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Imagine a little provincial train station south of Elea, which has its platform
divided into four equal sections, 1, 2, 3, 4. In fact it is so provincial that its sole
platform is only as long as the two major trains that pass through this station
every morning (they do not stop there any longer). These two trains move in
opposite directions, one going south, the Southern Express, the other going north,
the Northern Arrow. Both trains consist of one locomotive and three carriages,
all of equal length; and, as it happens, each carriage is of the same length as a
section of the platform. Since the two trains normally arrive at the same time,
they also pass each other in the station. And they travel with the same speed,
traversing one section in one second. Accordingly, if we look at the Southern
Express and the Northern Arrow at the moment when they are right in the middle
of the platform, that is, right before they start passing each other, we can say that
it will take the Southern Express two seconds to pass the remaining two sections
of the train station. Yet a person sitting in the Northern Arrow looking at the
Southern Express will see that his train passes the four sections of the Southern
Express during the same two seconds, so that the two trains will be aligned at the
end of the two seconds. But since one section was supposed to be passed in one
second, it seems that double the time (needed to traverse the 4 sections of the
Southern Express, which the Northern Arrow has passed) equals half the time
(needed to pass the 2 sections of the train station the Southern Express has
passed).1

This scenario is roughly what Zeno employs in his so-called ‘Moving Rows
Paradox’,2 a paradox that is handed down to us in Aristotle’s Physics. For the
secondary literature, this paradox is somewhat of a stepchild among Zeno’s para-
doxes of motion. It is often simply omitted in accounts of the four paradoxes,
while the other children of this group have enjoyed widespread popularity among
philosophers as paradigms of well set up and fruitful paradoxes. And the text of
the manuscripts is often considered to be simply a mess (e.g., Wagner in Aris-
toteles 1995, 639). Roughly speaking, there have been three main reactions to
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1 The idea of translating Zeno’s stadium into a train station setting was originally introduced in a
more limited version by Sorabji 1983. For the set-up of an ancient stadium cf. below.

2 Some scholars refer to this fourth paradox of motion as the ‘Stadium paradox’, a title that has,
however, also been used in order to refer to the first paradox of motion, viz., the paradox that in a
finite time a runner will never be able to reach the end of a finite race course (or cannot even get
started). I will use the title ‘Moving Rows’ for the fourth paradox of motion here in order to avoid any
confusion.
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this paradox in the scholarly literature: (a) one group thinks of it as weak and
uninteresting, since it presents no real paradox at all; (b) a second group consid-
ers it to be based on an oversight regarding some kind of relativity involved in
motion, though an understandable one; while (c) a third group thinks we can find
something of genuine philosophical interest in it, if the paradox is understood as
directed against a rather limited target, namely, against atomism.

I aim to show that none of the secondary literature so far has given the right
diagnosis of the paradox; and that once we see what is really the problem the
paradox alerts us to, we can also value it as a generally interesting paradox: as a
paradox that is neither a mere oversight on Zeno’s part, nor directed solely
against a limited (and perhaps, at Zeno’s time, not even existent) group of
philosophers. With this new analysis in place, we can see that the paradox raises
a significant and by no means trivial problem concerning the relationship
between time, space, and motion. My new diagnosis will also make it clear why
Zeno has to employ such elaborate machinery in order to bring out the point this
paradox aims to make, machinery that has led to quite some puzzlement among
Zeno’s readers (and to confusion among the scribes).

So I attempt to give (α) a new diagnosis of the paradox, which (β) should lead
us to a new evaluation of it. (α) I argue that the paradox rests on the assumption
that the time of a motion depends directly on the distance covered, in the sense
that the distance covered is the only relevant factor for determining the time
taken. While this assumption is false, it is in the immediate neighbourhood of a
true one—that the time of a motion is correlated with the distance covered, so
that the distance covered is one, but only one factor for determining the time.
What makes it difficult to see that this is the problematic assumption on which
the paradox rests is that, first, for many situations the false assumption, precisely
because it is in the neighbourhood of a true one, gets the correct results; and, sec-
ond, that it is difficult to formulate precisely how time and space are correlated. 

As for the first difficulty, let me give an example that shows that there are ordi-
nary situations where we do indeed rely on the distance covered as the only fac-
tor determining the time required for a motion. Let us assume you live 20
kilometres from your workplace and it usually takes you 20 minutes to get there.
Now you tell me you are thinking of moving to another house that will be 40
kilometres away from your workplace. Chances are that I then conclude that it
will now take you 40 minutes to work, so that I am actually relying on the dis-
tance as the only factor determining the time it takes you to work. Suppose you
tell me, however, that if you move it will still take you 20 minutes to get to work
(unbeknownst to me, there is a motorway close to the new house, so that you will
be able to cover the 40 kilometres in the same 20 minutes). I may be puzzled at
first that what seemed to me double the time turns out to be half the time, that is,
half the time I expected it would take you to get to work. We see that the false
assumption is a plausible default assumption on which we routinely rely, espe-
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cially when other information is lacking.3 Zeno’s paradox very clearly spells out
the problematic consequences reliance on this false assumption can have in cer-
tain situations. 

As for the second difficulty, that it is difficult to formulate precisely how time
and space are correlated, Aristotle’s treatment of the paradox will be evidence
that even if it seems clear that something is wrong with the account given in
Zeno’s paradox, it is not easy to say what would be the right account to give
instead—we shall see that this requires an understanding of motion as a certain
correlation of time and space that we do not find in ancient times. So Zeno’s
paradox is exploiting not only that we often rely on the false assumption, but also
that is not easy to spell out the right one.

(β) The exact evaluation resulting from this analysis depends on what we think
the criteria for a good paradox to be. There are several possible criteria we may
employ: we may claim a paradox is good only if no solution seems possible, or if
no solution so far has been found. Or we may think it is enough for a good para-
dox in case it is convincing that people employ the (apparently plausible but in
fact problematic) assumptions it relies on and a solution is not simply obvious,
irrespective of whether we have an agreed upon resolution. I would count the
Moving Rows paradox as a good paradox in the last sense (though we do not
have an agreed upon resolution for this paradox so far, since we do not have an
agreed upon diagnosis). But in any case I hope my reconstruction clearly shows
that it is an interesting paradox, in the sense in which we take the other paradoxes
of motion to be interesting paradoxes, without this necessarily meaning that we
fall prey to it. It can be understood as a kind of challenge to formulate the true
assumption that the false assumption is in the neighbourhood of.

The problem raised by this paradox can be demonstrated to connect it with the
first two of Zeno’s motion paradoxes. These two paradoxes not only bring up the
problem how a finite distance can contain infinitely many parts, but also how the
infinitely many spatial parts can be covered in a finite time, and thus how the
time and the space of a motion are related. Together the four paradoxes of motion
raise many of the most important problems with conceptualizing motion in
ancient times, problems that Aristotle attempts to solve in his Physics.4 However,
here I will have to leave out the connection of the Moving Rows paradox to the
other paradoxes. I will begin with a quick textual reconstruction of the paradox of
the Moving Rows before sketching the main philosophical problem the paradox
raises on my interpretation. I will finish with demonstrating that none of the three
kinds of interpretations on offer in the secondary literature so far provides us
with an adequate account of the paradox.
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3 Information, that is, on varying or constant speed, on uniformity or non-uniformity of motion.
However, when pressed we may not assert that distance is the only factor relevant to determining the
time taken.

