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Derivation of the Born Rule from
Operational Assumptions

Simon Saunders
Philosophy of Physics Group, University of Oxford

The Born rule is derived from operational assumptions, together
with assumptions of quantum mechanics that concern only the de-
terministic development of the state. Unlike Gleason�s theorem, the
argument applies even if probabilities are de�ned for only a single
resolution of the identity, so it applies to a variety of foundational
approaches to quantum mechanics. It also provides a probability
rule for state spaces that are not Hilbert spaces.

1 Introduction

Whence the Born rule? It is fundamental to quantum mechanics; it is the essen-
tial link between probability and a formalism which is otherwise deterministic; it
encapsulates the measurement postulates. Gleason�s theorem [4] is mathemati-
cally informative, but its premises are too strong to have any direct operational
meaning: in what follows the Born rule is derived more simply, given certain
operational assumptions, along with the elements of the deterministic formalism
of quantum mechanics.
The argument we shall present is based on Deutsch�s derivation of the Born

rule from decision theory [2]. The latter was criticized by Barnum et al [1], but
their objections hinged on ambiguities in Deutsch�s notation that have since
been resolved by Wallace [12]; here we follow Wallace�s formulation. The ar-
gument is not quite the same as his, however: Wallace draws heavily on the
Everett interpretation, as well as on decision theory; like Deutsch, he is con-
cerned to derive constraints on �subjective�probability, rather than any objec-
tive counterpart to it. In contrast, the derivation of the Born rule that follows is
independent of decision theory, independent of the interpretation of probability,
and independent of the Everett interpretation. As such it applies to a variety
of foundational approaches to quantum mechanics. But it does assume from
the outset that there is a probability rule for the outcomes (pointer readings)
of experiments, determined by the state and observable measured. Any further
details of the measuring process or the experimental design we suppose concern
only the question of which state, which observable, and which associated pointer
readings are relevant to the experiment.1 Approaches to foundations that re-
quire additional information - values of hidden variables for instance - to de�ne

1This assumption plays much the same role as does �measurement neutrality�, in Wallace�s
treatment. (My thanks to Jerry Finkelstein on this point.)
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the probabilities of the observational outcomes of experiments will be immune
to it (in which case, of course, the values of these variables will not exactly be
hidden).
Assuming there is a general algorithm of this sort it will be su¢ cient to

establish it in the case of a particular class of experiments. The argument then
takes the following form: there is one class of experiments for which there is
a clear operational procedure for associating with a given experiment a partic-
ular state, observable and associated set of pointer readings (a model for the
experiment). But in general di¤erent models of the same experiment can be
provided in this way; since the probabilities for the observable outcomes of the
experiment must be the same, independent of the particular model used in in-
terpreting it, the algorithm for determining them must give the same output in
each case. This puts a constraint on the algorithm if it is to be consistent with
the operational procedure for modeling experiments of this kind. In the case
where the ratios in the modulus squares of the relevant amplitudes are rational
numbers, this constraint is in fact su¢ cient to force the Born rule.
To derive the Born rule quite generally, a continuity assumption is required:

su¢ ciently small variations in the state-preparation device, and hence of the
initial state, should yield small variations in expectation value. But this is a
natural assumption from an operational point of view (with respect to whatever
topology is used to de�ne a notion of closeness in the state space of a physical
theory); the same applies to su¢ ciently small variations in the other quantities
on which the algorithm depends (the observable measured and pointer readings);
likewise for any algorithm for determining physically measurable quantities.

2 Multiple-Channel Experiments

The kinds of experiments we shall consider are limited in the following respects:
they are repeatable; there is a clear distinction between the state preparation
device and the detection and registration device; and - this the most important
limitation - we assume that for a given state-preparation device, preparing the
system to be measured in a de�nite initial state, the state can be resolved into
channels, each of which can be independently blocked, in such a way that when
only one channel is open the outcome of the experiment is deterministic - in
the sense that if there is any registered outcome at all (on repetition of the
experiment) it is always the same outcome.
Two other assumptions are made for convenience, to assist in the argument

that follows. We suppose that for every outcome there is at least one channel
for which it is deterministic, and - in order to associate a de�nite initial state
with a particular region of the apparatus - we suppose that all the channels are
recombined in some particular region of the apparatus, prior to the detection
process proper.
For an example of such an experiment that measures spin, consider a neutron

interferometer in which a beam-splitter produces orthogonal states of spin (with
respect to a given axis) in each of the two arms of the interferometer; these are
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then recombined at some point prior to the measurement of that particular
component of spin. For an example that measures position, consider an optical
two-slit experiment, adapted so that the lensing system after the slits �rst brings
the light into coincidence at some point, and then focuses the light on two
detectors in such a way that each detector can receive light from only one of
the two slits. It is not too hard to specify an analogous procedure in the case of
momentum (the conventional method for preparing a beam of charged partciles
of de�nite momentum - by selecting for de�ection in a magnetic �eld - can be
adapted quite simply). Any number of familiar experiments can be converted
into an experiment of this kind.
We introduce the following notation. Let there be d channels in all, with

D � d possible outcomes uj in some set of outcomes U , j = 1; :::; D. These
outcomes are macroscopic events (e.g. positions of pointers). Let M denote
the experiment that is performed when all the channels are open, and Mk;
k = 1; :::; d the (deterministic) experiment that is performed when only the
kth channel is open. Let there be identi�able regions r1; r2; ::: of the state-
preparation device through which the system to be measured must pass (if it is to
be subsequently detected at all - regardless of which channels are open). Call an
experiment performed using such an apparatus a multiple-channel experiment.
Whether or not an experiment falls into this category is clearly decidable on
purely operational grounds.

