1, 58) = 

185.4, p < .001, ηp
2

 = .76, and familiarity, F(1, 58) = 100.9, p < .001, ηp
2

 = .64, and a 

significant interaction, F(1, 58) = 97.7, p < .001, ηp
2

 = .63. Simple main effects 

analysis showed no effect of familiarity for faces (F(1, 58) < 1). However, there was a 

significant advantage for familiar over unfamiliar logos (F(1, 58) = 198.6, p < .001, 

ηp
2

 = .77)   

 

Table 4. Experiment 3: Mean absolute error by condition (SDs in parentheses) 

 Faces Logos 

Familiar  0.091 (0.039) 0.158 (0.040) 

Unfamiliar 0.092 (0.038) 0.340 (0.092) 

 

 

Once again we fail to find any evidence for an advantage of familiar over unfamiliar 

faces.  Logos produced larger errors overall, roughly 16% and 34%. However, for 

these stimuli, there was a clear advantage for the familiar items.  This demonstrates 

that the resizing task will show effects of familiarity where they exist, providing 

further support for this rather counter-intuitive absence of an advantage for familiar 

over unfamiliar faces.  

  

 

General discussion 
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The task used in this series of experiments was intended to access people’s 

representations of the faces they know.  It goes beyond a simple recognition task, 

asking people to generate a picture which matches their knowledge of that person’s 

face.  Despite this, people were consistently poor, showing no advantage for familiar 

over unfamiliar faces.  Indeed, in one experiment, participants were worse for familiar 

faces. Moreover, we found that the task was performed significantly worse than 

resizing geometric colour patches (Experiment 2) and an advantage for resizing 

familiar over unfamiliar brand logos (Experiment 3), suggesting that our methods can 

exhibit a familiarity advantage for stimuli other than faces. 

 

These experiments seem to pose a challenge to theories of configural processing 

recruiting metric distances between features, as they are applied to recognition of 

familiar faces (Diamond & Carey, 1986; Maurer et al, 2002). However, given the very 

large range of theories which come under the title ‘configural processing’, it is 

certainly not possible to rule them all out. Perhaps the underlying spatial layout we 

use to recognise familiar faces is unaffected by changes in aspect ratio – at least 

within a range of 8% to 13% deviation as demonstrated here.  It may be possible to 

find a set of measurements which can be extracted from any recognizable view of a 

known face, and which meet this constraint, despite the fact that this has not been 

offered yet, in over 30 years of relevant research. However, this will be difficult, 

because simple angles and ratios exceeding one dimension are excluded by our data. 

At the least, these results provide a constraint on the eventual operationalization of 

configural processing.   

 

A more radical explanation for these results is that we do not use the ‘subtle 

differences in spatial relations between face features’ to recognise one another at all.  

We have argued that faces become familiar through an abstraction of instances across 

many variants of the same face (Burton, Jenkins, Hancock, & White, 2005; Jenkins et 

al., 2011) and have demonstrated that such an abstraction can support improved 

computational face recognition (Jenkins & Burton, 2008).  Such an approach is 

certainly holistic, but it acknowledges that metric distances in particular instances of 

face will be inherently variable.  If this is true, then one would expect one’s 

representation of familiar faces to be tolerant to variation, not hyper-specific - which 

does seem to be the pattern of results presented in this paper.  
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Finally, we should be clear that we are not advocating a feature-based alternative to 

configural processing. Although configural accounts are often contrasted with featural 

accounts of recognition (e.g., see Tanaka & Sengco, 1997; Rakover, 2002), the data 

presented here provide no evidence that discriminates between the two.  Indeed, since 

many part-based accounts rely on accurate representations of individual features, 

these are equally compromised by the evidence we have presented.  One might 

plausibly expect that accurate representation of features requires accurate 

representation of their aspect ratio (their shape).  If participants were able to call on 

this knowledge, then we might expect them to use it as a route to accurate 

performance in our experimental task.   Furthermore, we are not suggesting that the 

notion of holistic processing in face recognition be abandoned.  Indeed, there is 

overwhelming evidence from a variety of sources that some form of holistic 

processing takes place in face processing:  for example, the composite face effect  

(Hole, 1994; Young, Hellawell, & Hay, 1987; Rossion, 2013), effects of feature 

displacement (e.g., Searcy & Bartlett, 1996; Tanaka & Sengco, 1997), and the fact 

that isolated feature recognition is poor (e.g., Tanaka & Farah, 1993; Tanaka & 

Sengco, 1997; but see Wenger & Ingvalson, 2002, 2003). How, then is it possible to 

retain the notion of holistic processing, without employing simple definitions of 

configural processing relying on metric distance between features?  

 

In fact, many computational approaches to face recognition are componential, without 

the need to measure distances in the picture plane.  For example, Principal 

Components Analysis has been extensively used in artificial systems (e.g. Turk & 

Pentland, 1991; Kirby & Sirovich, 1990), as well as in explanations of human face 

perception (e.g. O’Toole, Abdi, Deffenbecher & Valentin, 1993; Hancock, Bruce & 

Burton, 1998). This and related techniques can provide a low-dimensional 

parameterization of faces in which all components cover the entire face. Such 

techniques give strong weight to reflectance properties of the face (sometimes called 

‘surface’ or ‘texture’), which are entirely absent from traditional notions of configural 

processing. It will perhaps be necessary to incorporate this information into theories 

of human perception.  

 

To conclude, we have provided evidence that is challenging for a simple account of 



 16 

configural processing, as a mechanism for recognizing familiar faces.  At the least, 

these results provide constraints for the development of such models.  However, we 

have also proposed that a proper understanding of face discrimination must 

incorporate the fact that faces display considerable within-person variance, and we 

therefore anticipate that any future theory will need to account for tolerance to this 

variation as faces become familiar.  Although we are not in a position to offer an 

alternative to a configural view of face recognition, this is not a counsel of despair.  It 

is possible to accommodate holistic face processing within a computational account, 

and it may be that insights from automatic face recognition will benefit research in 

human face perception.  
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Appendix 

 

Experiments 1-3: familiar and unfamiliar faces  

UK celebrities (familiar to the participants):  Ryan Giggs, Gareth Gates, Dermot 
O’Leary, Fearne Cotton, Graham Norton, Vernon Kay, Carol Vorderman, Alan 
Davies, Rob Brydon, James Nesbitt, Jessie Wallace, Karren Brady, Les Dennis, Steve 
McFadden, Shane Richie. 
 
Australian celebrities (unfamiliar to the participants): Sandra Sully, Ricki-Lee 
Coulter, Nikki Webster, Peter Garrett, Miranda Kerr, Hamish Blake, Jessica Rowe, 
Missy Higgins, Bert Newton, Delta Goodrem, Matt Moran, Kate Ritchie, Dave 
Hughes, Rebecca Cartwright, Anthon Callea. 
 
Experiment 3: familiar and unfamiliar logos  
 
Familiar: Apple, BP, Dreamworks, Facebook, Lacoste, McDonalds, Microsoft, Nike, 
Pepsi, PlayStation, Reebok, Shell, Volkswagen, Wikipedia, WWF. 
 
Unfamiliar: CBC, A&W, Air Transat, Boston Pizza, Canadian Tire, Cineplex, Giant 
Tiger, Loblaws, Lululemon, Manulife, Potash Corp, RBC, Rogers, Scotia Bank, 
Telus. 
 
 
 