4 The aim of Zeno’s paradoxes seems to me to be, as Plato first suggested, to support the position
of Parmenides. However, this is a point that is independent of the specific interpretation of Zeno’s
paradox I am presenting, and thus I will not go into it here.



I. Reconstruction of Zeno’s Paradox
There is one respect in which the the bad press concerning this paradox is

absolutely right—the text is indeed a big mess; prima facie it seems even beyond
recovery. While I think it is indeed possible to produce a defensible text, doing so
is a different project, and I have tried to do this elsewhere. I will therefore pass
over most of the philological difficulties here. For our present purposes we will
follow manuscripts H and F for the most part.5 In addition, we will build on the
fact that most people agree on the starting and end position. And we will assume,
employing a principle of charity, that the paradoxical result—double the time
equals half the time—has to be derived from the starting and end position follow-
ing plausible and thus seemingly correct reasoning. With this in mind, consider
Zeno’s paradox as handed down to us in Aristotle’s Physics 239b33-240a17:

(I) τέταρτος δ’ ὁ περὶ τῶν ἐν σταδίωι κινουμένων ἐξ
ἐναντίας ἴσων ὄγκων παρ’ ἴσους, τῶν μὲν ἀπὸ τέλους τοῦ
σταδίου τῶν δ’ἀπὸ μέσου, ἴσωι τάχει, ἐν ὧι συμβαίνειν
οἴεται ἴσον εἶναι χρόνον τῶι διπλασίωι τὸν ἥμισυν. 

(II) ἔστι δ’ ὁ παραλογισμὸς ἐν τῶι τὸ μὲν παρὰ κινούμε-
νον τὸ δὲ παρ’ ἠρεμοῦν τὸ ἴσον μέγεθος ἀξιοῦν τῶι ἴσωι
τάχει τὸν ἴσον φέρεσθαι χρόνον. τοῦτο δ’ ἐστὶ ψεῦδος. 

(III) (1) οἷον ἔστωσαν οἱ ἑστῶτες ἴσοι ὄγκοι ἐφ’ ὧν τὰ
ΑΑ, οἱ δ’ ἐφ’ ὧν τὰ ΒΒ ἀρχόμενοι ἀπὸ τοῦ μέσου τῶν Α,
ἴσοι τὸν ἀριθμὸν τούτοις ὄντες καὶ τὸ μέγεθος, οἱ δ’ ἐφ’
ὧν τὰ ΓΓ ἀπὸ τοῦ ἐσχάτου, ἴσοι τὸν ἀριθμὸν ὄντες τού-
τοις καὶ τὸ μέγεθος, καὶ ἰσοταχεῖς τοῖς Β. (2) συμβαίνει δὴ
τὸ πρῶτον Β ἅμα ἐπὶ τῶι ἐσχάτωι εἶναι καὶ τὸ πρῶτον Γ,
παρ’ ἄλληλα κινουμένων. (3) συμβαίνει δὲ καὶ τὸ Γ παρὰ
πάντα τὰ Β διεξεληλυθέναι, τὰ δὲ Β παρὰ τὰ ἡμίση [Α]6·
ὥστε ἥμισυν εἶναι τὸν χρόνον· ἴσον γὰρ ἑκάτερόν ἐστι
παρ’ ἕκαστον. (4) ἅμα δὲ συμβαίνει τὰ Β παρὰ πάντα τὰ
Γ παρεληλυθέναι· ἅμα γὰρ ἔσται τὸ πρῶτον Γ καὶ τὸ
πρῶτον Β ἐπὶ τοῖς ἐναντίοις ἐσχάτοις, [ἴσον χρόνον παρ’
ἕκαστον γινόμενον τῶν Β ὅσον περ τῶν Α, ὥς φησι,] διὰ
τὸ ἀμφότερα ἴσον χρόνον παρὰ τὰ Α γίγνεσθαι. ὁ μὲν οὖν
λόγος οὗτός ἐστιν, συμβαίνει δὲ παρὰ τὸ εἰρημένον
ψεῦδος.

(I) The fourth (argument) is that concerning equal bodies
which move alongside equal bodies in the stadium from oppo-
site directions—the ones (starting) from the end of the stadium,
the others from the middle—at equal speeds; from this he
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5 In Sattler under review I give an explanation of this policy and a defence of those aspects of my
reading where (in accordance with Simplicius) it has to deviate from H and F.

6 The manuscripts read παρὰ τὰ ἡμίση, Simplicius reads παρὰ τὰ ἡμίση Α and Diels/Kranz
follow him.



thinks it follows that half the time is equal to its double.
(II) The fallacy consists in assuming that a body travelling at

an equal speed travels for an equal time past a moving body
and a body of the same size at rest. That is false.

(III) (1) For instance let the stationary equal bodies be AA;
let BB be those starting from the middle of the As, equal in
number and in magnitude to them; and let CC be those starting
from the end, equal in number and magnitude to them, and
equal in speed to the Bs. (2) Now it follows that the first B and
the first C are at the end at the same time, as they are moving
past one another. (3) It turns out that the (first) C has gone past
all the Bs, but B (only) past half [the As]; so that the time
should be only half. [The next sentence of the text is uncertain
between (a) ‘For each of them is equal with respect to each’
and (b) ‘For each of them is for the same time alongside
each’].7 (4) And at the same time it follows that the first B has
passed all the Cs. For at the same time the first B and the first C
will be at opposite ends [it takes an equal time (passing) each
of the Bs as each of the As, as he says], because both are an
equal time alongside the As. That is the argument, and it rests
on the stated falsity (translation by Hardie and Gaye as revised
by Barnes, with alterations).

It is useful to divide Aristotle’s account of this paradox into three main parts,
indicated with the help of Roman numerals in the text above. The third part in
turn is divided into four steps, indicated with the help of Arabic numerals.8 Let us
start with the three main parts: (I) Firstly, Aristotle very briefly sketches the set-
up of the paradox and names the paradoxical result—half the time equals double
the time. (II) In the second part Aristotle determines the fallacious conclusion on
which according to him the paradox rests, namely, on the assumption that if
something moves with constant speed, it will need the same time to pass some-
thing moving as to pass something resting. However, he does not give a diagno-
sis in the sense that he would explain how we could reasonably get to the
fallacious conclusion. (III) Finally, Aristotle fills out the initial sketch of the
paradox with the help of an example and then rounds off the account with a back
reference to his analysis of the paradox. In order to reconstruct Zeno’s paradox,
we have to consider how the example given in this third part leads to the paradox
named in the first part.9
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7 I discuss the alternatives below.
8 For the division of the text, cf. also Barnes 1982, 286, who delimits the first two parts of the

paradox in the same way as I do, but then continues with ten further parts, which I will treat as four
subdivisions of the third part.

9 Ferber 1995, 22-23 and Mansfeld 1982 think that this third part is either completely (so Ferber)
or in part (so Mansfeld) by Aristotle, not by Zeno. However, Ferber’s reconstruction is in general
rather far away from the text, cf. Knorr’s 1983 review of it. And Mansfeld, in order to get a paradox at



Following Aristotle’s text, we find four steps in this third part: The first step
explains the starting position of the bodies in the stadium, the second one pro-
vides the end position, and steps three and four give the conceptual description of
the rows’ movement that leads into the paradox. Going through these four steps
of the third main part in detail will allow us to reconstruct the philosophical prob-
lem on which the paradox turns.

