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Abstract 

This study explored the conceptual basis for the cardinal principle of counting. 

The Give-N task was used to separate 73 2- to 4-year-olds into children who could give 

the right number of items for only a subset of the numerals in their count list (“subset-

knowers”) and children who could give the right number for all numerals tested ("high-

numeral knowers"). Performance on two novel tasks supported the hypothesis that only 

the high-numeral-knowers understand how counting implements the successor function.  

Other tasks established that subset-knowers have good procedural competence with 

counting, and that a high percentage of subset-knowers know that the last word reached 

in a count is the appropriate answer to a “how many?” question.  The results add to a 

body of literature detailing the many steps involved in working out how counting 

represents natural number. 
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How Counting Represents Number:  What Children Learn and When 

It seems uncontroversial to say that some children know how to count and others 

don't. But how to tell them apart? If knowing how to count just means reciting the 

numeral
1
 list (i.e., "one, two, three . . . ") up to "five" or "ten,” perhaps pointing to one 

object with each numeral, then many two-year-olds count very well (Baroody & Price, 

1983; Briars & Siegler, 1984; Fuson, Richards, & Briars, 1982; Fuson, 1988; Gelman & 

Gallistel, 1978; Miller & Stigler, 1987; Schaeffer, Eggleston, & Scott, 1974). That kind 

of counting is good for marking time (e.g., close your eyes and count to ten . . .) or for 

playing with one’s parents, but reciting the alphabet or playing patty-cake would do just 

as well. The thing that makes counting different from reciting the alphabet or playing 

patty-cake is that only counting tells you the number of things in a set.  

Of course, counting only tells you this if you do it correctly, following the three 

'how-to-count' principles identified by Gelman and Gallistel (1978). These are: The one-

to-one principle, which says that “in enumerating (counting) a set, one and only one 

[numeral] must be assigned to each item in the set.” (p. 90); the stable-order principle, 

which says that “[Numerals] used in counting must be used in the same order in any one 

count as in any other count.” (p. 94); and the cardinal principle, which says that “the 

[numeral] applied to the final item in the set represents the number of items in the set.” 

                                                 

1
 The words “one, two, three, . . .” etc. are commonly called “number words” in 

the psychological literature and “numerals” in linguistics. We prefer “numeral” because it 

means a symbol for an integer, whereas many other words (e.g., few, several, many, etc.) 

convey information about number, and so could be considered “number words.” 
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(p. 80).  

As Gelman and Gallistel pointed out, so long as the child's counting obeys these 

three principles, the numeral list ("one," "two," "three,". . .  etc.) represents the cardinal 

numbers 1, 2, 3, . . .  etc., as generated by the successor function.  If numeral “n” 

represents cardinality n, then the next numeral on the list represents the cardinality “n + 

1,” which is the successor of n.  The counting principles are what make counting 

equivalent to saying “one” (and one is) “two” (and one is) “three” . . . 

In their 1978 book, Gelman and Gallistel argued that even two-year-olds honor 

these principles when counting, because the principles are intuitively understood and 

need not be learned. This view has come to be called the principles-first (or principles-

before-skills) view. 

Other studies, however, have failed to provide support for the principles-first 

hypothesis. For example, three-year-old children violate the one-one principle by 

skipping or double-counting items, or by using the same numeral twice in a count 

(Baroody & Price, 1983; Briars & Siegler, 1984; Frye, Braisby, Lowe, Maroudas, & 

Nicholls, 1989; Fuson, 1988; Miller, Smith, Zhu, & Zhang, 1995; Schaeffer et al., 1974; 

Wagner & Walters, 1982). Children also frequently violate the stable-order principle by 

producing different number-word sequences at different times (Baroody & Price, 1983; 

Frye et al., 1989; Fuson et al., 1982; Fuson, Secada, & Hall, 1983; Miller et al., 1995; 

Wagner & Walters, 1982). These findings have led many observers to conclude that the 

how-to-count principles, rather than being understood intuitively, are in fact learned 

gradually. This is known as the principles-after (or skills-before-principles) view. 

Of course, as Greeno et al. (1984) point out, children might make these mistakes 
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even if they do understand how counting represents number. Much more troubling for the 

principles-first hypothesis is evidence that young children do not understand the cardinal 

principle. That is, children do not seem to recognize that the last numeral used in 

counting tells the number of items in the set. One type of evidence comes from How-

Many tasks. The version used by Schaeffer et al. (1974) is typical:  

"Each child was asked to count the chips in a line of x poker chips, where x varied 

between 1 and 7. After the child had counted the chips, the line was immediately 

covered with a piece of cardboard and the child was asked how many chips were 

hidden. Evidence that he knew . . . [the cardinal principle] was that he could 

respond by naming the last [numeral] he had just counted." (p. 360)  

Studies using a How-Many task have found that many children respond incorrectly to the 

"how many" question even after they have counted the array correctly. When asked “how 

many,” children often try to count the set again, or (if prevented from recounting) either 

make no response or guess some numeral other than the last numeral in the count 

sequence (Frye et al., 1989; Fuson, 1992; Markman, 1979; Rittle-Johnson & Siegler, 

1998; Schaeffer et al., 1974; Wynn, 1990; Wynn, 1992). Moreover, some investigators 

have concluded that the How-Many task overestimates children’s knowledge, because 

some children actually do repeat the last numeral used in counting without (apparently) 

understanding that it refers to the cardinal value of the set—this superficial understanding 

has been called a 'Last-Word Rule' to distinguish it from the cardinal principle (Frye et 

al., 1989; Fuson, 1988). 

