Skip to main content
Log in

Converging Concepts of Evolutionary Epistemology and Cognitive Biology Within a Framework of the Extended Evolutionary Synthesis

  • Article
  • Published:
Journal for General Philosophy of Science Aims and scope Submit manuscript

Abstract

Evolutionary epistemology (EE) has experienced a continuous rise over the last decades. Important new theoretical considerations and novel empirical findings have been integrated into the existing framework (Gontier and Bradie 2018). In this paper, I would like to suggest three lines of research that I believe will significantly contribute to further advance EE: (1) ontogenetic considerations, (2) key ideas from cognitive biology, and (3) the framework of the Extended Evolutionary Synthesis. (1) EE, in particular the program of the evolution of epistemological mechanisms (EEM), seeks to provide a phylogenetic account of the generation of cognitive processes underlying knowledge creation (Bradie and Harms 2017). Traditionally, EE and EEM have been oriented towards an account of evolutionary theory that mainly drew from the tenets of the Modern Synthesis. The Modern Synthesis largely dismisses ontogenetic processes and considers them irrelevant for evolutionary explanations. If anything, the role of development in evolution is believed to be that of a constraint. There is, however, ample evidence for a tight intertwinement of developmental and evolutionary processes. Organisms employ their cognitive apparatus to interact with the environment in order to achieve a fully functioning perceptual and cognitive nervous system. Also, ontogeny provides generative potentials to enable variations that natural selection can act upon. EEM’s agenda may, therefore, strongly benefit from bringing together ontogenetic and phylogenetic approaches. To grapple with this challenge, an alternative vision of the evolutionary theory termed Extended Evolutionary Synthesis (Pigliucci and Müller 2010) could be used. This extended evolutionary theory explores relationships between the processes of individual development and phenotypic change during evolution (i.e., EvoDevo) and can provide a more suitable framework for EEM to draw from. (2) In recent years, cognitive biology has gained momentum as an independent research field. Cognitive biology builds on the concepts of EEM and understands knowledge as a biogenic phenomenon. Its main objective is also the formulation of substantiated interrelations between cognition and evolution but it focuses on cognitive functionality at all levels of biological organization. It thus employs a “vertical” approach that encompasses nested hierarchies which span from single molecules, cells, and tissues to the organismal level, communities, and societies. In contrast to cognitive biology, EEM is here understood to adopt a “horizontal” approach that focuses on phylogenetic explanations of cognition and knowledge acquisition (Kovac 2006). Linking EEM with the key ideas of cognitive biology could make EEM’s research program stronger as it can more easily accommodate phylogenetic and ontogenetic questions within a hierarchical, multilevel perspective. This is of particular importance for a more comprehensive account of cognition since living systems are subject to context-dependent causal influences from different organizational levels. (3) In addition to EEM, there is a second program of EE. This program has been labeled evolutionary epistemology of theories (EET) and understands the increase in human knowledge, such as scientific theories, as naturalistic accounts of evolution. Both, EEM and EET initially drew from the core concepts of the Modern Synthesis. Several scholars have severely criticized the analogies made between EET and the Neo-Darwinian key processes of evolution. In particular processes of random mutation, the rate of variation, natural selection as the unique driving force, and the adaptationist agenda are believed to reveal disanalogies. In contrast to the Modern Synthesis, the Extended Evolutionary Synthesis not only recognizes developmental processes but also ecological interactions and systems dynamics as well as social and cultural evolutionary reciprocity as important evolutionary processes. Concepts of the Extended Evolutionary Synthesis are therefore expected to be more fruitful for re-conceptualizing parallels between scientific theorizing and biological evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Progressive here is meant in a non-normative sense but rather emphasizing the cumulative aspect of change.

  2. Here, contigency is used according to Gould’s (1989) definition as the essence of biological history rather than “a titration of determinism by randomness”.

References

  • Arthur, W. (2001). Developmental drive: An important determinant of the direction of phenotypic evolution. Evolution & Development, 3(4), 271–278.

    Google Scholar 

  • Arthur, W. (2004). Biased embryos and evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bach-y-Rita, P. (1994). The brain beyond the synapse: A review. NeuroReport, 5(13), 1553–1557.

    Google Scholar 

  • Beatty, J. (1994). The proximate/ultimate distinction in the multiple careers of Ernst Mayr. Biology and Philosophy, 9(3), 333–356.