(1) We have three different rows of bodies in a stadium, As, Bs, Cs, all of the
same number and size.10 In the beginning the Bs are in the middle of the stadium
as well as in the middle of the As; the Cs are at the end of the stadium and at the
end of the Bs.11 So we can represent the starting position as follows:12
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all, has to assume, against the explicit claim of the text even in the part he thinks is genuinely Zenon-
ian, that one of the rows is moving twice as fast as the other (cf., e.g., pp. 6 and 16). I do not deny that
there may be some Aristotelian language used in this example, for instance, as Ferber 1995, 23 and
113 claims, the use of letter symbols; but without this third part there is no paradox to be derived from
the text as handed down to us. And while Aristotle sometime presents the ideas and views of his pre-
decessors from his particular perspective, which we may not always think is adequate to these earlier
thinkers, I do not think we have any good reason to assume that Aristotle would simply make up such
an extended piece of reasoning and sell it as the idea of one of his predecessors (I have argued else-
where against Vlastos’ assumption that Aristotle employs his own technical notion of the now when
giving an account of the arrow paradox, which is Mansfeld’s alleged example—the only one he
gives—of such a practise in Aristotle). On the contrary, Aristotle is quite clear in marking off Zeno’s
idea (part one and most of part three) from his own evaluation (part two and the last sentence of part
three).

10 The first main part (I) solely seems to mention two rows, both of which are moving. The third,
resting row is introduced only in the example here in the third main part (III). While the starting posi-
tion of the two moving rows is determined with the help of the stadium in the first part, the third part
seems to determine it in respect to the As. It is not spelt out in the text how the first situation translates
into the second, which seems to have led to some confusion in the manuscripts concerning the start-
ing position. Accordingly, several scholars have removed the As from the scene altogether, e.g.,
Mansfeld 1982, Ferber 1995, and Wicksteed and Cornford in Aristotle 1934, following an unpub-
lished manuscript of Ross. I agree with these scholars that the third row is actually not necessary for a
reconstruction of the argument—the resting stadium would suffice as a point of reference. However,
we will see below that we nevertheless need something resting that is of the same size as the moving
rows in respect to which the motion of one of the moving rows is considered in order to create Zeno’s
paradox; but this could also be units marked out in the stadium that are of the same size as the bodies
of the moving rows. Those scholars who try to reconstruct the starting and end position without such
resting units, as e.g., Mansfeld and Ferber, have to introduce additional assumptions not mentioned in
the text or even going against what is explicitly said in the text in order to be able to derive a paradox.

11 Although the Bs start from the middle of the As in one direction as do the Cs in the other
direction, the text does not state it in this way. This is because the Bs are characterized with respect to
the As, while the Cs are characterized solely with respect to the Bs.

12 In the manuscripts we find everything from one to four As; but we will see that the exact num-
ber of bodies in each row is not essential for understanding the paradox; it is only essential that there

Α1 A2 A3 A4

B4 B3 B2 B1

C1 C2 C3 C4



Given an ancient stadium, which had roughly a paperclip form and can have
turning points on either side, we have to imagine either a diaulos-race (a double-
stadion race), which was run out and back once around the far turning-post, or a
dolichos-race of several laps—in any case a race that involved running around a
turning point, since this explains why different onkoi are moving in different
directions.13 So for the starting position of the paradox, Zeno has captured not the
actual starting point of an ancient race, but a particular situation in which one
row, let us assume the Cs in our drawing, have already passed the relevant turn-
ing point we suppose to be on the right side, and are hence moving away from it
to the left, while the Bs are travelling towards it and thus move to the right. An
ancient race would not have stationary bodies standing in the race-course, but we
can assume the As to have a breakdown, and thus to be resting.14

(2) The As are at rest while the Bs and Cs move in opposite directions past
each other. Thus the first B arrives at the end of the As at the same time as the
first C does. We can represent this end position as follows:

It is the subsequent account of this state of affairs that creates a paradox. The text
shows this in two steps, which I have labelled 3 and 4 respectively:

(3) We can understand the third step as a conclusion with three premises, one
of which is stated only after the actual conclusion is given: 

(1) C has passed all the Bs (Premise)
(2) B has passed only half the As (Premise)15
(3) Thus the time [which B needs for its movement past the As]

is only half [the time C needs to move past the Bs] (from 1,
2, and a missing premise).

Depending on the reading of lines 12-13—where I gave two alternatives above—
the third premise is either:

For each of them [either those passing, i.e., the Bs and Cs, or
those passed, i.e., the Bs and As; and either the whole row or

Α1 A2 A3 A4

B4 B3 B2 B1

C1 C2 C3 C4
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is the same number in each row. I have chosen four letters for the simple reason that four letters give
a clear graph and have been frequently used in the tradition commenting on this paradox; cf. also
Wagner in Aristoteles 1995, 640.

13 For the set up of these ancient races see, e.g., Miller 2004, 31-35 and 44-45. Ross 1936, 663
tried to argue that what we understand as the middle of the stadium is actually the middle of the race,
and thus the turning point at one end of the stadium. However, Ross himself admitted that there is no
evidence that the Greek word for the middle, to meson, was ever used to indicate such a middle qua a
turning point, cf. also Mansfeld 1982, 5 and Ferber 1995, 24. 

14 The stationary bodies seem to be introduced as merely hypothetical (ἔστωσαν).
15 For proof that this is how to understand the text of the paradox, cf. Sattler under review.



their individual bodies] is equal in comparison with each [i.e.,
either the As, Bs, and Cs, or each of the individual bodies in all
three of the sets]. Or: 
For each of them is for the same time (add chronon) alongside
each. 

On the second reading the reason why they are alongside each for the same time
is that ‘it takes the same time (passing) each of the Bs as each of the As, so he
says’ (lines 240a15-16), since it is ‘equal bodies which move alongside equal
bodies’ (lines 239b34), i.e., the As, Bs, and Cs are all of equal extension.

Whichever of the two translations one prefers, for the conclusion the crucial
assumption in both is that each element (either the individual body represented
by a letter or the whole row) is of the same size or extension, so it seems to take
the same time to pass any of the bodies and any part of the row. Accordingly, it
should take twice as much time to pass 4 Bs as it takes to pass 2 As. The apparent
basis of this premise was mentioned already at the very beginning of the whole
passage in part (I), namely, that ‘equal bodies move alongside equal bodies’.
Although the implications of this equality were not spelt out when it was first
introduced, it is unproblematic to refer to this premise and its implications only
after the conclusion.

Up to this point it seems that to pass all the Bs it took C double the time that it
took B to pass half the As, for C has passed twice as many Bs as B has passed As.
Given the fact that the As are resting while the Bs are moving, the problem
already implied is made explicit in the following step.