Conversely, supporters of the principles-first position argue that How-Many tasks 

generally demonstrate that children do understand the cardinal principle. They say that, if 
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anything, this type of task underestimates children’s knowledge, because it is 

pragmatically strange to ask “how many” immediately after counting (Gelman, 1993; 

Greeno et al., 1984). To demonstrate this, Gelman (1993) did a How-Many task with 

college undergraduates: "When we asked undergraduates a how-many question about 18 

blocks, all of them counted but only one bothered to repeat the last count word said. 

Repeats of the question elicited puzzlement, some recounting, and so forth . . . " (p. 80).  

In short, How-Many tasks seem to raise as many questions as they answer: What 

must a child know in order to succeed on a How-Many task? And how does that 

knowledge relate to other things the child knows about counting and number, such as the 

meanings of the numerals, or the how-to-count principles?  

The Give-N task provides a different kind of evidence that young children do not 

understand the cardinal principle. (This task is also called "Give-a-Number" by Wynn, 

1990, 1992 and others; "Give-me-X" by Frye et al., 1989; and “Make a set of N” by 

Fuson, 1988). In this task, the child is asked to create a set with a particular number of 

items. For example, the experimenter might ask the child to "Give two lemons" to a 

puppet. (In a slightly different version of the task, Schaeffer et al., 1974 asked children to 

tap a drum n times.) Studies using these tasks have found that children are often unable to 

create sets for numerals that are well within their counting range. (E.g., many children 

who can count to “five” cannot create sets of five objects.) 

Levels of Performance on the Give-N Task  

In addition to providing evidence that young children do not understand the 

cardinal principle, Give-N studies have yielded a detailed picture of the learning pattern 

for numeral meanings. It turns out that a child’s performance on the Give-N task goes 
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through a series of predictable levels, found in a longitudinal study by Wynn (1992) and 

in several cross-sectional studies (Condry & Spelke, in press; Le Corre, Van de Walle, 

G., Brannon, & Carey, 2006; Le Corre & Carey, in press; Sarnecka & Gelman, 2004; 

Sarnecka, Kamenskaya, Yamana, Ogura, & Yudovina, in press; Schaeffer et al., 1974; 

Wynn, 1990). These performance levels are found in child speakers of Japanese 

(Sarnecka et al., in press) Mandarin Chinese (Le Corre, Li, & Jia, 2003; Li, Le Corre, 

Shui, Jia, & Carey, 2003) and Russian (Sarnecka et al., in press) as well as English.  

The developmental pattern is as follows. At the earliest level, the child makes no 

distinctions among the meanings of different numerals. On the Give-N task, she may 

always give one object to the puppet or she may always give a handful, but the number 

she gives is unrelated to the numeral requested. A child at this level can be called a ”no-

numeral-knower,” for she has not yet assigned numerical meaning to any of the numerals 

in her count list (i.e., the list of numerals that she has memorized). 

At the next level (which most English-speaking children reach by age 2-1/2 to 3 

years) the child knows only that “one” means one. On the Give-N task, she gives one 

object when asked for “one,” and she gives two or more objects when the request is made 

with any other numeral. This is the “one”-knower level.  

Some months later, the child becomes a “two”-knower, for she learns that “two” 

means two. At that point, she gives one object when asked for “one,” and two objects 

when asked for “two,” but she does not distinguish among the numerals “three,” "four," 

"five," etc. For any of those numerals, she simply grabs some objects and hands them 

over. This is followed by a “three”-knower level, and some studies also report a “four”-

knower level. Collectively, children at these levels have been termed “subset-knowers” 
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(Le Corre et al., 2006; Le Corre & Carey, in press) because although most of them have 

memorized the numeral list up to “ten” or higher, they can generate sets to match only a 

subset of those numerals.  

After the child has spent some time (often more than a year) as a subset-knower, 

she moves on to the next level. Now she is able to generate the right set for a numeral (on 

the Give-N task) or the right the numeral for a set (on the ‘What's-On-This-Card’ task, 

Gelman, 1993; Le Corre et al., 2006) for the numerals "five" and above. But whereas she 

progressed through the subset-knower levels gradually (learning "one," then "two," then 

"three" . . . ) she seems to acquire the meanings of the higher numerals ("five" through 

however high she can count) all at once. We will call children at this level high-numeral-

knowers. 

Within-child consistency on a wide variety of tasks suggests that high-numeral-

knowers differ qualitatively from subset-knowers.  For example, a “two”-knower is, by 

definition, unable to give a puppet three or more items on the Give-N task. But a "two"-

knower is also (a) unable to fix a set when told for example, "Can you count and make 

sure you gave the puppet three toys? . . . But the puppet wanted three-- Can you fix it so 

there are three?" (Le Corre et al., 2006) (b) unsure whether a puppet who has counted out 

seven items has produced a set of “seven” (Le Corre et al., 2006); (c) unable to point to 

the card with “three” apples, given a choice between a card with 3 and a card with 4 

(Wynn, 1992); and (d) unable to produce the numeral "three" when presented with  a set 

of 3 items on a card (Le Corre et al., 2006). High-numeral-knowers succeed across the 

board on these tasks. 

Qualitative differences in the counting behavior of subset-knowers and high-
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numeral-knowers strongly suggest that what ultimately separates these groups is 

knowledge of the cardinal principle. Most conspicuously, subset-knowers do not use 

counting to generate sets on the Give-N task, whereas high-numeral-knowers do (an 

observation that led Wynn, 1990, 1992 to call subset-knowers "grabbers," and high-

numeral-knowers "counters").  

What Do High-Numeral-Knowers Know? 