3 Experimental Models

One could go further, and provide operational de�nitions of the initial states in
each case, but we are looking for a probability algorithm that can be applied
to states that are mathematically de�ned (so any operational de�nition of the
initial state, e.g. in terms of the speci�cation of the state-preparation device,
would eventually have to be converted into a mathematical one). We therefore
assume we already have the mathematical speci�cation of states  1;  2; :::

2 at
given regions r1; r2; .. of the apparatus, as elements of a complex Hilbert space
H (which for convenience we take to be �nite dimensional3). We further assume
the conventional, schematic description of experiments in quantum mechanics:
we suppose an experiment is designed to measure some self-adjoint operator bX
on H, and that on measurement one of a �nite number of probabilistic outcomes
labelled by real numbers �k 2 Sp( bX) results, k = 1; :::; d (we allow for repeti-
tions, i.e. for some j 6= k we may have �j = �k): (In the case of the Everett
interpretation, we say rather that all of the macroscopic outcomes result, but
that each of them is in a di¤erent branch, with a given amplitude. We will
consider the interpretation of probabilty in the Everett interpretation in due

2�State" is used loosely, and applies to vectors in Hilbert space as well as rays. (We will
eventually deduce the independence of probabilities from both the overall phase and norm.)

3 It would be just as easy to work with Hilbert spaces of countably inifnite dimension,
and restrict instead the observables to self-adjoint operators with purely point spectra. (The
di¢ culty with observables with continuous spectra is purely technical, however.)
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course.) We suppose that these events are reliably ampli�ed and recorded by
some non-probabilistic physical process 
 : Sp( bX) ! U; yielding one or other
of D possible macroscopic outcomes uj 2 U: The probabilities pj ; j = 1; ::; D of
the latter are the quantities re�ected in the observable statistical data.
We take it that all parties agree that in an experiment there is some set of

probabilistic events labelled by the �k�s; and some reliable ampli�cation and
recording process 
 resulting in observational records, independent of questions
of foundations - although just what the �k�s lable, and just what probability
means, may vary from one approach to the next. But it may be that 
 is many-
one, so will not assume (as is usual) the numerical equality of 
(�k) with �k:We
do assume the records uj 2 U are numerals, so that addition and multiplication
operations can be de�ned on them. (For convenience we assume none of them
is the zero.)

Call the triple
D
 ; bX;
E an experimental model, denote g: This scheme

extends without any modi�cation to experiments where there are ine¢ ciencies
in the detection and registration devices, so long as they are the same for every
channel; but a more sophisticated scheme will be needed if the e¢ ciencies di¤er
from one channel to the next (we neglect this complication here).
This scheme applies to a much wider variety of experiments than multiple-

channel experiments; the Born rule is conventionally stated in just these terms.
We are seeking an algorithm that assigns expectation values to models, i.e.
weighted averages of the quantities uj ; with weights given by the probabilities
pj of each uj ; j = 1; :::; D. We are therefore looking for a map V : g ! R of the
form:

V [ ; bX;
] = DX
j=1

pjuj ;
DX
j=1

pj = 1: (1)

If D = d we can write the uj�s directly in terms of the 
(�k)�s. Otherwise
de�ne ��1(uj) = fk : 
(�k) = ujg, j = 1; :::; D; and real numbers wk 2 [0; 1];
k = 1; :::; d such that

P
k2��1(uj) wk = pj . From Eq.(1) we obtain:

V [ ; bX;
] = dX
k=1

wk
(�k);
dX
k=1

wk = 1: (2)

Conversely, given any d real numbers wk 2 [0; 1] satisfying Eq.(2), de�ne the D
numbers pj =

P
k2��1(uj) wk; from Eq.(2) we obtain Eq.(1).

Evidently for �xed  and bX (and events �k) the ampli�cation and regis-
tration process 
 (assumed to be reliable) only a¤ects expectation values V in
the way shown in Eq.(2); that is, the wk�s are independent of 
.4 But they are
otherwise model-dependent; the pj�s, in contrast, are directly measurable. The
latter are the quantities that matter for the consistency condition.

4My thanks on this point to Michael Dickson.
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4 The Consistency Condition

As we shall see, in the special case of multiple-channel experiments there is a
clear operational criterion for assigning models to experiments. But in general
it is many-one; the same experiment may be modelled in many di¤erent ways.
There follows an important constraint: for ifM is assigned models g and g0, and
if there is to be any general algorithm V for mapping models to real numbers,
then these expectation values had better agree, i.e. V (g) = V (g0). We view
this as a consistency condition on V and the operational criterion for model
assignments:
That a constraint of this kind played a tacit role in Deutsch�s derivation

was recognized by Wallace; it was used explicitly in Wallace�s deduction [12] of
the Born rule, although there it was cast in a slightly di¤erent form, and the
conditions for its use were stated in terms of the Everett theory of measurement
(including the theory of the detection and registration process). Here we make
do with operational criteria, and with assumptions about the behavior of the
state prior to any detection events. We suppose the prior evolution of the state
is purely deterministic, and governed by the unitary formalism of quantum
mechanics.5

Consider a multiple-channel experiment M: By assumption, there are d de-
terministic experiments Mk; k = 1; :::; d that can also be performed with this
apparatus, on blocking every channel save the kth , each yielding one of the D
macroscopic outcomes uj 2 U . Given that the initial state in region r forMk is
'k, and that Mk is deterministic, it is clear enough, on operational grounds, as
to what can be counted as a model ofMk: the experiment measures any bX such
that bX'k = �k'; for any �k and any 
 such that 
(�k) 2 U is the observable
outcome of Mk.
Now consider the indeterministic experimentM performed with every chan-

nel open. We suppose that the state of M at r is  =
Pd

k=1 ck'k; then the
observable measured is any bX such that bX'k = �k'k for k = 1; :::; d, and any

 such that 
(�k) 2 U is the observable outcome of each Mk.
This criterion can be stated as a de�nition that applies equally to the deter-

ministic case (d = D = 1):

De�nition 1 LetM have d channels and D outcomes. ThenM realizes
D
 ; bX;
E

if and only if:

(i) for some region r and orthogonal states f'kg, 'k is the state of Mk in r,
k = 1; :::; d � D, and  =

Pd
k=1 ck'k is the state of M in r;

(ii) bX'k = �k'k, k = 1; :::; d where at least D of the �k�s are distinct.6

5Of course in its initial phases the process of state preparation will involve probabilistic
events, if only in collimating particles produced from the source, or in blocking particular
channels. But it does not matter what these probabilities are; all that matters is that if a
particle is located in a given region of the apparatus, then it is in a de�nite state, and unitarily
develops in a de�nite way (prior to any detection or registration process).