(4) While the first B has passed half the As, it has also passed all the Cs. This
follows from the characterization of the end position in step 2, that the first B is at
the end at the same time as the first C. And this simultaneous arrival in turn fol-
lows from the fact that ‘both are an equal time alongside the As’, i.e., B and C
have passed the same number of As with—as stated above—the same speed.
With the starting position we have assumed, the first B and the first C will be at
opposite ends of the A row simultaneously. So, all Zeno is doing in step four is
actually cashing out the implications of the initial set up of the paradox:

(1) The first B and the first C each start in the middle of the As
(Premise)

(2) The Bs and Cs move with the same speed (Premise)
(3) The Bs and Cs are alongside the As for the same time (from

1, 2) 
(4) The first B is at the end (of the As) at the same time as the

first C (from 1, 3)
(5) While the first B has passed half the As, it has also passed

all the Cs (from 1, 4)
Step three and four in Aristotle’s text together fully unfold the paradox: the first
B seems to have needed only half the time for its movement past the As that the
first C needed to pass the Bs, for B covered only half as many As as C covered
Bs. Simultaneously, it appears that it took B double the time of this half time
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since it passed twice as many Cs as As.16 Thus, we arrive at the paradox stated at
the beginning that ‘half the time is equal to its double’, t/2 = t. B is simultane-
ously engaged in an enterprise that is meant to take half the time it takes C for its
enterprise (viz., passing half the number of bodies; B passes two As), as well as
in an enterprise that takes the same time as C’s enterprise (passing as many bod-
ies as C does; B passes four Cs); the former is described in step 3, the latter in
step 4.17

II. The Philosophical Problem
Zeno’s elaborate account of rows moving in a stadium leads to the paradox that

row B seems to have been engaged at the same time in an enterprise taking two
units of time and in an enterprise taking four units of time. The logical foundation
on which this paradox rests is that Zeno implicitly employs a seemingly plausible
and unproblematic assumption, namely, that the time of a motion is dependent
solely on the space traversed. This assumption is not made explicit anywhere in
the paradox, but, as I want to show in the following, it is a necessary implication
of the fact that the time of a motion is inferred directly from the distance covered.

Let us look at time’s dependence on space more closely. By a ‘dependent mag-
nitude’ I simply mean here a magnitude whose value can be immediately derived
from the magnitude it is dependent on. For example, in the function y = x2, the
value of y can be immediately derived from x. Likewise, I argue, in the paradox
time is treated as a magnitude whose value (i.e., the amount of time units needed
for the movement) can be immediately derived from the value of space (i.e., the
amount of space units covered by the motion). Time is treated as if it were a mere
function of space.18 This dependence relation is an asymmetrical relation in
which space is the only relevant factor in determining time.19 Hence, the amount
of time required is determined solely by the amount of distance travelled, i.e.,

9

16 The same problem arises with the Cs of course.
17 ‘Half the time is equal to its double’ in Greek could either mean t/2 = 2t or t/2 = t. Gaye 1910,

100ff. argues for the former as the more dramatic one, ‘Zeno would have considered that, the more
extravagant the paradox, the greater would be the cogency of the argument’. However, we saw in the
reconstruction above that the latter interpretation is the one the logic of the argument employs— the
time required to pass two letter elements is equal to the time needed to pass four elements, t/2 = t.
Understanding the double as the normal correlative of the half (so that t would be understood as the
double of the half t/2) is widespread in Aristotle’s work; cf., for instance, his Categories. There we
are told that relatives are spoken of in relation to their correlatives and one example given for this is
that the double is the double of a half (τὸ διπλάσιον ἡμίσεος διπλάσιον) and the half half of a dou-
ble (καὶ τὸ ἥμισυ διπλασίου ἥμισυ), 6b30; cf. also 7b17-21 and Metaphysics 1020b26. Also Wag-
ner in Aristoteles 1995, 640 argues that this latter interpretation fits the Greek, and especially
Aristotle’s Greek, very naturally.

18 It should be noted that in this paradox the space covered is expressed as the amount of bodies
passed—e.g., we could imagine one body being 40 cm long, so covering two bodies would amount to
covering 80 cm.

19 As, in the example given, the function is asymmetrical, since the value of x cannot be immedi-
ately and unambiguously be derived from the value of y (in the function given, if y has the value 9, x
could either be 3 or -3).



how much time a motion takes is determined solely by the number of bodies
passed. This becomes obvious, for example, in 240a10-12 (quoted above), where
it is concluded that covering half the As requires half the time of covering all the
Bs. But concluding from the number of spatial magnitudes passed immediately
the time required entails that we understand space as the only determining factor
for the time taken, and thus time as depending on space. 
Prima facie this seems an unproblematic assumption, since, if C1 performs a

motion past twice as many elements as B1 does, should not this motion go on for
longer? If I walk down from Wolfson College in the North of Oxford to Black-
well’s in the city centre, and you join me, but then walk not only to Blackwell’s
but continue on to walk further south to Christ Church Meadow, we, too, would
expect you to walk for longer than I do. The further a motion goes, the more
motion we have, so to speak, and hence the more time it will need. In modern
conceptions too the time required for a motion is dependent on what we can call
the amount of motion performed (I will need less time if I stop after a few steps
than if I keep on walking).20 However, what we do if we reason like this is mov-
ing implicitly from the problematic assumption that time is dependent solely on
the space covered, to the correct assumption that time is dependent on the motion
performed.

But in Zeno’s paradox the time is in fact not conceived of as dependent on
motion, but indeed on space. This is clear from the fact that from the mere
amount of bodies passed (not from the motion performed in passing them), it is
inferred that B1 must have taken half the time for its enterprise of covering half
the As by comparison with the time it took C1 to cover all the Bs. Of course, cov-
ering more space will also mean performing more motion, and this is the reason
why Zeno’s assumption does not strike us as wrong prima facie. However, in
making the amount of time dependent on the amount of space covered, Zeno’s
assumption is merely in the neighbourhood, as it were, of the correct assumption
that the amount of time is dependent on the amount of motion performed. To see
this, let us assume that I am a slow walker, but you walk rather briskly. Then, if
we both set out from Wolfson College at the same time, you might nevertheless
be down at Christ Church Meadow at the same time as I arrive at Blackwell’s.
The fact that, in addition to the University Parks and the Natural History
Museum, which we both pass, you also pass the Bodleian Library and Oriel Col-
lege—and so you cover more space—does not mean that it necessarily takes you
a longer time. But it would necessarily take you a longer time, if we were to
assume that the amount of time needed is always dependent solely on the space
covered. And this assumption is what we see at work in Zeno’s paradox—a
wrong assumption, but one that will suffice for many cases (for example, if we
only considered Bs motion past the As).

It is clear that in Zeno’s framework the time needed for a particular motion is
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20 As we will see below, the amount of motion performed is not only determined by distance and
time, but also by the specific relation of the two, which we capture as speed. 



dependent solely on the distance covered, since the movement past a body cannot
vary according to different speeds21—it always has to take the same time. But,
you might object, Zeno explicitly tells us to consider rows moving with the same
speed, probably so as not to make the paradox even more complicated. So, we
simply are not dealing with a case of idly walking Bs and briskly moving Cs. It
might seem that, if we work with a set speed, then the two assumptions—that the
amount of time is dependent on the amount of motion performed, and that the
amount of time is dependent on the amount of distance covered—do indeed coin-
cide. There would thus be a fixed relation between the space covered and the
time required.

Yet to assume that B and C move with the same speed is not the same as mak-
ing time completely dependent on space. If a body is in uniform motion then the
time it takes to travel a certain distance bears a strict relation to that distance. But
it is a strict correlation between two, in principle independent magnitudes. It is
not a dependence relation. The strict correlation will hold as long as all the rele-
vant circumstances of the motions considered stay the same, while a dependence
relation would also hold if these circumstances changed. Even if we assume uni-
form speed, we nevertheless have to take time and space into account as indepen-
dent magnitudes, so that the speed could in principle vary.