According to the principles-after view, the difference between high-numeral-

knowers and subset-knowers is that high-numeral-knowers have induced how counting 

implements the successor function (i.e., the function that generates each integer by 

adding 1 to the integer before it) whereas subset-knowers have not.  Carey (2004), 

Hurford (1987) and Klahr (Klahr & Wallace, 1976; 1984) develop closely related 

proposals for a learning mechanism that could achieve this feat. But this hypothesis about 

the fundamental difference between high-numeral-knowers and subset-knowers has never 

been directly tested, and it is this gap in the literature the present study is designed to 

close.  

If children know how counting represents the successor function, they should 

understand two things. (1) The direction of numerical change: The numeral that denotes 

cardinality N+1 will be somewhere after the numeral denoting cardinality N in the 

numeral list. (2) The unit of numerical change: The numeral for cardinality N+1 must be 

the very next numeral in the list after the numeral for cardinality N. 

The Present Study 

We devised two simple measures (the Direction task and the Unit task) to tap 

children’s understanding of how the direction and unit of numerical change are 
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represented by moving forward or backward along the numeral list. If the real difference 

between high-numeral-knowers and subset-knowers is that high-numeral-knowers have 

induced how counting implements the successor function, then high-numeral-knowers 

should succeed at these two tasks and subset-knowers should fail.  If subset-knowers and 

high numeral-knowers differ in some other way, then the two groups should not be 

distinguishable by their performance on the Direction and Unit tasks.  These tasks are 

especially suitable because they involve addition and subtraction from sets, which 

according to Gelman and colleagues is the best way to reveal children’s conceptual 

competence with respect to number representation (Cordes & Gelman, 2005; Zur & 

Gelman, 2004).   

We also devised a How-Many task that circumvents the pragmatic oddness of 

asking the child to say how many items there are in a set they have just counted.  The 

experimenter counted a set the child could not see, and then asked the child to say how 

many there were in the set.  This task allowed us to assess when children learn a last-

word rule (i.e., a rule saying that the answer to a “how many?” question is the last word 

in a count) and how mastery of this rule relates to knowledge of the cardinal principle as 

assessed by Give-N.  

The strategy of the present study thus involved testing each child on six different 

tasks. First, the Give-N task was used to divide children into no-numeral-knowers, 

subset-knowers (“one,” “two,” “three” and “four”-knowers) and high-numeral knowers 

who can give the puppet up to “six” items when requested. Next, two tests of counting 

fluency (the Sequence and Correspondence tasks) were included to provide a baseline 

measure of the child's mastery of the numeral sequence and standard counting procedure. 
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Then, the Last-Word task was used to probe for a last-word rule as described by Fuson 

(1988) and Frye et al. (1989). Finally, two new tasks (the Direction and Unit tasks) tested 

whether children knew that (a) adding an element to a set requires going forward in the 

numeral list to represent the number in the resulting set, while subtracting requires going 

backward (the Direction task) and (b) it is the next numeral that represents the set if 1 

item has been added and the numeral after that if 2 have been added (the Unit task).  

Method 

Participants 

Participants included 73 children (28 boys, 45 girls), ranging in age from 2 years, 

10 months to 4 years, 3 months (mean age 3-6). All children were monolingual and 

native speakers of English. Approximately half the children (38 out of 73) were recruited 

by mail and phone using public birth records in the greater Boston, Massachusetts area. 

These children were tested at a university child development laboratory. Parents who 

brought their children in for testing received reimbursement for their travel expenses and 

a token gift for their child. The other 35 children were recruited and tested at university-

affiliated or private child-care centers in Irvine, California.  

Parents received a token gift when they signed their child up for participation; 

preschools received gift certificates to a children’s bookstore and cognitive development 

seminars for their staff. Families were not asked about their ethnicity, household income, 

or education, but participants were presumably representative of the middle-class, 

predominantly European-American and Asian-American communities in which they 

lived. The two samples (Massachusetts and California) did not differ significantly in age 

or in proportion of girls to boys. 
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Children were tested in one or two sessions, depending on their willingness to 

keep playing. In order for a child’s data to be included, she had to complete at least three 

of the six tasks in the study. Three additional children (two girls, ages 32 months and 40 

months; and one boy, age 38 months) were tested but asked to stop playing before they 

completed three tasks. These children’s data were excluded. 

Tasks 

Give-N task (Frye et al.,1989; Wynn, 1990, 1992). The purpose of this task was to 

determine which numerals the child knew the exact meanings of. How a child performed 

on this task determined her ‘knower-level’ (i.e., “one”-knower, “two”-knower, high-

numeral-knower, etc.). Materials for this task included a green dinosaur puppet (approx. 

24 cm tall and 24 cm in circumference), a blue plastic plate (approx. 11 cm in diameter), 

and 15 small plastic lemons (approx. 2 x 3 cm each). To begin the task, the experimenter 

placed the puppet, plate, and lemons on the table and said, “In this game, you will give 

things to the dinosaur, like this.” (The experimenter mimes placing something on the 

plate, then slides the plate over to the puppet.) Requests were of the form “Can you give 

one lemon to the dinosaur?” After the child responded to each request, the experimenter 

asked the follow-up question, of the form “Is that one?” If the child said no, the original 

request was restated (e.g., “Can you give the dinosaur one lemon?"), followed again by 

the follow-up question (e.g., "Is that one?"). This continued until the child affirmed that 

the dinosaur had the requested number of objects.  

All children were first asked for one lemon, then three lemons. Further requests 

depended on the child’s earlier responses. When a child responded correctly to a request 

for N, the next request was for N+1. When she responded incorrectly to a request for N, 
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the next request was for N-1. The requests continued until the child had at least two 

successes at a given N (unless the child had no successes, in which case she was 

classified as a no-numeral-knower) and at least two failures at N+1 (unless the child had 

no failures, in which case she was classified as a high-numeral-knower). 