6This follows from our assumption that for any multiple-channel experiment M , for each
uj 2 U , j = 1; ::; D, there is at least one Mk for which uj is deterministic.
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(iii) 
(�k) is the outcome of Mk, k = 1; :::; d:
Why is it right to model experiments in this way and not some other? The

deterministic case speaks for itself; in the indeterministic case, the short an-
swer is that it is underwritten by the linearity (prior to any measurement) of
the equations of motion. An apparatus that deterministically measures each
eigenvalue �k of bX; when the state in a given region of the apparatus is 'k;
will indeterministically measure the eigenvalues �k of bX, when the state in that
region is in a superposition of the 'k�s. This principle is implicit in standard
laboratory procedures; this is how measuring devices are standardly calibrated,
and how their functioning is checked.
The consistency condition now reads:

De�nition 2 V is consistent if and only if V (g) = V (g0) whenever g and g0

can be realized by the same experiment.

In the deterministic case evidently:

V ['k; �k bP'k ;
] = 
(�k): (3)

We will show that if V is consistent, with h; i the inner product on H, then7

V [ ; bX;
] =
D
 ;
( bX) E
h ; i : (4)

Eq.(4) is the Born rule.
We begin with some simple consequences of the consistency condition. The

Born rule is then derived in stages: �rst for equal norms in the simplest possible
case of a spin half system; then for the general case of equal norms; and then for
rational norms. The general case of irrational norms is handled by a continuity
condition. We shall also derive a probability rule for more general vector spaces
than Hilbert spaces.

5 Consequences of the Consistency Condition

We prove four general constraints on V that follow from consistency. (Eqs.(5),(8)
may be found in Wallace [12], derived from somewhat di¤erent assumptions;
Eqs.(6), (7) are special cases of more general equivalences derived by Wallace.)
In each case an equality is derived from the fact that there exists an experiment
that realizes two di¤erent models: by consistency, each must be assigned the
same expectation value.
We assume it is not in doubt that there do exist such multiple-channel ex-

periments, in which the initial state (prior to any detection or ampli�cation
process) evolves unitarily in the manner stated.

7Since 
 : R ! U; 
( bX) is not an operator on H; but since numerical operations are
de�ned on the outcomes U we may de�ne <  ;
( bX) > by the spectral decomposition of bX
(as

P
k 
(�k) <  ; bP'k > )
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Proposition 3 Let V be consistent. It follows

(i) for invertible f : R! R:

V [ ; bX;
] = V [ ; f( bX);
 � f�1]: (5)

(ii) For orthogonal projectors f bPkg; k = 1; ::; d, such that bPk'j = �kj'j

V [
dX
k=1

ck'k;
dX
k=1

�k bP'k ;
] = V [
dX
k=1

ck'k;
dX
k=1

�k bPk;
]: (6)

(iii) For bU� : 'k ! ei�k'k, k = 1; :::; d; for arbitrary �k 2 [0; 2�]

V [ ;

dX
k=1

�k bP'k ;
] = V [bU� ; dX
k=1

�k bP'k ;
]: (7)

(iv) For bU� : 'k ! '�(k), where � is any permutation of < 1; :::; d >

V [ ; bX;
] = V [bU� ; ��1( bX);
]: (8)

Proof. Let g =
D
 ; bX;
E be realized by M with d channels. Then for some

region r1 the state of Mk is 'k; k = 1; ::; d, that of M is
Pd

k=1 ck'k; and there
exist (not necessarily distinct) real numbers �1; :::; �k such that bX'k = �k'k;


(f�kg) = U: Since for invertible f , 
[f�1(f(�k)] = 
(�k); f( bX)'k = f(�k)'k,

M realizes
D
 ; f( bX);
 � f�1E, and (i) follows from consistency. Further, M

realizes any other model
D
 ;cX 0;


E
such that cX 0'k = �k'k;

Pd
k=1 �k

bPk is
such a cX 0; so (ii) follows from consistency. Let now M be such that  evolves
unitarily to the state bU� in region r2. Then at r2 the state of each Mk is

ei�k'k, and since bPei�k'k = bP'k , M also realizes
DbU� ;Pd

k=1 �k
bP'k ;
E, and

(iii) follows from consistency. Let  subsequently evolve to the state bU� in
region r3. Then at r3 the state of each Mk is '�(k); and the state of M isPd

k=1 ck'�(k). Without loss of generality, we may write bX as
Pd

k=1 �k
bP'k ;

then ��1( bX) = Pd
k=1 �k

bP'�(k) satis�es ��1( bX)'�(k) = �k'�(k), so M also

realizes
DbU� ; ��1( bX);
E, and (iv) follows from consistency

Eqs.(5)-(8) are of course trivial consequences of the Born rule, Eq.(4). Note
further that in each case the observables whose expectation values are identi�ed
commute - these are constraints among probability assignments to projectors
belonging to a single resolution of the identity. Finally, note that the normal-
ization of the initial state  played no role in the proofs.