    Google Scholar 

  • Boyd, R., Richerson, P. J., & Henrich, J. (2011). The cultural niche: Why social learning is essential for human adaptation. Proceedings of the National Academy of Sciences, 108(Supplement 2), 10918–10925.

    Google Scholar 

  • Bradie, M. (1986). Assessing evolutionary epistemology. Biology and Philosophy, 1(4), 401–459.

    Google Scholar 

  • Bradie, M., & Harms, W. (2017). Evolutionary epistemology. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2017 Edition). https://plato.stanford.edu/archives/spr2017/entries/epistemology-evolutionary/.

  • Callebaut, W. (1993). Taking the naturalistic turn. How real philosophy of science is done. Chicago: University of Chicago Press.

    Google Scholar 

  • Campbell, D. T. (1959). Methodological suggestions from a comparative psychology of knowledge processes. Inquiry, 2(1–4), 152–182.

    Google Scholar 

  • Campbell, D. T. (1974). Evolutionary epistemology. In P. A. Schilpp (Ed.), The philosophy of Karl R. Popper (pp. 412–463). LaSalle, IL: Open Court.

    Google Scholar 

  • d’Errico, F., & Stringer, C. B. (2011). Evolution, revolution or saltation scenario for the emergence of modern cultures? Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1567), 1060–1069.

    Google Scholar 

  • Delbrück, M. (1986). Mind from matter. Essays on evolutionary epistemology. Palo Alto, CA: Blackwell Science Publications.

    Google Scholar 

  • Dretske, F. I. (1981). Knowledge and the flow of information. Oxford: Basil Blackwell.

    Google Scholar 

  • Edinger, L. (1908). The relations of comparative anatomy to comparative psychology. Journal of Comparative Neurology and Psychology, 18(5), 437–457.

    Google Scholar 

  • Fischer, B., & Mitteroecker, P. (2015). Covariation between human pelvis shape, stature, and head size alleviates the obstetric dilemma. Proceedings of the National Academy of Sciences, 112(18), 5655–5660.

    Google Scholar 

  • Freeman, W. J. (1984). Premises in neurophysiological studies of learning. Chapter 13. In G. Lynch, J. L. McGaugh, & N. M. Weinberger (Eds.), Neurobiology of learning and memory (pp. 231–234). New York, NY: Guilford Press.

    Google Scholar 

  • Gilbert, S. F. (2010). Developmental biology. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Gissis, S. B., & Jablonka, E. (2011). Transformations of Lamarckism. From subtle fluids to molecular biology. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Godfrey-Smith, P. (1994). A modern history theory of functions. Noûs, 28(3), 344–362.

    Google Scholar 

  • Gontier, N. (2015). Reticulate evolution. Symbiogenesis, lateral gene transfer, hybridization and infectious heredity. Dordrecht: Springer.

    Google Scholar 

  • Gontier, N., & Bradie, M. (2018). Acquiring knowledge on species-specific biorealities: The applied evolutionary epistemological approach. In R. Joyce (Ed.), The Routledge handbook of evolution and philosophy (pp. 136–155). New York: Routledge.

    Google Scholar 

  • Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gould, S. J. (1989). Wonderful life: The Burgess Shale and the nature of history. New York: W.W. Norton & Co.

    Google Scholar 

  • Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gould, S. J., & Vrba, E. (1982). Exaptation—A missing term in the science of form. Paleobiology, 8(1), 4–15.

    Google Scholar 

  • Griffiths, P. E., & Stotz, K. (2000). How the mind grows: A developmental perspective on the biology of cognition. Synthese, 122(1–2), 29–51.

    Google Scholar 

  • Grunstra, N. D. S., Zachos, F. E., Herdina, A. N., et al. (2019). Humans as inverted bats: A comparative approach to the obstetric conundrum. American Journal of Human Biology, 31(2), e23227.

    Google Scholar 

  • Hahlweg, K., & Hooker, C. A. (1989). Issues in evolutionary epistemology. Albany, NY: State University of New York Press.

    Google Scholar 

  • Hodos, W., & Campbell, C. B. G. (1969). Scala naturae: Why there is no theory in comparative psychology. Psychological Review, 76(4), 337–350.

    Google Scholar 

  • Jacob, F. (1977). Evolution and tinkering. Science, 196(4295), 1161–1166.

    Google Scholar 

  • Karmiloff-Smith, A. (1992). Learning, development, and conceptual change. Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Karten, H. J. (1969). The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Annals of the New York Academy of Sciences, 167(1), 164–179.