The highest numerals requested were "five" and "six." It was important to include 

the numeral "five" because earlier studies have reported that children who can generate 

sets of five in the Give-N task are "counters" rather than "grabbers" (Wynn, 1990) or 

"CP-knowers” rather than "subset-knowers" (Le Corre & Carey, in press; Le Corre et al., 

2006). But early testing showed that a handful of lemons for many of the children 

happened to be five, meaning that they often generated sets of five just by chance. Also, 

we reasoned that "four"-knowers might be likely to generate sets of five just by adding 

lemons to the plate until the set size was bigger than they could name. For these reasons, 

we requested "five" and "six" in alternation (i.e., all children who received two high-

numeral requests got one request for "five" and another for "six"). 

A child was credited with knowing a given numeral if she had at least twice as 

many successes as failures for that numeral. Failures included either giving the wrong 

number of items for a particular numeral N, or giving N items when some other numeral 

was requested.  The highest numeral each child succeeded at determined her knower-

level. (For example, children who succeeded at “one” and “two,” but failed at “three” 

were called “two”-knowers.) Children who had at least twice as many successes as 

failures for high-numeral trials (i.e., trials of "five" and "six") were called high-numeral-

knowers.  

Sequence task. This task measured the child’s knowledge of the numeral up to 
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“ten.” To begin the task, the experimenter said, "Let's count. Can you count to ten?" If the 

child did not immediately start counting, the experimenter said, "Let’s count together. 

One, two, three, four, five, six, seven, eight, nine, ten. OK, now you count." Each child's 

score reflects the highest numeral she reached without errors. For example, a child who 

counted "one, two, three, four, five, six, seven, nine, ten" counted correctly to 'seven,’ 

and so received that score. Children were allowed to start over if they asked to, or if they 

did so spontaneously, but they were not told to start over by experimenters. For children 

who counted more than once, only their best count was used.  

Correspondence task. This task measured the child’s skill at tagging objects in 

one-to-one correspondence with the numeral list. Materials included two cork boards (36 

cm x 12.5 cm) and a set of large, brightly colored push pins (2.5 cm across). One cork 

board contained an array of five push pins, the other contained ten; the pins were evenly 

spaced and arranged in a straight line. To begin the task, the experimenter presented the 

array and said "Now show me how you count these." The array of five was always 

presented first, followed by the array of ten. Each child's score reflects the highest 

number of items she was able to count without skipping or double-counting. No errors 

were allowed on the array of five; a maximum of one error was allowed on the array of 

ten (i.e., a child who made only one skip or double-count error on the array of ten still 

received a score of ten). Children were allowed to start over if they asked to, or if they 

did so spontaneously, but they were not told to start over. For children who counted an 

array more than once, only their best count was used.  

Last-Word task. This task probed children's responses to a how-many question 

following a standard count by an adult. Materials for this task included three picture cards 
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(approx. 23 cm x 7 cm) each depicting a row of items (three peppers, each 7 x 7.5 cm; 

five onions, each 5 x 5 cm; and seven tomatoes, each 2.5 x 2.5 cm). The task was 

introduced as follows: The experimenter held the picture of three peppers facing away 

from the child, so that the child could not see it. The experimenter said, "I have a picture 

of some peppers here, and I'm going to count them. You try to guess how many peppers 

are in the picture by listening to my counting. Ready? One, two, three. OK, how many 

peppers?" The first trial was a training trial. The experimenter showed the card to the 

child afterward and commented on the child's answer (e.g., "That's right! It was three 

peppers." or "Oops, it was actually three peppers. Good try, though."). The point of this 

training trial was to demonstrate how the game worked, and to show that the 

experimenter had counted in a standard way (i.e., the experimenter was not 'tricking' the 

child by counting wrong). 

Next, the test trials (using the pictures of five and seven items) were presented in 

counterbalanced order. On these trials, the child received mildly positive feedback (e.g., 

“okay”) regardless of her answer, and was not allowed to see the cards after answering.  

Direction task. The purpose of this task was to find out whether the child 

understood that moving forward in the numeral list represents adding items to a set, 

whereas moving backward in the list represents subtracting items. Materials included two 

clear plastic plates (approx. 23 cm in diameter) and four small plastic tubs. Each tub 

contained 12 small objects, six of one color and six of another color (light blue and 

magenta hair bands, green and orange jacks, red and purple bears, or yellow and dark 

blue dragonflies). Order of item presentation was randomized by allowing the child to 

choose the set of items for each trial. The experimenter began each trial by placing either 
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five or six items of the same color on each plate, saying for example, "OK, I'm putting 

FIVE bears on here, and FIVE bears on here . . . so this plate has five, and this plate has 

five." Then the experimenter moved one item from one plate to the other, saying, "And 

now I'll move one." In this example, one of the plates would now contain four red bears, 

and the other would contain five purple bears and one red bear. Next the experimenter 

would say "OK, now there's a plate with FOUR, and a plate with SIX. And I'm going to 

ask you a question about the plate with SIX. Are you ready? Which plate has SIX?" Each 

child received four trials: Two trials started with five items per plate, one trial asked 

about "four," the other about six"; the other two trials started with six items per plate, one 

asked about "five," the other about "seven." Each trial was scored correct or incorrect. 

Unit task. The purpose of this task was to find out whether the child understood 

that the unit of numerical increase represented by moving from one numeral to the next 

on the list is exactly one item.  Specifically, this task tests whether children know that 

moving forward one word in the list means adding one item to the set, whereas moving 

forward two words in the list means adding two items to the set. Materials for this task 

included a wooden box (17.5 x 12.5 x 5 cm) and six small plastic tubs. Each tub 

contained seven identical toys (frogs, bananas, worms, sea horses, fish, or rabbits). Order 

of item presentation was randomized by allowing the child to choose the tub for each 

trial.  