7



6 Case 1: The Stern-Gerlach Experiment for
Equal Norms

Consider the Stern-Gerlach experiment with d = D = 2: Let bX = 1
2
bP+� 1

2
bP� =b�z (in conventional notation), the observable for the z-component of spin with

eigenstates '�, and let  = c+'+ + c�'�. Let bU� interchange '+ and '�, sobU�b�z bU�1� = �b�z: From Prop. 3(iv) it follows that:

V [c+'+ + c�'�; b�z;
] = V [c+'� + c�'+;�b�z;
]: (9)

From Eq.(9) and Prop. 3(i):

V [c+'+ + c�'�; b�z;
] = V [c+'� + c�'+; b�z;
 � �I] (10)

(where (
 � �I)(x) = 
(�x)): From Eq.(10), in the special case that jc+j2 =
jc�j2; and using Prop.3(iii) to compensate for any di¤erences in phase:

V [c+'+ + c�'�; b�z;
] = V [c+'+ + c�'�; b�z;
 � �I]: (11)

Consider the LHS of this equality. From Eq.(2), writing w1 = w, w2 = 1 � w;

(� 1

2 ) = 
(�) (so that 
(+) results with probability w; and 
(�) results with
probability 1�w) we obtain the expectation value x = w
(+)+(1�w)
(�): But
by similar reasoning, the RHS yields w
(�)+(1�w)
(+) = �x+
(+)+
(�)
(note the initial state and observable measured are the same, so w is independent
of 
). Equating the two, x = 1

2 [
(+) + 
(�)]:
We have shown, for jc+j2 = jc�j2 :

V [c+'+ + c�'�; b�z;
] = 1

2

(+) +

1

2

(�) (12)

in accordance with the Born rule. Note that here we have derived an expectation
values in a situation (dimension 2) where Gleason�s theorem does not apply.
(Note also that the normalization of the initial state  is again irrelevant to the
result.)

7 Case 2: General Superpositions of Equal Norms

Consider an arbitrary observable on any d�dimensional subspace Hd of Hilbert
space. By the spectral theorem, we may write bX =

Pd
k=1 �k

bP'k ; for some
set of orthogonal vectors f'kg, k = 1; :::; d spanning Hd, where there may be
repetitions among the �k�s. Let  be a (not-necessarily normalized) vector in
Hd; then for some d-tuple of complex numbers < c1; :::; cd >,  =

Pd
k=1 ck'k:

For any permutation �, we have from Prop.3(iv), (i):

V [
dX
k=1

ck'k; bX;
] = V [
dX
k=1

ck'�(k); �
�1( bX);
] = V [

dX
k=1

ck'�(k); bX;
��]: (13)
8



If jckj2 = jcj j2; j; k = 1; :::; d, using Prop.3(iii) as before to adjust for any phase
di¤erences, it follows:

V [ ; bX;
] = V [ ; bX;
 � �]: (14)

Since  and bX are the same on both sides we obtain from Eq.(2):

dX
k=1

wk
(�k) =
dX
k=1

wk
(��(k)): (15)

Eq.(15) holds for any permutation; let � interchange j and k, and otherwise act
as the identity. There follows:

wj
(�j) + wk
(�k) = wk
(�j) + wj
(�k): (16)

Conclude that if 
(�j) 6= 
(�k) then wk = wj (recall that by convention the

(�k)�s are non-zero).
If D = d; evidently wk = wj for all j,k = 1; :::; d. Since

Pd
k wk = 1, wk =

1
d ;

k = 1; :::; d: Therefore

V [ ; bX;
] = 1

d

dX
k=1


(�k): (17)

If D < d, suppose 
(�j) = 
(�k) for j; k = 1; :::; b < d: (If b = d Eq.(17)
follows trivially.) For any j, k such that b < j � d; k � b; 
(�k) 6= 
(�j), from
which we conclude as before that wk = wj : Note further that under the stated
conditions, 1=d = jckj2(

Pd
j=1 jcj j2)�1: We have proved:

Theorem 4 Let  =
Pd

k=1 ck'k; where jckj2 = jcj j2 for all j; k = 1; :::; d: Let
V be consistent. Then:

V [
dX
k=1

ck'k;
dX
k=1

�k bP'k ;
] = dX
k=1

jckj2Pd
j=1 jcj j2


(�k): (18)

Like Prop.3, Th.4 is independent of the normalization of  :

8 Case 3: d=2 Normalized Superpositions with
Rational Norms

The idea for extending these methods to treat the case of unequal but rational
norms is as follows: consider an experiment in which the initial state  evolves
deterministically so that each component 'k entering into the initial superposi-
tion with amplitude ck evolves into a superposition of zk 2 N orthogonal states
of equal norm 1=

p
zk, such that jck=

p
zkj2 is constant for all k. One can then
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show that the experiment has a model in which the initial state is a superpo-
sition of states of equal norms, so Th.4 can be applied. (Evidently for this to
work the jckj2�s will have to be rational numbers.)
For simplicity, consider �rst the case d = 2 for real amplitudes. Let  =p
mp

m+n
'1 +

p
np

m+n
'2, where m and n are integers. Let bX = �1 bP'1 + �2 bP'2 .

We will show that if V is consistent, V [ ; bX;
] = m
m+n
(�1) +

n
m+n
(�2): Let

the deterministic experiments ofM beM1;M2; with registered outcomes 
(�1);

(�2) respectively. Let the initial states of M; M1;M2 in region r be  ; '1; '2
respectively. Then M realizes g =

D
 ; bX;
E : Now let  evolve to bU in region

r0; where bU'1 = 1p
m

Pm
k=1 �k, bU'2 = 1p

n

Pn+m
k=m+1 �k, for some orthogonal set

of vectors f�kg, k = 1; :::;m+n: Denote �1 bPbU'1+�2 bPbU'2 by cX 0: Then the initial

state of Mi, i = 1; 2 at r0 is bU'i, whilst that of M at r0 is c1 bU'1+ c2 bU'2; sincecX 0 bU'i = �i bU'i it follows that M realizes g0 =
DbU ;cX 0;


E
. By consistency,

V (g) = V (g0): Now de�ne bP1 = �1
Pm

k=1
bP�k ; bP2 = �2

Pn+m
k=m+1

bP�k ; sincebPk bU'j = �kj bU'j , k; j = 1; 2, by Prop.3(ii) V [bU ;cX 0;
] = V [bU ; �1 bP1 +
�2 bP2;
]: But bU = 1p

m+n

Pn+m
k=1 �k ; applying Th.4 for d = m+n, and noting

that 
(�k) = �1 for k = 1; :::;m, and �2 otherwise, the result follows.