    Google Scholar 

  • Klingenberg, C. P. (2005). Developmental constraints, modules, and evolvability. In B. Hallgrímsson & B. K. Hall (Eds.), Variation (pp. 219–247). Amsterdam: Elsevier Academic Press.

    Google Scholar 

  • Kolodny, O., Creanza, N., & Feldman, M. W. (2016). Game-changing innovations: How culture can change the parameters of its own evolution and induce abrupt cultural shifts. PLOS Computational Biolology, 12(12), e1005302.

    Google Scholar 

  • Kovac, L. (2000). Fundamental principles of cognitive biology. Evolution and Cognition, 6, 51–69.

    Google Scholar 

  • Kovac, L. (2006). Life, chemistry and cognition. EMBO Reports, 7(6), 562–566.

    Google Scholar 

  • Kovac, L. (2015). Closing human evolution: Life in the ultimate age. Dordrecht: Springer.

    Google Scholar 

  • Krakauer, D., Bertschinger, N., Olbrich, E., et al. (2014). The information theory of individuality. arXiv:1412.2447.

  • Krakauer, D. C., Page, K. M., & Erwin, D. H. (2009). Diversity, dilemmas, and monopolies of niche construction. The American Naturalist, 173(1), 26–40.

    Google Scholar 

  • Laland, K. N., Matthews, B., & Feldman, M. W. (2016). An introduction to niche construction theory. Evolutionary Ecology, 30(2), 191–202.

    Google Scholar 

  • Laland, K. N., Odling-Smee, J., & Endler, J. (2017). Niche construction, sources of selection and trait coevolution. Interface Focus, 7(5). https://doi.org/10.1098/rsfs.2016.0147.

  • Laland, K. N., Sterelny, K., Odling-Smee, J., et al. (2011). Cause and effect in biology revisited: Is Mayr’s proximate-ultimate dichotomy still useful? Science, 334(6062), 1512–1516.

    Google Scholar 

  • Lewontin, R. C. (1983). Gene, organism and environment. In D. S. Bendall (Ed.), Evolution from molecules to men (pp. 273–285). Cambridge: Cambridge University Press.

    Google Scholar 

  • Lorenz, K. (1941). Kant’s Lehre vom Apriorischen im Lichte gegenwärtiger Biologie. Blätter für Deutsche Philosophie, 15, 94–125.

    Google Scholar 

  • Lorenz, K. (1965). Evolution and modification of behavior. Chicago: University of Chicago Press.

    Google Scholar 

  • Lorenz, K. (1996). The natural science of the human species: An introduction to comparative behavioral research. The “Russian manuscript” (1944–1948). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Lyon, P., & Opie, J. (2007). Prolegomena for a cognitive biology. In Proceedings of the 2007 meeting of International Society for the History, Philosophy and Social Studies of Biology, University of Exeter.

  • MacLean, P. D. (1974). A triune concept of the brain and behavior. Toronto: University of Toronto Press.

    Google Scholar 

  • MacLean, P. D. (1990). The triune brain in evolution: Role in paleocerebral functions. New York: Plenum Press.

    Google Scholar 

  • Margulies, D. S., Ghosh, S. S., Goulas, A., et al. (2016). Situating the default-mode network along a principal gradient of macroscale cortical organization. Proceedings of the National Academy of Science, 113(44), 12574–12579.

    Google Scholar 

  • Mayr, E. (1961). Cause and effect in biology. Science, 134(3489), 1501–1506.

    Google Scholar 

  • Mesoudi, A., & Thornton, A. (2018). What is cumulative cultural evolution? Proceedings of the Royal Society B: Biological Sciences, 285(1880). https://doi.org/10.1098/rspb.2018.0712.

  • Mitteroecker, P. (2018). How human bodies are evolving in modern societies. Nature Ecology & Evolution, 3(3), 324–326.

    Google Scholar 

  • Mitteroecker, P., Huttegger, S., Fischer, B., & Pavlicev, M. (2016). Cliff edge model of obstetric selection in humans. Proceedings of the National Academy of Sciences, 113(51), 14680–14685.

    Google Scholar 

  • Newman, S. A. (1992). Generic physical mechanisms of morphogenesis and pattern formation as determinants in the evolution of multicellular organization. Journal of Bioscience, 17(3), 193–215.

    Google Scholar 

  • Northcutt, R. G. (1981). Evolution of the telencephalon in non-mammals. Annual Review of Neuroscience, 4(1), 301–350.