The experimenter began the trial by placing a number of items in the box, saying 

for example, "OK, I'm putting FOUR frogs in here." Then the experimenter closed the 

box and asked the memory-check question "How many frogs?" If the child did not 

answer the memory-check question correctly (e.g., “four”), the experimenter said, "Oops, 
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let's try again" and repeated the beginning of the trial. After the child answered the 

memory-check question correctly, the experimenter said "Right! Now watch . . . " and 

added either one or two more items. Then the experimenter asked the test question, of the 

form, Now is it N+1, or N+2? (e.g., "Now is it FIVE, or SIX?") Each child received two 

warm-up trials (1+1 item and 1+2 items) followed by four test trials (4+1, 4+2, 5+1, and 

5+2) in counterbalanced order. For the trials beginning with one item, the test question 

was "Now is it TWO, or THREE?" For the trials beginning with four items, the question 

was "Now is it FIVE, or SIX?" For the trials beginning with five items, the question was 

"Now is it SIX, or SEVEN?" No feedback was given after any of the trials, although 

children could see the contents of the box when the experimenter opened it to return the 

items to their tub. Each trial was scored correct or incorrect. 

Order of tasks  

Order of tasks was randomized in the following way. The materials for each task 

were placed inside a large, opaque drawstring bag. (The Sequence, Correspondence, and 

Last-Word tasks were grouped together in one bag.) Each bag was a different color (red, 

blue, green or yellow). At the beginning of the session, the child was asked, “What game 

should we play first?” and was given a choice of the four bags. The child chose a bag 

(without looking inside it), and the experimenter did the task in that bag. When the task 

was done, the child was allowed to choose from the three remaining bags, and so forth. 

For 42 of the children, all the tasks were presented in this way. The other 31 children 

completed the Give-N task during one session as part of a larger project, and completed 

the other five tasks (Sequence, Correspondence, Last-Word, Direction, and Unit) during a 

second session, no more than one week later (mean 4.6 days later.) 
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Results 

Merging of Massachusetts and California samples.  Initial analyses revealed no 

significant differences between the Massachusetts and California samples on any 

measure, so data were merged for the analyses reported here.   

Give-N task. This task measured children's knowledge of the exact meanings of 

the numerals "one" through "six"; children were sorted into knower-levels on the basis of 

their performance on this task. Figure 1 shows the age distribution of each knower-level.   

 

Of the 73 children tested, 36 (49.3%) were high-numeral-knowers. These children 

ranged in age from 2-11 to 4-3 (mean age 3-8). The remaining 37 children (50.7%) were 

subset-knowers, so designated because they knew numerical meanings for only a subset 

of the numerals on their count list. Subset-knowers ranged in age from 2-10 to 4-0 (mean 
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3-5). Breaking it down by knower-level, there were two no-numeral-knowers (ages 2-11 

and 3-3) and two “one”-knowers (ages 2-11 and 3-2); these groups were merged for 

analysis of performance on all other tasks (n = 4, mean age 3-1). There were also 14 

“two”-knowers (ages 2-10 to 4-0, mean 3-3); ten “three”-knowers (ages 2-11 to 4-0, 

mean 3-5); and nine “four”-knowers (ages 3-5 to 3-10, mean 3-7).  

Although we did not explicitly tell children to count, we did record whether or not 

children spontaneously counted out loud, either when giving lemons to the dinosaur or 

when answering the follow-up question, Is that N? Overall, high-numeral knowers were 

much more likely to count than subset-knowers, with 24 high-numeral-knowers (67%) 

counting aloud on at least one trial, whereas only 6 subset-knowers (16%) ever counted.  

The distribution of counting across trial types is also informative. Subset-knowers 

were equally likely to count on low-numeral trials (i.e., trials asking for numerals "one," 

"two," "three," or "four") and on high-numeral trials (i.e., trials asking for "five" or "six”). 

Specifically, two of the subset-knowers who ever counted did so only on a single low-

numeral trial; two  counted only on one or two high-numeral trials, and two counted on 

both low- and high-numeral trials. Interestingly, three of the four subset-knowers who 

ever counted on one or more high-numeral trials were "four"-knowers. (The other was a 

"three"-knower.) Although these four children tried to use counting to construct sets of 

five and six items, they were not able to use it successfully. (None of these children 

succeeded on more than one high-numeral trial, and all of them failed at least two high-

numeral trials – which is why they were classified as subset-knowers.)  

The high-numeral-knowers, on the other hand, either used counting on the high-

numeral trials only, or used it on both high- and low-numeral trials. (Unlike the subset-
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knowers, there was no high-numeral-knower who used counting only on low-numeral 

trials.) In fact, high-numeral-knowers were over six times more likely than subset-

knowers to use counting on high-numeral trials—counting aloud on 67% of high-numeral 

trials, as compared to the subset knowers' 11%. (Setting "four"-knowers aside, only 1 out 

of 28 no-numeral-knowers-through-"three"-knowers ever counted, making high-numeral-

knowers over 22 times more likely to count out large sets on the Give-N task than subset-

knowers.) 

Thus, our data find the same qualitative differences between high-numeral-

knowers and subset-knowers as have been reported in earlier studies (Le Corre & Carey, 

in press; Le Corre et al., 2006; Sarnecka & Gelman, 2004; Wynn, 1990, 1992). The unit 

and direction tasks (see below) address whether the difference between high-numeral -

knowers and subset-knowers is in fact that only high-numeral-knowers understand how 

counting implements the successor function. 

Sequence and Correspondence tasks. These tasks measured participants’ skill at 

producing the numeral list (Sequence task) and at pointing to and counting arrays of 

objects (Correspondence task). On both tasks, children in all groups performed at or near 

ceiling, meaning that they recited the numeral list up to ten, and also pointed to each 

object in an array once and only once. 