9 Case 4: General Superpositions with Rational
Norms

The argument just given assumed  was normalized to one. The standard
rational for this is of course based on the probabilistic interpretation of the state,
and hence, at least tacitly, on the Born rule. It may be objected that we are
only able to derive the dependence of the expectation value on the squares of the
norms of the initial state, because this is put in by hand from the beginning.
But this suspicion is unfounded. Suppose, indeed, only that jc1j2

jc2j2 =
m
n : As

before, de�ne bU'1 = 1p
m

Pm
k=1 �k, bU'2 = 1p

n

Pn+m
k=m+1 �k:The state bU at

region r2 will have whatever normalization  had in r1; the states bU'i i = 1; 2
will be eigenstates of bPi, as before; Def.1,2 will apply as before. Conclude that if
V is consistent, V [ ; bX;
] = V [bU ; �1 bP1+�2 bP2;
], as before. The di¤erence is
that now bU = c1p

m

Pm
k=1 �k+

c2p
n

Pn+m
k=m+1 �k =

c1p
m

Pn+m
k=1 �k =

c2p
n

Pn+m
k=1 �k

(adjusting the phases of c1 and c2 , using Prop.3(ii), as required). Evidently
we have an initial state which is a superposition of n+m components of equal
norm, m of which yield outcome 
(�1) and n of which yield outcome 
(�2):

Since m
n+m = jc1j2

jc1j2+jc2j2 ;
n

n+m = jc2j2
jc1j2+jc2j2 there follows:

V [ ; �1 bP'1 + �2 bP'2 ;
] = jc1j2
jc1j2 + jc2j2

[
(�1)] +
jc2j2

jc1j2 + jc2j2
[
(�2)]: (19)
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Evidently the normalization of  is irrelevant.
This result is worth proving in full generality:

Theorem 5 Let ck 2 C, k = 1; :::; d satisfy jckj > 0; jckj2
jcj j2 2 Z and let V be

consistent. Then:

V [
dX
k=1

ck'k;
dX
k=1

�k bP'k ;
] = dX
k=1

jckj2Pd
j=1 jcj j2


(�k): (20)

Proof. Choose c 2 C, zk 2 Z; �k 2 [0; 2�]; k = 1; ::; d such that ck = cei�k
p
zk;

and integers mk; n such that zk = mk

n ; k = 1; :::; d. Let f�ig; i = 1; :::; s be an
orthonormal basis on an s�dimensional Hilbert space Hs, where s =

Pd
k=1mk

(we may suppose for i = 1; :::; d; �i = 'i): Let sk =
Pk

j=1mj , k = 1; :::; d,

s0 = 0, and de�ne bU on Hs by the action bU'k = 1p
mk

Psk
i=sk�1+1

�i. LetbPk = Psk
i=sk�1+1

bP�i ; k = 1; :::; d: Let  =
Pd

k=1 ck'k, and suppose that M

realizes g1 =
D
 ;
Pd

k=1 �k
bP'k ;
E; then for some region r1; the initial state of

M is  and the state of each Mk is 'k with outcome 
(�k): Let the state of
M at r2 be bU ; since bPk bU'j = �kj bU'j , j; k = 1; :::; d, M also realizes g2 =DbU ;Pd

k=1 �k
bPk;
E, so by consistency V (g1) = V (g2): But by construction

bU = dX
k=1

ck bU'k = dX
k=1

cei�kp
n

skX
j=sk�1+1

�j (21)

so V (g2) = V [ cp
n

Ps
k=1 �k;

Pd
k=1 �k

bPk;
] (by Prop.3(ii)). Now de�ne �i 2 R,
i = 1; :::; s by �i = �k for sk�1 < i � sk; then

Pd
k=1 �k

bPk = Ps
i=1 �i

bP�i
and Th.4 can be applied. Conclude that V (g1) = V (g2) =

1
s

Ps
k=1 
(�k) =Pd

k=1
mk

s 
(�k); since
mk

s = mk(
Pd

j=1mj)
�1 = zk(

Pd
j=1 zj)

�1 = jckj2(
Pd

j=1 jcj j2)�1;
the result follows directly.
Examination of the proof shows that the dependence of probabilities on

the modulus square of the expansion coe¢ cients of the state ultimately de-
rives from the fact that we are concerned with unitary evolutions on Hilbert
space, speci�cally an inner-product space, and not some general normed lin-
ear topological space. A general class of norms on the latter is of the form

kxk =
�Pd

k=1 j�kjp
�1=p

, 1 � p < 1 (d may also be taken as in�nite). Such

spaces (lp spaces) are metric spaces and can be completed in norm. The proof
as we have developed it would apply equally to a theory of unitary (i.e. invertible
norm-preserving) motions on such a space, yielding the probability rule

V [
dX
k=1

ck'k;
dX
k=1

�k bP'k ;
] = dX
k=1

jckjpPd
j=1 jcj jp


(�k) (22)

(assuming that jcijp
jcj jp 2 Z, j; k = 1; :::; d). But of the L

p spaces, only p = 2 is an
inner product space (a Hilbert space).
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10 Case 5: Arbitrary States