Now it seems as if Zeno does in fact take into account both time and space,
since he mentions the distance passed—telling us that the magnitude of each row
is of the same extension—as well as the time needed. However, as we saw above,
lines 240a10-12 show that Zeno does not take time and space into account each
on its own: if A and B are of the same extension, Zeno assumes, it has to take the
same time to pass them.22 When Zeno states that for the movement of the Bs as
well as of the Cs the same time has to be assigned to the same number of ele-
ments passed, he is in fact not only assuming uniform speed for the Bs and Cs,
but he is also making time a magnitude completely dependent on space. Other-
wise, he could not immediately infer the time needed solely from the distance
passed. It is not possible, on this conception, to ask: how much space was cov-
ered by x in a certain time? Rather, one unit of time is connected to the passing of
one spatial unit in a fixed relation: one body is assumed to be covered in one
time-unit. So it is in fact not the case that two different magnitudes, time and
space, are used to determine movement.

But even if Zeno treats time as a magnitude completely dependent on space,
why should this be a problem? Two bodies moving with the same speed will
indeed cover the same distance in a stadium, and even in Oxford, in the same
time. As long as all the relevant circumstances of the two bodies moving with the
same speed stay the same, the assumption that the amount of time is dependent
on the amount of motion performed and the assumption that the amount of time
is dependent on the amount of space covered seem indistinguishable. 
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21 I.e., Zeno has no way of articulating such a variation.
22 This is especially clear in the first translation offered of the third premise of step III, 3.



The difficulties start once the circumstances change. This could be the result of
one of the moving bodies speeding up. Then, the same time would be used for
covering a bigger distance, so that it becomes obvious that, while time is indeed
dependent on the motion performed, it is only correlated with the space covered.
Zeno’s paradox does not feature a body speeding up. But the very same problem
arises if what is covered is itself in motion, so that we are not dealing with a sta-
ble distance being covered. And this kind of situation is the basic set-up of
Zeno’s paradox.

The University Parks, the Natural History Museum, the Bodleian Library, as
well as Oriel College are normally pretty stable. So, if we pass them with the
same speed, confusing time’s dependence on motion with time’s dependence on
space will normally be unproblematic. However, if I am walking past a moving
tour bus on the way down from Wolfson to the city centre, then the time needed
to pass the bus cannot be immediately deduced from the distance passed—the
size of the bus—since the time itself will vary with the speed of the thing being
passed. But, according to the interpretation I am proposing, Zeno cannot take into
account the speed of the thing being passed, since, were he to do so, time would
no longer be treated as dependent solely on the distance passed. The presence of
the resting As in Zeno’s paradox lulls us into thinking that time is simply depen-
dent on space, since if Bs’ motion past the resting As is all that we look at, we
will not get any false results. However, the fact that the Bs are also passing the
Cs, which are moving in the opposite direction, reveals that the two assumptions
that seem to be equivalent in the resting case in fact come apart.

It is in these cases, where a fixed connection between time and space is not suf-
ficient to account for the motion performed, that we encounter an apparent para-
dox. In contrast to the motion past a resting magnitude, where treating time
solely as dependent on space does not emerge as a mistake, the moving row sce-
nario makes it obvious that motion has to be understood as a relation between
time and space in which both relata can change independently of each other. In
this case, where the thing to be passed itself moves towards the thing passing, the
speeds of both add up. The extension of the thing passed will be passed more
quickly than if the thing passed had been resting, because the distance to be cov-
ered will be lessened by the movement of the thing passing in combination with
that of the thing passed. Hence, if both passing bodies share the same speed, the
passage will occur twice as fast as if the thing passed were at rest.

The paradox thus arises because the time a certain motion takes is seen as
dependent merely on the distance travelled, the passing of each body requires one
time-unit. Thus if B passes 2 As and 4 Cs simultaneously, half the time required
seems to be double the time required.

III. Relativistic and Atomist Troubles
Let us now come back to the three main positions in the secondary literature
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mentioned in the beginning and see what they make of our passage.23
(a) The first group maintains that no clear and interesting paradox can be

derived from this text. Given this diagnosis, they dismiss it as worthless—a bad
press that goes back over two millennia, to students and commentators of Aristo-
tle. Eudemus, one of Aristotle’s pupils, called this paradox ‘most silly’ as the fal-
lacy is allegedly ‘obvious’; and Simplicius (1895, 1019,32-1020,2) follows this
assessment in his commentary on Aristotle’s Physics . 

(b) The diagnosis of the second group is that Zeno fails to take into account
some essential relativity of motion. They do not dismiss Zeno’s paradox outright,
but allow that by committing this mistake, Zeno makes us implicitly aware of the
relativity of motion. I will discuss Barnes here as giving the most elaborate and
best known account of this group.24 The specific relativity that Barnes under-
stands Zeno as failing to notice is that motion is relative in the sense that a
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23 An interpretation not fitting any of the three main groups is the one by Ferber 1995. He argues
that the paradox rests on the mathematically (but not physically) accurate fact that t/2 consists of as
many points of time as t, since both consist of infinitely many; thus t/2 equals t. In this way he
attempts to reconstruct it as a view that is indeed philosophically interesting. However, I do not see
anything in the text that allows us to ascribe this insight of the 19th century to Zeno. Ferber himself
does not think there is philological evidence in the text handed down to us as the fourth paradox for
his reading (cf. p. 118); and I do not think that his references to passages in other authors, like
Anaxagoras’ fragment 3 and On Indivisible lines 968b5-13, can indeed show that (a) this thought was
already known in the fifth century BCE and that (b) our paradox may have been known to others as a
paradox of infinity. (a) For example, the passage from On Indivisible lines argues that if the unit of
measurement is divisible, then also parts of this unit of measurement have to be a unit of measure-
ment, since they are commensurable with the original unit of measurement, but then half is equal to
double. Ferber assumes that half the unit of measurement is equal to double, because both contain
infinitely many parts. However, the text does not mention infinitely many parts. Rather, it is the com-
mensurability of the new measure with the original measure that leads to the paradoxical result
according to the text, since in order to be commensurable things have to be measurable by the same
measure, and so for a part of half the size of the original unit of measurement to be commensurable
with the whole unit of measurement it also needs to be measurable by the whole—thus the half is
equal to the double. (b) Even if this particular knowledge about infinity had already been available at
Zeno’s time, what would make us believe that Zeno’s paradox refers to it? Ferber refers to Anaxago-
ras, fragment 3, which claims that there is always something smaller with respect to what is small and
always something larger with respect to what is large, so that the small is equal to the large and every-
thing is both large and small. One may connect this fragment of Anaxagoras with Zeno’s fragment 1,
that if there is a plurality of things they have to be both small and large, as Kirk and Raven 1957 do.
But it seems a stretch to understand ‘double the time is half the time’ as a concrete example for
Anaxagoras’ claim, as Ferber does.