The mean score of all children on the Sequence task was 9.94 (range 8-10). The 

mean score and range of scores for each group (in order, beginning with the no-numeral-

knowers/”one”-knowers) were 10.00 (range 10-10); 9.75 (range 8-10); 9.90 (range 9-10); 

10.00 (range 10-10); and 10.00 (range 10-10), respectively.  

The mean score of all children on the Correspondence task was 9.32 (range 1-10). 
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The mean score and range of scores for each group (in order, beginning with the no-

numeral-knowers/”one”-knowers) were 8.75 (range 5-10); 9.07 (range 4-10); 8.80 (range 

3-10); 9.44 (range 5-10); and 9.61 (range 1-10), respectively. The median and modal 

scores for each group on both tasks were 10.0.  

All the children except two produced the numeral list up to 10 on at least one 

counting task. The exceptions were one "two"-knower (age 2-10) who produced the 

sequence up to 8, and one "three"-knower (age 4-0) who produced the sequence up to 9. 

Thus, every child was familiar with the portion of numeral sequence (i.e., "four-five-six-

seven") relevant to the other tasks in this study. This baseline measure should be kept in 

mind when considering the rest of the analyses. 

Last-Word task. The Last-Word task measured how often children answered a 

"how many" question with the last numeral of the experimenter’s count. This was an 

open-ended task—a child could answer with the correct numeral, with a different 

numeral, or with no numeral at all. Since children knew at least ten numerals, if they 

were providing a numeral response but otherwise answering at random, chance would 

conservatively be 10%.   

On the training trial (where the experimenter counted to three) 65 children (76%) 

correctly answered “three”; seven children (21%) produced some other numeral (answers 

ranged from "one" to "ten"), and one child (a "one"-knower) began counting out loud, 

starting at "one" and continuing until the experimenter stopped him at "twelve."  

After feedback was given on the training trial, each child received two test trials, 

(where the experimenter counted to five and seven) in counterbalanced order. Overall, 

children answered correctly 83% of the time. On the other 17% of trials, children either 
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responded with an incorrect numeral (13% of total trials) or counted aloud (4% of total 

trials). Children who counted always began at "one" and continued on past the target 

numeral—the exception was one trial where the experimenter had counted to "five" and 

the child also counted to "five" (i.e., parroted back what experimenter had said, word for 

word).  This child counted to "five" on the trial of seven as well.  

Breaking down performance by knower level: High-numeral-knowers almost 

always answered correctly (96% of trials). This was significantly higher than the subset-

knowers' overall success rate of 68%, t(67) = 3.53, p = .001; see Table 1. However, all 

subset-knowers did not perform alike. On the contrary, the data in Table 1 show that the 

most dramatic difference was between the “one”-knowers and the “two”-knowers (25% 

correct and 64% correct, respectively).  From “two”-knowers on, the success rate is 

always over 60%—the children were clearly not producing numerals at random.  

 

Table 1 

Results of Last-Word task 

Knower-Level n 

Both trials 

correct 

1 correct, 

1 incorrect 

Both trials 

incorrect 

Pre- & One-Knowers 4 0 2 2 

Two-Knowers 10 6 0 4 

Three-Knowers 10 8 2 0 

Four-Knowers 7 5 1 1 

High-Number-Knowers 36 34 1 1 
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As is also apparent from Table 1, most children either got both trials right (53 

children) or got them both wrong (8 children). It was relatively rare for a child to get one 

trial correct and the other incorrect.  Of course, the high-numeral-knowers usually got 

both trials correct, but even among the subset-knowers, only 5 children got 1 trial right 

and 1 trial wrong, whereas 19 children got both trials right and 7 children got both trials 

wrong. This error pattern makes sense if there is a rule (i.e., a last-word rule) that has 

been learned by some children and not others. It is not the pattern one would expect to 

see if all participants understand the relevant concepts but sometimes do not apply them 

because of procedural error. A constant, low level of error would make it much more 

likely for any given child to get one trial incorrect than to get both trials incorrect. 

To formally test these intuitions, we asked the following questions: 

(1) Does the rate of correct answers increase with knower-level or stay the same?  

(2) Is the rate of correct answering for each child essentially dichotomous (i.e., 

their probability of giving a correct answer is either very high or very low, so 

that they either get none right or both right)?  

We developed four models that expressed all four combinations of these two 

possibilities, and estimated the Bayes Factors between these four models (to decide 

which model best fit the data) using the computational method known as 'reverse jump 

Markov chain Monte Carlo'. Results are given in Table 2. It is clear that the 

Dichotomous-Increasing model is by far the best one, with all of the Bayes Factors 

exceeding the suggested scientific standards for 'very strong' evidence (see Kass & 

Raftery, 1995, p. 777). That is, this analysis suggests that children either knew or didn’t 

know the last-word rule, and that knowledge of the rule increased with knower-level.  



  How Counting Represents 25 

 

Table 2 

Bayes Factors between the four models, relative to the most likely Dichotomous- 

Increasing model. 

Model Bayes Factor Log Bayes Factor 

Dichotomous-Increasing 1 0 

Dichotomous-Same 9 x 10
8
 20.63 

Continuous-Increasing 1,966 7.58 

Continuous-Same 3 x 10
7
 17.21 

Note. Bayes Factors can be though of as betting ratios – e.g., the Continuous-Increasing 

model is 1,966 times less likely to be generated by the current data than the most likely 

Dichotomous-Increasing model. The Log Bayes Factors are included because they may 

be more familiar to some readers. 

 

Thus, we see that many young children have formulated the generalization that 

the last word reached in a count is the appropriate answer to the question “how many.” 