There are a variety of possible strategies for the treatment of irrational norms,
but the one that is most natural, given that we are making use of operational
criteria for the interpretation of experiments, is to weaken these criteria in the
light of the limitations of realistic experiments. In practise, one would not ex-
pect precisely the same state to be prepared on each run of the experiment.
Properly speaking, the statistics actually obtained will be those for an ensem-
ble of experiments; correspondingly, they should be obtained from a family of
models, di¤ering slightly in their initial states. We should therefore speak of
approximate models (or of models that are approximately realized) - where the
di¤erences among the models are small.
How small is small? What is the topology on the space of states? The

obvious answer, from a theoretical point of view, is the norm topology, since
this is the topology used to obtain a complete state space in quantum mechanics
(a Hilbert space). We should suppose that for su¢ ciently small �, so long as

j �  0j < �, then if
D
 ; bX;
E is an approximate model for M then so isD

 0; bX;
E. Indeed, from an operational point of view, bX and 
 should likewise

be subject to small variations. (Only the outcome set U can be regarded as
precisely speci�ed, insofar as the outcomes are numerals.)
In the case of multiple-channel experiments of course in practise each chan-

nel will correspond to a very large subspace of the Hilbert space. There will
be many (perhaps in�nitely many) orthogonal states producable at the source
in each channel, any of which (for a given channel) will yield the same macro-
scopic outcome (if they yield any outcome at all). All that is required, for such
an experiment, is that variations in each channel  0k,  

0
j ; k 6= j are su¢ ciently

small such that these states remain orthogonal, and that each leads reliably
to the same macroscopic outcome with the same e¢ ciency. But then certainly
they should lead to the same outcomes under the much stronger condition that
j �  0j < �.
With that it is clear that the details are hardly important; any algorithm

that applies to families of models of this type, yielding expectation values, will
have to be continuous in the norm topology. Given that, the extension of Th.5
to the irrational case is trivial. We de�ne:

De�nition 6 Let g(i) be any sequence of models
D
 (i); bX;
E, i = 1; 2; :::such

that lim
i!1

j (i) �  j = 0: Then V is continuous in norm only if lim
i!1

V ( g(i)) =

V (g):

We may �nally prove:

Theorem 7 Let V be consistent and continuous in norm. Then for any modelD
 ; bX;
E

V [ ; bX;
] =
D
 ;
( bX) E
h ; i : (23)

12



Proof. It is enough to prove that any realizable model satis�es Eq.(23). If real-
izable, there is some multiple-channel experimentM with d channels and D out-

comes that realizes
D
 ; bX;
E. Let f'kg, k = 1; ::; d be any orthogonal family of

vectors such that bX'k = �k'k (not all the �k�s need be distinct). Without loss
of generality, let  =

Pd
k=1 ck'k;

bX =
Pd

k=1 �k
bP'k : Let let < c1; c2; ::; c(i); ::: >

be any sequence of d-tuples of complex numbers such that for each i and each

j; k,
jc(i)j j2

jc(i)k j2
2 Z, and for each k lim

i!1
c
(i)
k = ck (such a sequence can always be

found). Let  (i) =
Pd

k=1 c
(i)
k 'k, g

(i) =
D
 (i); bX;
E. By Th.5, V [ (i); bX;
] =Pd

k=1
jc(i)k j2Pd
j=1 jc

(i)
j j2


(�k) =
1Pd

j=1 jc
(i)
j j2

Pd
k=1 
(�k)

D
 (i); bP'k (i)E : The numera-

tor is
D
 (i);
( bX) (i)E ; since the denominator is non-negative with lim

i!1

Pd
j=1 jc

(i)
j j2 =Pd

j=1 jcj j2 = h ; i ; and since lim
i!1

D
 (i);
( bX) (i)E = D

 ;
( bX) E (by the
continuity of the inner product), Eq.(23) follows if V is continuous in norm.
The proof evidently extends mutatis mutandis to give the probability rule for
lp spaces, p 6= 2.

11 A Role for Decision Theory?

Is a continuity assumption permitted in the present context? Gleason�s theorem
does not require it; if one is going to do better than Gleason�s theorem, it would
be pleasant to derive the continuity of the probability measure, rather than to
assume it. But from an operational point of view continuity is very natural; no
algorithm that could ever be used is going to distinguish between states that
di¤er in�nitesimally.
Deutsch [2] took a rather di¤erent view. He was at pains to establish the

Born rule for irrational norms, without assuming continuity. His method, how-
ever, was far from operational: along with axioms of decision theory, he assumed
that quantum mechanics is true (under the Everett interpretation). A hybrid
is possible: the present method can be supplemented with axioms of decision
theory, yielding the Born rule for irrational norms, without any continuity as-
sumption. But nothing much hangs on this question. One can do without a
continuity assumption, but there are just as good reasons to invoke it from a
decision theoretic point of view as from an operational one, as Wallace makes
clear [12, p.47]. In neither case is there any reason to distinguish between states
that di¤er in�nitesimally.
Decision theory is important for a rather di¤erent reason: it matters because

what Deutsch calls the non-probabilistic parts of decision theory (what Wallace
more accurately calls decision theory in the face of uncertainty) can provide
an account of probability in terms of something else - namely, in terms of the
ordering of preferences of rational agents. This is important above all in the case
of the Everett interpretation. According to many, the Everett interpretation has
no place for probability [7]. Given Everett, any concept of probability has to be
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justi�ed ; it cannot be taken as primitive.
So it is clear why Deutsch took the more austere line: if Everett is to be

believed, quantum mechanics is purely deterministic, even in the face of mea-
surements. Deutsch supposed that the fundamental concept (that can be taken
as primitive) is rather the value or the utility that an agent places upon a model
- that V (g) is in fact a utility. He argued that experiments should be thought
of as games; for each registered outcome in U; we are to associate some utility,
�xed in advance. So, in e¤ect, the mapping 
 : �k ! 
(�k) 2 U de�nes the
payo¤ for the outcome �k:
Decision theory on this approach has a substantial role. If we suppose that

the utilities of a rational agent are ordered, and satisfy very general assumptions
(�axioms of rationality"), a representation theorem can be derived [10] which
de�nes subjective probability in terms of the ordering of an agent�s utilities. In
e¤ect, one deduces - in accordance with these axioms - that the agent acts as
if she places such-and-such subjective probabilities on the outcomes of various
actions.8