24 Also Hopkins 2006, 22n40 can be counted in this group, since he thinks that the paradox
‘questions the very idea of motion itself by pointing out that our idea of motion depends on identify-
ing objects in relation’. Kirk, Raven, and Schofield 1983, 276 refer to a ‘relative theory’ according to
which ‘the distance a body moves is simply a function of its position relative to other bodies’ so that
there does not seem to be an absolute basis for ascribing motion to a body at all. But they do not think
that such a relative theory would make us abandon our idea about the measurement of movement,
which they seem to think is what actually leads us into a paradox: ‘if a body moves past n bodies of
size m, it moves a distance of mn units; simple arithmetic will then show that moving mn units will
take half the time of moving 2mn units at the same speed’. Simple arithmetic will, of course, show
this only, if we assume time to be completely dependent on the distance covered.



always moves in relation to some b. Thus, ‘a moves’ has to be understood ‘as
elliptical for “a moves vis-à-vis b”’ (Barnes 1982, 293). Speaking more exten-
sively, Barnes thinks that the way motion is linked to time and space is ‘mirrored
in these two implications: (1) If a moves past a sequence of n Fs and each F is k
units long, then a moves nk units’ and (2) ‘If a moves for a period of T units at a
constant speed of j u.p.u., and covers m units in that time, then T = m/j units’
(291).25 In the case of Zeno’s set-up, however, these two implications seem to
lead to T = 1k/j for the passage of B1 past a single A and to T = 2k/j for the simul-
taneous passage of B1 past two Cs. The reason we get entangled in the paradox
is, according to Barnes, that these two implications do not factor in that motion is
relative in the sense specified above. If we take this relativity into account, then
(1) has to be transformed into (1*) in order to keep its essence while avoiding the
paradoxical consequences: ‘(1*) If a moves past a sequence of n Fs and each F is
k units long, then relative to those Fs a moves nk units’. Thus Barnes thinks we
get ‘“a moves n units relative to b” and “a moves m units relative to c”’ (p. 293),
which is without any contradictions.
Prima facie, Barnes’s reconstruction of the paradox with the help of the two

conditionals (1) and (2) seems plausible. The first seems to give us the space cov-
ered, the second the time taken by the motion in question given a certain speed.
The evaluation Barnes derives from the diagnosis that Zeno fails to notice the rel-
ativity of motion is that it is an understandable failure at Zeno’s time and one we
are vulnerable to ourselves in unthinking moments.26 However, there are some
problems with Barnes’s account such that in fact it neither gives us a correct
diagnosis of Zeno’s paradox, nor an account of how successfully to avoid the
paradox.

Pointing out the relativity of motion in Barnes’s sense is not enough in order to
block the paradox. For Zeno shows clear awareness of the relativity Barnes is
talking about, that something moves not simpliciter but with respect to something
else. At the beginning of the paradox Zeno makes explicit a shift in perspectives:
he tells us that we are dealing with Cs movement past the Bs, and Bs movement
past the As; we are not just told that the Bs move or the Cs move. Further, Zeno
takes into account that the distance passed is relative to the thing passed; B is
moving four units in relation to C as well as two units in relation to A. So unless
we are reading Zeno uncharitably and claim that he fails to consider this relativ-
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25 Barnes does not spell out the second implication and the result T = m/j any further, but he
seems to understand by ‘T’ units of time, by ‘m’ units of space, and by ‘u.p.u’ units per units, i.e., in
our case spatial units per temporal units. So B1 moves for a period of 2 temporal units at a constant
speed of 1 u.p.u. and covers 2 spatial units (the two As).

26 The account of the paradox in Furley 1967 also boils down to attributing a mere oversight to
Zeno, albeit an oversight based on a mistaken assumption of transitivity, rather than on lack of under-
standing of some relativity of motion: if B is opposite A for one unit of time and C is opposite A for
one unit of time then, by transitivity, B must be opposite C for one unit of time. According to this
interpretation, Zeno simply overlooks the fact that because the Bs and the Cs approach the As from
different sides, it is only when B1 has already passed half of the As that it will actually start to be
opposite C1 as well—so the transitivity assumed does not hold.



ity that he is aware of, this all indicates that the relativity of the distance travelled
is taken into account by Zeno. Hence, making it explicit by changing (1) to (1*)
does not help to avoid the paradox. 

Within the Zenonian framework, also (1*) will entangle us in the problem that
B1 moves 2 times 1 unit relative to A and 4 times 1 unit relative to C during the
same time, even though each A and C are of the same extension and B does not
change its speed. Making the distance travelled relative to the row passed (as
Barnes tries to do with (1*)), rather than to the motion of the row passed, does
not explain why passing units of the same extension, and with the same speed,
gives us different distances passed within the same time. What is important to
understand (and thus ultimately also to avoid) the paradox is not that everything
moves relative to something else, but rather that while the time of a motion is
correlated to the distance covered, it cannot simply be derived from this distance.
Putting it in the terms of Barnes’s account, what has to be changed is the assump-
tion we find in (2), since it does not allow us to take into account that—even if B
is moving with constant speed—passing distance m might nevertheless take dif-
ferent times. Indeed if we simply insert the result we get from (1*) in (2) as it
stands, then we derive two different times for the same motion: T is m/j on the
one hand and n/j on the other. So we are back to Zeno’s conclusion that double
the time is half the time: whereas it takes B the same time to pass two As and four
Cs, it should, according to Barnes’s (1*) and (2), take m/j units for passing the As
and n/j for passing the Cs.

(c) Finally, the third main group of interpreters diagnoses this paradox as a
challenge to atomism,27 and understands it to be of genuine philosophical sub-
stance. Most often, this group reconstructs the paradox as directed against time
atomism, but sometimes time and space atomism are combined as alleged points
of attack. 

In its original version, in Tannery 1877, this account included the assumption
that Zeno’s paradox was directed at Pythagorean atomism.28 Once the assump-
tion of Pythagorean atomism was no longer widely shared, several scholars,
especially in Britain, rejected this interpretation, regarding it as a historical mis-
take.29 If the Pythagoreans did not posit atoms, there were no atomists around at
the time that Zeno developed his paradoxes and hence none to be their target.

15

27 Atomism is broadly construed here: it includes all kinds of assumptions of indivisibles, so,
e.g., indivisible units of matter (allegedly to be found in Empedocles to which Zeno’s onkoi refer,
according to Gaye 1908, 114f.), as well as the mere treatment of magnitudes as discrete and indivisi-
ble units (according to Mansfeld 1982, 18 body, motion, time, and space do not consist of indivisible
minima but once they are divided into sections, these sections are treated as if they could not be bro-
ken up in Zeno’s paradox, cf. also n29). I group all these kinds of indivisibles under the term ‘atoms’
in my discussion, since this is the term most often used in reconstructions of the paradox in this vein.

28 Tannery 1877, 266. Tannery assumed Pythagorean atoms to be point-like, but interpretations
of the paradox with extended atoms also came into fashion on the basis of his interpretation.

29 In the English speaking world the idea that the Pythagoreans assumed atoms was prominently
defended by Cornford. For the dismissal of this idea see especially Booth 1957a; Furley 1967, 44-56;
Owen 1957-8; and Barnes 1982, 291.



Nevertheless, the atomist interpretation remains the only philosophically sub-
stantive reading in the secondary literature to date that attempts to give an
account of the text as handed down to us and outside of Britain it still enjoys a lot
of popularity.30 Accordingly, it is worth revisiting this position briefly, especially
since it is normally rejected due to historical inaccuracy, while I want to show
that it can be rejected also on purely philosophical grounds. 

I will concentrate on the most widespread branch of atomist interpretations,
which presumes that the reason we get entangled in a paradox is the assumption
of indivisible time atoms.31 The diagnosis these atomist interpretations give can
be roughly characterized as follows: Zeno assumes that there are smallest, indi-
visible time atoms, and that one body (one letter element) will be passed in one
indivisible time atom. But if we look at the time atom in which B1 passes A3, we
find that during that same indivisible time atom, B1 has passed two elements of
the C-row, C1 and C2. According to the premise, however, the passing of each
element is connected with one indivisible time atom, so that double the time—the
two time atoms required to pass C1 and C2—equals half the time—the one time
atom that is necessary to pass the single A3.32

There are three main points speaking against such atomist interpretations of the
paradox: (I) There is no good evidence of atomism in the text—there is no refer-
ence whatsoever to an assumption of time atoms.33 (II) If this were a paradox
against atomist assumptions, it would establish only that atomists have a problem
in giving a consistent account of motion, and thus would have only a rather lim-
ited target (whether or not there were indeed already atomists around at Zeno’s
time). Some people, adhering to the seemingly appealing idea that the first two of
Zeno’s paradoxes of motion are directed against understanding time and space as
a continuum, while the third and fourth are directed against time and space con-
ceived as atomistic, might think that this reduced target does not matter, since the
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30 Cf., e.g., Salmon 1980 and Glazebrook 2001. The atomist interpretations were replaced in
Britain by ‘transitivity interpretations’, of the sort we encountered with Furley, or, more widely
spread, by ‘relativistic interpretations’ of the kind we saw in Barnes.