Furthermore, they apply this rule long before they demonstrate any understanding of 

cardinality on tasks that don’t use the phrase “how many?” such as Give-N. In the present 

study, most subset-knowers succeeded on the Last-Word task, but on the Give-N task 

were able to generate sets for only some and not all of the numerals in their count list.  

Direction task. This task measured children's understanding that counting forward 

in the numeral list represents adding items, whereas counting backward represents 
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subtracting items. A one-way ANOVA actually found no significant main effect of 

knower-level on Direction scores, F(4) = 1.54, p = .20. However, a series of planned 

comparisons based on the original hypotheses showed that no-numeral-knowers/“one”-

knowers, “two”-knowers and “three”-knowers all performed at chance, whereas “four”-

knowers and high-numeral-knowers performed significantly above chance, t(7) = 3.42, p 

= .01 and t(29) = 2.29, p = .03, respectively. "Four"-knowers and high-numeral-knowers 

still made many errors, indicating that the task is a difficult one. (See Figure 2.) 

 

 

 

These results indicate that part of what separates high-numeral-knowers from 
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subset-knowers is an understanding of the mapping between (a) the direction of 

movement along the numeral list and (b) the direction of change in the numerosity of a 

set. However, this can't be the whole story, because “four”-knowers succeed at the 

Direction task, but still don't use counting to solve the Give-N task (that's why they aren't 

high-numeral-knowers). Applying the cardinal principle must require some other piece of 

knowledge-- something that only the high-numeral-knowers know. 

Unit task. This task measured children's understanding that going forward one 

word in the number list means adding one item, whereas going forward two words means 

adding two items.  

In the first two (warm-up) trials, children were asked to judge whether a box that 

started with one item, and gained one or two more, had “two” items or “three.” No-

numeral-knowers and ”one”-knowers performed at chance; every other group (i.e., 

“two”-knowers, “three”-knowers, “four”-knowers, and high-numeral-knowers) 

performed significantly above chance, ps < .05. These results from the warm-up trials 

indicate first, that children were able to understand the directions and do the task, and 

second that children at and above “two”-knower level have concepts of “one” and “two” 

that support the inferences required by this task. (As indeed we would expect them to.) 

In the other four trials (“four” plus one, “four” plus two, “five” plus one and 

“five” plus two), a one-way ANOVA found a significant main effect of knower-level on 

Unit scores, F(4) = 3.91, p < .01. Planned comparisons based on the original hypotheses 

showed that no-numeral-knowers/”one”-knowers, “two”-knowers, “three”-knowers and 

“four”-knowers all performed at chance, whereas high-numeral-knowers performed 

significantly above chance, t(28) = 4.61, p < .001. This task, like the Direction task, was a 
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difficult one, and even the high-numeral-knowers' performance was far from perfect. (See 

Figure 3). 

 

 

 

These results suggest that what finally separates high-numeral-knowers from 

subset-knowers is an understanding of the unit of mapping between numerals and 

numerosities. Only high-numeral-knowers understand that going forward one word 

means adding one item; going forward two words means adding two items. In other 

words, the only children who know how (and when) to use counting in number-related 

problems like the Give-N task are those who understand (a) the mapping between 

direction of movement through the count list and direction of changes in numerosity, and 
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(b) the unit of change in numerosity signaled by movement from one numeral to the next 

on the list. 

General Discussion 

The jumping-off point for the present study was the (now well-established) 

observation that if you ask a two- to four-year-old child to give you various numbers of 

items (e.g., give me two blocks / give me one book / give me four crayons, etc.), that 

child's responses will fit the pattern for one of six knower-levels: No-numeral-knowers, 

"one"-, "two"-, "three"-, or "four"-knowers (i.e., subset-knowers), or high-numeral-

knowers. Performance at different knower-levels varies along two parameters: (1) the set 

sizes children can generate upon request, and (2) whether or not they use counting to do 

it. 

Why is it that some children (subset-knowers) can generate sets for only a few of 

the numerals in their count list (or none of them, in the case of no-numeral-knowers), 

while others generate sets for all the numerals we tested? And why is it that only the 

latter group uses counting (which seems the obvious way to solve the problem)? These 

are not original questions; they are the obvious questions to ask after observing the 

different levels of performance described here. But the present study brings new data to 

bear on these questions—replicating relevant findings from the literature and also 

presenting new findings from novel tasks designed specifically to answer the question: 

What is it, exactly, that high-numeral-knowers know? 

First, we sorted children into knower-levels, based on their ability to create sets of 

one to six items upon request. Our data confirmed previously published descriptions of 

knower-levels, both in the set sizes children could generate and in the fact that only high-
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numeral-knowers regularly used counting to solve the problem.   

Second, we tested children on two baseline measures of counting skill: Counting 

out loud up to ten (the Sequence task) and counting arrays of 5 and 10 objects (the 

Correspondence task). Of the 73 children tested, 71 counted to "ten" on at least one trial; 

every child in the study counted to "eight" or higher, indicating that they had mastered 

the numeral sequence in the range "four" through "seven" (the part of the sequence 

needed for the other tasks in the study). 

Third, we devised a task to probe for a superficial last-word rule. In our task, the 

experimenter counted a set the child could not see and then asked the child to guess how 

many were in the set. Since random responding (choosing a numeral from one’s count list 

at random) would lead to a probability of .1 or less, getting two responses correct cannot 

be due to chance. Virtually all of our high-numeral-knowers got both trials correct, but so 

did three-quarters of the “two,” “three”- and “four”-knowers, and a quarter of the no-

numeral-knowers. Clearly, knowledge of this rule is not equivalent to understanding the 

cardinal principle.  These findings confirm earlier reports by Fuson (1988) and by Frye, 

et al. (1989) that before children understanding how counting represents number, they 

learn a superficial last-word rule: the answer to a “how many” question is the last word 

reached in a count. 