    Google Scholar 

  • Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: The neglected process in evolution (MPB-37). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Petanjek, Z., Judaš, M., Šimić, G., et al. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences, 108(32), 13281–13286.

    Google Scholar 

  • Pigliucci, M., & Müller, G. B. (2010). Evolution—The extended synthesis. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Popper, K. R. (1979). Objective knowledge: An evolutionary approach. Oxford: Clarendon Press.

    Google Scholar 

  • Rescher, N. (1990). A useful inheritance: Evolutionary aspects of the theory of knowledge. Savage, MD: Rowman & Littlefield Publishers Inc.

    Google Scholar 

  • Riedl, R. (1978). Order in living organisms: A systems analysis of evolution. New York: Wiley.

    Google Scholar 

  • Roth, G. (2015). Convergent evolution of complex brains and high intelligence. Philosophical Transactions of the Royal Society: Biological Sciences, 370(1684). https://doi.org/10.1098/rstb.2015.0049.

  • Rutten, G.-J. (2017). The Broca-Wernicke doctrine. A historical and clinical perspective on localization of language functions. Basel: Springer International Publishing.

    Google Scholar 

  • Shannon, C. (1948). A mathematical theory of communication. Bell Systems Technical Journal, 27, 379–423, 623–656.

  • Skyrms, B. (2010). Signals: Evolution, learning, and information. Oxford: Oxford University Press.

    Google Scholar 

  • Smith, J. M. (2000). The concept of information in biology. Philosophy of Science, 67(2), 177–194.

    Google Scholar 

  • Smith, J. M., Burian, R., Kauffman, S., et al. (1985). Developmental constraints and evolution: A perspective from the Mountain Lake conference on development and evolution. The Quarterly Review of Biology, 60(3), 265–287.

    Google Scholar 

  • Star, S. L. (1989). Regions of the mind: Brain research and the quest for scientific certainty. Stanford: Stanford University Press.

    Google Scholar 

  • Stotz, K., & Griffiths, P. (2017). Biological information, causality, and specificity: An intimate relationship. In S. Walker, P. Davies, & G. Ellis (Eds.), From matter to life: Information and causality (pp. 366–390). Cambridge: Cambridge University Press.

    Google Scholar 

  • Stout, D., & Hecht, E. (2017). Evolutionary neuroscience of cumulative culture. Proceedings of the National Academy of Science, 114(30), 7861–7868.

    Google Scholar 

  • Striedter, G. F. (1999). Homology in the nervous system: Of characters, embryology and levels of analysis. In G. R. Bock & G. Cardew (Eds.), Novartis foundation symposium (Vol. 222, pp. 158–172). Hoboken, NJ: Wiley.

    Google Scholar 

  • Striedter, G. F. (2004). Brain evolution. In G. Paxinos & J. K. Mai (Eds.), The human nervous system (pp. 3–21). Amsterdam: Elsevier.

    Google Scholar 

  • Striedter, G. F. (2005). Principles of brain evolution. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Thagard, P. (1980). Against evolutionary epistemology. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, Vol. 1: Contributed Papers, 187–196.

  • Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Tribus, M., & McIrwine, E. C. (1971). Energy and information. Scientific American, 225(3), 179–190.

    Google Scholar 

  • Van Duijn, M., Keijzer, F., & Franken, D. (2006). Principles of minimal cognition: Casting cognition as sensorimotor coordination. Adaptive Behavior, 14(2), 157–170.

    Google Scholar 

  • Van Schaik, C. P., Isler, K., & Burkart, J. M. (2012). Explaining brain size variation: From social to cultural brain. Trends in Cognitive Science, 16(5), 277–284.

    Google Scholar 

  • Walker, S. I., & Davies, P. C. W. (2013). The algorithmic origins of life. Journal of the Royal Society, Interface, 10(79). https://doi.org/10.1098/rsif.2012.0869.

  • West-Eberhard, M. J. (1989). Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics, 20(1), 249–278.

    Google Scholar 

  • Worden, R. P. (1995). A speed limit for evolution. Journal of Theoretical Biology, 176(1), 137–152.

    Google Scholar 

  • Wuketitis, F. M. (1990). Evolutionary epistemology and its implications for humankind. New York: State University of New York Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Sarto-Jackson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarto-Jackson, I. Converging Concepts of Evolutionary Epistemology and Cognitive Biology Within a Framework of the Extended Evolutionary Synthesis. J Gen Philos Sci 52, 297–312 (2021). https://doi.org/10.1007/s10838-019-09479-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10838-019-09479-1

Keywords

Navigation