31 Among the supporters of time atoms as prerequisite for this paradox we find, e.g., Russell
1903, 352-353, §334; Salmon 1980, 34-35; and Kirk and Raven 1957 (this was changed, however, in
Kirk, Raven, and Schofield 1983).

32 Space atomism assumes that the bodies passed are indivisible, so that it is impossible to be
partially alongside a single body (one letter element). So one body is either opposite or not opposite
another, which is problematic when B passes one atomic element A, and thus is opposite A, at the
same time as it passes two atomic Cs. And mixed atomism assumes both, that the distance of a body
cannot be only partially passed, and that no motion that would take half a time unit can be performed;
cf. Ross in Aristotle 1936, 81-84; and Cornford in Aristotle 1934 ad loc.

33 Space atomists might claim that the distances to be passed are bodies, onkoi, which are repre-
sented as letter elements and hence as atomistic (this is, e.g., how Gaye 1908, 111ff. understands the
term onkoi). However, both Furley 1967, 73 and Booth 1957b, 193-194 deny that the term onkos indi-
cates that the magnitudes are indivisible. The separation into letter elements may simply be designed
to mark out spatial units, which we need for the paradox, without implying indivisibility, cf. below.
Further, if this paradox did indeed rest on an atomist assumption, we would expect Aristotle in his
fierce opposition to atomism to have pointed this out (cf. also Booth 1954b, 195).



non-atomist alternative is accommodated by means of the first two paradoxes.
However, along with Kirk, Raven, and Schofield as well as Barnes, I think this
interpretative scheme does not work, as can be shown with reference to the other
paradoxes of motion also.34 In any case, it seems to be clear that the paradox of
the Moving Rows is stronger, if—as on my interpretation—it is not directed
solely against atomism.

(III) The most important objection against any kind of atomist interpretation,
however, is the fact that the paradox in no way relies on atomist assumptions. We
will be caught up in the paradox whether we start from the assumption that time
is structured continuously, i.e., that it can be divided ad infinitum, or that it is
structured discretely, i.e., that we will reach indivisible magnitudes, atoms, after
a finite number of divisions. So the crucial point of the paradox is not the
assumption of atoms; and if we leave out what I pointed out above as the crucial
assumption of the paradox, time’s dependence on space, atomist interpretations
wind up reconstructing a paradox with a different punch-line from the one
handed down to us as Zeno’s.

To show that the paradox is independent of any atomist assumptions, let us
first assume that time is a continuum in which continuous rows move, and we
will see that we get into the same paradox. In our continuous set-up there are four
different sections in each row. But these sections are just marked out in order to
allow for talking about different segments, just as we mark out a big table for
measuring when using a small ruler. They are not naturally fixed parts; and they
are further divisible as we like.35 Similarly, time can be marked out into different
units for measuring purposes; but these units are in themselves further divisible
ad infinitum. And the continuous B and C rows each cover one section in one unit
of time. So we can assume that the segment B1 from the continuous B-row
passes the segment A3 in one time unit. But at the same time, B1 will pass two

17

34 Cf. Kirk, Raven, and Schofield 1983, 265 who remark that ‘Such schemes are undoubtedly
attractive, but none has any ancient authority, nor have they withstood critical scrutiny very well’,
and Barnes 1982, 285. Another such scheme claims that each of the four paradoxes argues against
one of the four possibilities concerning the divisibility of time and space: space is infinitely divisible
and time is finitely divisible; space is finitely divisible and time is infinitely divisible; both are
infinitely divisible; both are finitely divisible, cf. Glazebrook 2001, 194. Like the self-declared atom-
istic interpretations, also this scheme argues that the moving rows paradox assumes time and space to
be only divisible up to a certain point, which is not what creates the paradox, as I show in the follow-
ing. (Glazebrook thinks that this scheme is a strategy to attack the Pythagorean fusion of the mathe-
matical and the physical by showing that ‘whatever application it [a mathematical concept, like
infinity] is given to physical entities results in absurdity’. It is unclear, however, why finite divisibil-
ity, as one horn of the dilemma this scheme works with, should be a mathematization of nature and
not something that is indeed encountered in the natural world). Cf. also Brochard 1954 who sees a
couple of such schemes at work.

35 Cf. also Wagner in Aristoteles 1995, 639. It is true that the use of the plural onkoi and of τὰ
ΑΑ, τὰ ΒΒ, and τὰ ΓΓ clearly refers to more than one distinct body and thus would not be used if
each ΑΑ, ΒΒ, and ΓΓ were one continuous body. But since we will see that we get into the same
paradox on the assumption of one continuous body with different sections marked out, the assump-
tion of a plurality of bodies turns out not to be necessary for the paradox.



segments of the C-row, and thus it should need two (divisible) units of time.
Time being a continuum, there would be no problem in dividing the fixed time
unit into smaller portions, for instance into two halves.36 Hence, indivisibility
cannot be what leads us into this paradox. Rather, the problem is that we started
with the assumption that one time unit is connected with passing one spatial seg-
ment, and now, while B1 is passing exactly one A segment in this time unit, it is
also passing two C segments at the same time. Thus double the time—two units
of time for passing two C segments—equals half the time—one time-unit for
passing one A segment.

If we assume, on the other hand, that time is atomistic in character without
fixedly connecting one time atom with the passing of one element we get the fol-
lowing scenario: B1 passes A3 in one time atom, but at the same time it also
passes two Cs. So either (1) B1 passes one C in half a time atom although a time
atom is per definition not divisible; or, as some scholars assume as an alternative
(e.g., Salmon 1980), (2) B1 passes two Cs in one time atom in such a way that it
never actually is opposite the first C.37

Whichever of the two interpretations (1) or (2) we may choose, the paradox the
atomist interpretation leads us into is a different paradox from the one Aristotle is
giving an account of. If we choose the first interpretation, we will face the para-
dox that, although we are assuming a time unit to be indivisible, we have to think
of it as being divisible, for two different elements are covered in it.38 The paradox
we are dealing with, however, is not that indivisible minima have to be divisible,
but rather that half the time is double the time.39

Opting for the second interpretation, we either get the paradox that, although
B1 somehow passes C1 as well as C2, there is no point when it is opposite C1; so
B1 is moving past C1 without ever passing it (cf. Salmon 1980, 35). This para-
dox, too, is not the one we are looking for, but rather the puzzle of how a thing
could pass something without ever being opposite it. Or we could, as Sorabji
1983, 331 suggests, take this interpretation to give an adequate description of
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36 And since space is not a to mis tic, partial overlap is possible.
37 Assuming space atomism, we find that B1 passes A3 in one time-unit, but simultaneously it

also passes two Cs, so B1 should pass the first C when it has covered half of A3. Thus either (1) B1
passes one C when it has passed half A3 even though A3 is not divisible and there cannot be a partial
overlap, or (2) in one time-unit B1 passes two Cs and A3 in such a way that the two Cs are never
partly opposite the one indivisible A in their passing. Mixed atomism will combine time and space
atomism (Brochard 1954, 8 who assumes mixed atomism, essentially reconstructs the paradox as one
of time atomism, and then adds a sentence translating it into a problem of space atomism).