Subset-knowers' relative success on our Last-Word task contrasts sharply with 

their complete failure on Le Corre et al.'s Counting Puppet task, which on the surface 

seems very similar. Le Corre’s task discriminated subset-knowers from what we are 

calling high-numeral-knowers. Le Corre’s participants knew that a character wanted, for 

example, six cookies. The puppet counted out 5 cookies and the child was asked “is that 
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six?”   Like our Last-Word task, the Counting Puppet task requires children to listen to an 

adult’s standard (never tricky or unconventional) count, and to make a judgment about 

the result of that count. The main difference is that our Last-Word task uses the phrase 

"how many" in the test question, and this is enough to prompt many children to repeat the 

last counting word, whether or not they know that it represents the numerosity of the 

whole set.  The Counting Puppet task, in contrast, can only be solved if the child realizes 

that the last word in a count (e.g., “five”) represents that the set contains five 

individuals—i.e., if the child understands the cardinal principle.  

Given that other studies have shown high within-child consistency across 

cardinality tasks including Give-N, the Counting Puppet task, What's-On-This-Card, etc. 

(Le Corre et al., 2006; Le Corre & Carey, in press; Wynn 1992), it seems fair to conclude 

that the Last-Word task overestimates cardinal-principle knowledge, rather than that 

Give-N and the other tasks all underestimate it. It would also seem prudent for future 

researchers wishing to assess children's cardinal-principle knowledge to avoid the phrase 

"how many." 

Although the last-word rule is not the cardinal principle, it is worth studying in its 

own right. Three informative findings from the present study's Last-Word task were that 

(a) the great majority of children either got both trials correct or neither of two trials 

correct, indicating that they either knew the rule or didn't know it; (b) most children had 

learned the rule by the time they were "two"-knowers; (c) when children answered 

incorrectly, they either produced a different numeral or (less commonly) produced the 

numeral list itself (i.e., counted out loud). 
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These facts suggest that children's interpretation of the phrase "how many" 

changes as their understanding of counting grows. The earliest interpretation is probably 

that "how many" is a prompt to count (i.e., to produce the numeral list that they have 

memorized – see Fuson, 1988 for related findings). Our Last-Word results suggest that 

children soon figure out that "how many" is a question to be answered with a numeral, 

but many do not know how to decide which one.  Most "two"-knowers and above even 

knew that "how many" should be answered with the last numeral used in counting—all 

this despite a preponderance of evidence showing that they do not understand how or 

why the last numeral used in counting denotes the numerosity of the set.  

Finally, the present study explored children's knowledge of how counting 

implements the successor function, and related this understanding to other measures of 

mastery of the cardinal principle.  The Direction and Unit tasks probed whether children 

knew that if you start with a set of "six" and add one, the resulting set has "seven," not 

"five" (the Direction task) and the resulting set has "seven," not "eight" (the Unit task). 

These results strongly support the hypothesis that high-numeral-knowers differ from 

subset-knowers in having worked out how counting represents natural numbers, as 

generated by the successor function.  No-numeral-, “one”-, “two” and “three”-knowers 

utterly failed both the Direction and Unit tasks, and only high-numeral-knowers 

succeeded at both. “Four”-knowers succeeded at the Direction task but failed the Unit 

task.  

The failure of the subset-knowers on both tasks is particularly telling.  The Unit 

and Direction tasks were each arithmetic tasks—individual items were added or 

subtracted from sets and the child was given a forced-choice decision as to the cardinal 
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value of the resulting set. Supporters of the principles-first position (Cordes & Gelman, 

2005; Zur & Gelman, 2004) have argued that arithmetic tasks elicit the highest level of 

numerical understanding in preschool children, and that because Give-N is not an 

arithmetic task, it underestimates children’s understanding of how counting represents 

number. However, the present study finds within-child consistency between Give-N and 

the Direction and Unit tasks, just as other studies have found within-child consistency 

between Give-N and other tests of cardinal-principle understanding. 

The success of “four”-knowers on the Direction task might be thought of in two 

ways.  First, some children classified as “four”-knowers on this task may well have had 

some fragile understanding of the cardinal principle.  “Four”-knowers are relatively rare 

in the literature (e.g., of the 87 2- to 4-year-old children in LeCorre et al.’s (2006) studies, 

8% were no-numeral-knowers, 15%, 18%, and 20% were “one”- “two”- and “three”-

knowers respectively, and 32% were high-numeral/CP-knowers, but only 7% were 

“four”-knowers), suggesting that children are “four”-knowers for only a short time before 

completing their construction of the cardinal principle.  

Second, working out how counting represents number is not accomplished in a 

single step.  Children learn the exact cardinal meanings of “one,” “two,” “three” and 

“four” before they become high-numeral/CP-knowers, and the present studies show that 

they learn a rule that the last word of a count answers a “how many” question as well.  

Sarnecka and Gelman (2004) showed that subset-knowers understand that numerals 

depict some precise cardinal value, but that they don’t know how to determine which 

value. It makes sense that children would work out the direction principle before the unit 

principle, for the latter presupposes the former.  The present studies suggest that finally 
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putting together the puzzle of how counting implements the successor function is indeed 

what turns a subset-knower into a high-numeral/CP-knower, but that “four”-knowers 

have almost all the pieces in place. 

The present study has tried to characterize some of the partial knowledge children 

have as they figure out how counting implements the successor function, and more 

importantly to identify subcomponents of cardinal-principle knowledge itself. 

Characterizing children's knowledge at various points in this process will in turn 

constrain the theories we build, as we attempt to understand a remarkable intellectual 

achievement—children’s discovery of how the verbal numerals represent natural 

numbers. 
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