It is important that one can still make sense of uncertainty in this context,
as Wallace explains. It may be we cannot help ourselves to probabilistic ideas ab
initio, but that does not mean that one only deals with certainties - that games,
in some sense, have only a single payo¤, as Deutsch at one point suggests [2,
p.3132-3]. From a �rst-person perspective, one does not know what outcome
of a quantum game one should anticipate; one cannot anticipate them all, for
there is no �rst-person perspective from which they can all be observed. So it
is enough if, in the face of branching, a rational agent still has any anticipation
of anything (that she does not expect oblivion [9]).
On this line of thought, the proofs of the Born rule just presented make

an illegitimate assumption: Eq.(1). We are not entitled to assume that the
observational outcomes uj 2 U; j = 1; :::; D occur with probabilities pj , for they
all occur; no more that there are probabilities wk for any underlying events
�k, satisfying Eq.(2). But the proof of Th.4 (hence 5 and 7) depended on this
assumption. Of course we may, with Deutsch and Wallace, eventually be in a
position to make statements about the subjective probabilities of branches, but
if so such statements will have to come at a later stage - after establishing the
values V (g) of various games. But then how are we to establish these values?
Here Wallace has provided a considerably more detailed derivation than

Deutsch, and from weaker premises. But the proofs are correspondingly more
complicated; for the sake of simplicity we shall only consider Deutsch�s argu-
ment, removing the ambiguities of notation in the way shown by Wallace.
First, consider Case 1, the Stern-Gerlach experiment. All is in order up to

Eq.(11), but we must do without the assumption subsequently made - that the
registered outcome 
(+) results with probability w; and outcome 
(�) with
probability 1�w: Here Deutsch invokes a new principle, what he calls the zero-
sum rule:

8This does not mean that subjective probabilities are illusory, and correspond to nothing
in reality. (The point is to legitimate the concept, not to abolish it.)
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V ['; bX;
] = �V ['; bX;�
]: (24)

Following Deutsch, let us assume that the numerical value of the utility 
(�k)
equals �k: Then, in the special case where �1 = ��2 (true for the measurement
of a component of spin), from Eq.(24), applied to Eq.(11), we deduce:

V [c1'1 + c2'2; b�z;
] = �V [c1'1 + c2'2; b�z;
] (25)

and hence that V [c1'1 + c2'2; b�z;
] = 0; in accordance with the Born rule in
this special case.
Although evidently of limited generality, the result is illustrative - assuming

the zero-sum rule can be independently justi�ed. Here is a justi�cation for it:
banking too is a form of gambling; the only di¤erence between acting as the
gambler who bets, and as the banker who accepts the bet, is that whereas the
gambler pays a stake in order to play, and receives payo¤s according to the
outcomes, the banker receives the stake in order to play, and pays the payo¤s
according to the outcomes. The zero-sum rule is the statement that the most
that one will pay in the hope of gaining a utility is the least that one will accept
to take the risk of losing it. We take this as the principle on which two rational
agents must agree if they are to share the same utilities and play each other in
a zero-sum game. (And evidently any quantum experiment can be used to play
such a game.)
What of the general equal-norm case, Case 2? Here the zero-sum rule is not

enough. But if we consider only the case d = 2, it is enough to supplement
it with another rule, what Deutsch calls the additivity rule. A payo¤ function

 : R ! U is additive if and only if 
(x + y) = 
(x) + 
(y). Let f� : R ! R
be the function f� (x) = x+ � ; then V is additive if and only if

V [ ; bX;
 � f� ] = V [ ; bX;
] + 
(�): (26)

Additivity of the payo¤ function is a standard assumption of elementary decision
theory, eminently valid for small bets (but hardly valid for large ones, or for
utilities that only work in tandem). Additivity of V then has a clear rational.
It is an example of a sure-thing principle: given two games, each exactly the
same, save that in one of them one receives an additional utility 
(�) whatever
the outcome, then one should value that game an having an additional utility

(�).
To see how additivity can be used in Case 2 (but restricted to d = 2), observe

that for � = ��1 � �2; the function �I � f� is the permutation �: Therefore
from Eq.(14) we may conclude:

V [ ; bX;
] = V [ ; bX;
 � �I � f� ]: (27)

By additivity the RHS is V [ ; bX;
 ��I] + (
 ��I)(�), and since 
 is additive
(so 
 � �I = �
) we obtain, from the zero-sum rule

V [ ; bX;
] = �V [ ; bX;
]� 
(�): (28)
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With a further application of payo¤ additivity there follows

V [ ; bX;
] = 1

2
[
(�1) + 
(�2)] (29)

in accordance with the Born rule.
As Wallace has shown, this, along with the higher dimensional cases (d >

2), can be derived from weaker axioms of decision theory, that do not assume
additivity. Th.5 then goes through unchanged. As already remarked, one is
then in a position to derive the extension to the irrational case without assuming
continuity: for the details, I refer to Wallace [12].
Decision theory can evidently play a role in the derivation of the Born rule,

but it is only needed if the notion of probability is itself in need of justi�cation.
That may well be so, in the context of the Everett interpretation; but on other
approaches to quantum mechanics, probability, whatever it is, can be taken as
given.