38 Cf. Russell, p. 352: ‘hence the instant is divisible, contra hyp.’
39 Brochard 1954, 9 simply translates the paradoxical result, that the indivisible instant is divisi-

ble into two equal parts, into the claim that the double is the same (‘Dire que l’instant est divisé en
deux parties égales, c’est, dans l’hypothèse, dire qu’il est le double de lui-même’). But he does noth-
ing to explain why Zeno should have claimed to show that double the time is half the time, when what
he really does is showing that what is supposed to be indivisible needs to be divisible. That the atom-
istic paradox is the one also Brochard ultimately takes to be the heart of the matter, can also be seen
from his final account of his interpretation of the paradox on p. 11, which claims it to show that in a
motion the supposedly indivisible instant can be divided. 



motion within an atomistic framework40—B1 ‘passes these two [Cs] all in one
go, by disappearing from where it was and reappearing futher on’. But then we
get no paradox at all from Zeno’s fourth so-called paradox.41

Atomist reconstructions of the paradox thus have a different punch line from
the one the paradox as handed down to us offers: they demonstrate either that if
we start by supposing some minimal temporal periods to be indivisible, we end
up after all having to conceive of time as divisible if we are to accommodate
motion, or that, when passing some supposedly indivisible minimal extension,
we are never actually opposite it, so that motion occurs in jerks. Further, if one
wanted to get an atomist paradox much less machinery would suffice. All you
would need to do is what Aristotle does in Physics vi, namely, to ask ‘if A passes
B in one time atom, what happens if A moves twice as fast?’ Why, then, should
Zeno build up this rather elaborate scene in the paradox (which, judging from the
manuscript tradition, confused at least some of the scribes) in order to make a
point that he could have made without any large and confusing machinery?

IV. Conclusion
Summing up, we can say that none of the three main positions in the scholarly

literature gives a satisfying analysis of the paradox. The first simply thinks that
there is no interesting paradox. The second claims some relativity to be over-
looked by Zeno, but can neither reconstruct the paradox as it is reported to us nor
show how it can be avoided. And the atomist interpretation, the third position, is
not needed to generate the paradox, nor is it mentioned, and it would get us a dif-
ferent paradox from the one handed down to us as Zeno’s. 

Hence, what leads into the paradox is not the premise that there are indivisible
time atoms, nor that something is always moving relative to something else.
Rather, the paradox arises as a result of the implicit assumption that time is
regarded as a magnitude completely dependent on space, so that one time unit—
whether indivisible or not—is always connected to the passing of one space unit.
Understood in the way I have proposed, the paradox of the Moving Rows works
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40 Sorabji himself thinks the problem with the paradox is actually not atomism but the relativity
of motion.

41 There is one other way of reconstructing the paradox with the help of space atomism, which
Stephen Menn (personal communication) seems to hold. We start out with Furley’s transitivity
assumption—if B is opposite A for one unit of time and C is opposite A for one unit of time then, by
transitivity, B must be opposite C for one unit of time. Now we also assume space atomism, so that
the transitivity assumption is not merely an oversight by Zeno, but based on space atomism. On this
account each body passed is indivisible, so being opposite the As cannot be partial. Accordingly, it
cannot be the case that B1 is opposite C1 when it has passed half of A3. However, if this interpreta-
tion wants to arrive at the paradox that half the time is double the time (and not merely that space is
divisible, contra hyp., or that B1 is never really opposite C1), then it also has to make the assumption
I pointed out above as being responsible for the paradox, namely, that time is treated as a magnitude
solely dependent on space. Only thus will the time during which the Bs and the Cs are opposite the As
seem to be half the time during which the Bs and Cs are opposite each other. But if we make this



in the way we expect a Zenonian paradox to work: there are no simple mistakes
in the set up of the paradox; it exploits everyday intuitions (that are, in fact, only
of limited reliability); and it shows that they get us in trouble when we try to give
an account of motion. Finally, the paradox addresses itself to all natural philoso-
phers, and not only to those that are committed to atomism.

My account also explains why the paradox requires such an elaborate and com-
plicated set-up. Admittedly, the problem Zeno raises could also have been
shown, in a less complicated way, with the help of an example involving change
of speed; if, for instance, the thing that is moving were to accelerate.42 But
change of speed is not a concept that was sufficiently analysed in Zeno’s time, or
indeed at any time in the ancient period (it seems to be a change of a change,
which, for example, Aristotle’s Physics explicitly claims to be problematic).43
Thus, in order to get the same result as one gets with an example involving accel-
eration—that the relation between time and space does not stay constant—Zeno
had to devise a rather complicated scenario, the one I have given an account of
here.

The main assumption that leads into Zeno’s paradox is that, with respect to a
certain motion, time and space are dependent on each other. This assumption
seems to hold when we consider the case of one body moving with constant
speed past some unmoving extension, as when, for example, one train passes the
stationary platform of the train station south of Elea. However, the correct
assumption that is in the neighbourhood of this supposition (and that allows us to
avoid the paradox) is that, with respect to this motion, time and space are closely
correlated. In fact, they are so closely correlated that if all other parameters
regarding a motion stay the same, we can treat them as if they were dependent on
each other. This is the reason why Zeno’s shortcut—making time directly depen-
dent on space—may seem unproblematic. But time and space are in fact not
dependent on each other, as becomes clear when one parameter changes, when,
for example, the extension being passed is itself moving, as when one moving
train passes another moving train. 

Accordingly, this paradox engenders the task of understanding time and space
as two independent magnitudes, which are nevertheless correlated via motion.
And motion has to be understood as a variable relation of time and space. One
reason why Aristotle—the most important person dealing with this paradox in
ancient times—dismisses this paradox quickly without showing us how to solve
it (which he does in the case of the other motion paradoxes) seems to be the fact
that he himself does not manage to conceptualize motion as such a variable rela-
tion of time and space. In his comparison of motions with different speed in
Physics vi the time of a motion is indeed treated as correlated with but not depen-
dent on the distance covered (this suggests that Aristotle is aware that time is not
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assumption, we do not need any form of atomism to generate the paradox.
42 Or, for a reverse Moving Rows paradox, if the thing moving decelerates. 
43 Cf. Physics 225b13-21 and also Bostock 1991, 205. I have tried to show in Sattler in prepara-

tion that even the concept of speed is a problematic one in the writers before Aristotle and indeed in



simply dependent on the distance covered). However, in his explicit account of
motion it is only time that he conceptualizes as determining motion. Space (or
another second magnitude in the case of changes other than change of place) is
quietly dropped.44 While a full analysis of motion would also have answered the
paradox of the Moving Rows, it seems that Aristotle himself cannot conceptual-
ize motion in such a way that time and space are correlated without being depen-
dent on each other.

In this way this paradox tells us also something about the difficulty of concep-
tualizing motion and speed—difficulties we are usually not aware of. The history
of natural philosophy shows that it would take roughly another 2000 years to
give an adequate account of motion as a relation of time and space in which time
and space are two independent magnitudes. It is only once such an account is
given that the two assumptions, which are often not distinguished—time is
dependent on the space covered and time is dependent on the motion per-
formed—can actually be distinguished; a distinction that is necessary to avoid
getting entangled in Zeno’s paradox.45
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