12 Gleason�s Theorem

Compare our derivation of the Born rule with Gleason�s theorem:

Theorem 8 Let f be any function from 1-dimensional projections on a Hilbert
space of dimension d > 2 to the unit interval, such that for each resolution of
the identity f bPkg; k = 1; :::; d,Pd

k=1
bPk = I,

Pd
k=1 f(

bPk) = 1: Then there exists
a unique density matrix � such that f( bPk) = Tr(� bPk):
Proof. Gleason (1967)
Our theorem is di¤erent: it says nothing about the uniqueness of the state,

for assigning probabilities to resolutions of the identity, only about the unique-
ness of the algorithm, for assigning values to measurement models. The latter
range over Hilbert spaces of arbitrary dimension.
More important, on a variety of approaches to quantum mechanics, nothing

so strong as Gleason�s premise is really motivated. It is not required that prob-
abilities can be de�ned for a projector independent of the family of projectors of
which it is a member. This requirement, sometimes called non-contextuality [8],
is a strong one. Very few approaches to quantum mechanics subscribe to it. The
theorem has no relevance to any approach that singles out a unique basis once
and for all: its premise is not assumed by the GRW theory [5], nor by the de
Broglie-Bohm theory [6], which single out the position basis; nor by the Everett
interpretation [13], which singles out a basis approximately localized in phase
space; nor by the consistent histories approach [3], supposing probabilities are
only de�ned for a unique decoherent history space. All these theories require
only that probabilities be de�ned for projectors associated with the preferred
basis (insofar as they can be associated with projectors at all). If probabilities
can be assigned to any other projectors, it is only insofar as they can be corre-
lated with projectors in the preferred resolution of the identity, as determined
by some particular experimental context.
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But so much is entirely compatible with the derivation that we have o¤ered.
By all means restrict Def.1 to observables compatible with a unique resolution
of the identity (and likewise the consistency condition of Def. 2). Prop.3 proves
identities for expectation values for commuting observables; it too can be re-
stricted to a unique resolution of the identity; likewise in Th.4. In Th.5 an
auxiliary basis was used, but again this can be taken as the preferred basis.
And whilst it is in the spirit of Th.7 that probabilities should also be de�ned
for small variations in projectors, this does not yet amount to the assumption
of non-contextuality.
Unlike the premise of Gleason�s theorem, the operational criteria that we

have used are hardly disputed; they are common ground to all the main schools
of foundations of quantum mechanics. But it would be wrong to suggest that
they apply to all of them equally: on some approaches - in particular, those that
provide a detailed dynamical model of measurements - there is good reason to
suppose that an algorithm for expectation values will depend on additional
factors (in particular, if any explicit stochastic process is introduced); the Born
rule may no longer be forced in consequence. (But we take it that this would
be an unwelcome consequence of these approaches; the Born rule will have to
be otherwise justi�ed - presumably, as it is in the GRW theory, as a hypothesis.)
Of the main schools, two - the Everett interpretation, and those based on

operational assumptions (here we include the Copenhagen interpretation) - of-
fer no such resources. This point is clear enough in the latter case; in the
case of the Everett interpretation, the association of models with multiple chan-
nel experiments as given in Def.1 follows from the full theory of measurement.
Quantum mechanics under the Everett interpretation provides no leeway in this
matter. The same is likely to be true of any approach to quantum mechanics
that preserves the unitary formalism intact, without any supplement to it.
The principal remaining schools have a rather di¤erent status. One, the

state-reduction approach, has already been mentioned. The other is the hidden-
variable approach, in which the state evolves unitarily even during measure-
ments (but is incomplete). This case deserves further comment.

13 Completeness

The one approach to foundations in which the Born rule has been seriously
questioned is an example of this type (the de Broglie-Bohm theory)[11]. Hid-
den variables certainly make a di¤erence to the argument we have presented.
Consider the proof of Th.4. The passage from Eq.(13) to Eq.(14) hinged on the
fact that the state on both sides of Eq.(13) is identical when the norms of its
components are the same. (Likewise the step from Eq.(10) to (11).) But if
the state is incomplete, this is not enough to ensure the required identi�cation.
Including the state of the hidden variables as well (denote w), we should replace
 by the pair <  ;! > (w may be the value of the hidden variable, or a proba-
bility distribution over its values). Doing this, there is no guarantee that in the
case of superpositions of equal norms - e.g. for  = 1p

2
('1 + '2); where '1; '2
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are, as in Case 1, eigenstates of the z�component of spin - that bU� (permuting
'1 and '2) will act as the identity.

9 Although bU� =  , its action on <  ;! >
may well be di¤erent from the identity; how is the permutation to act on the
hidden variables?
The question is clearer when bU� implements a spatial transformation. We

have an example where it does: the Stern-Gerlach experiment. In this casebU�b�z bU�1� = �b�z; a re�ection in the x � y plane. Under the latter, a particle
initially with positive z-coordinate (! = +) is mapped to one with negative
z-coordinate (! = �). Under this same transformation, the superposition  =
1p
2
('1 + '2) is unchanged. Therefore bU� :<  ;+ >!<  ;� >6=<  ;+ >;

there is no longer any reason to suppose that Eq.(11) will be satis�ed.
This situation is entirely as expected. In the de Broglie-Bohm theory, given

such an initial state  ; it is well known that if the incident particle is located
on one side of the plane of symmetry of the Stern-Gerlach apparatus, then it
will always remain there. It is obvious that if the particles is always located on
the same side of this plane, on repetition of the experiment, the statistics of the
outcomes will disagree with the Born rule. It is equally clear that if particles are
randomly distributed about this plane of symmetry then the Born rule will be
obeyed - but that is only to say that the probability distribution for the hidden
variables is determined by the state, in accordance with the Born rule. This is
what we are trying to prove.
The deduction we have provided gives half of what is required in this case.

Our strategy, recall, was to derive constraints on an algorithm - any algorithm
- that takes as inputs experimental models and yields as outputs expectation
values. The constraints apply even if the state is incomplete, even if there are
additional parameters controlling individual measurement outcomes - so long as
the state alone determines the statistical distribution of the hidden variables.
Given that, then any symmetries of the state will also be symmetries of the
distribution of hidden variables. In application to the de Broglie-Bohm theory,
our result indeed implies that the particle distribution must be given by the
Born rule - this is no longer an additional postulate of the theory - so long as
the particle distribution is determined only by the state. The assumption is not
that particles must be distributed in accordance with the Born rule, but that
they are distributed by any rule at all that is determined by the state - and
from that it follows it is the Born rule. (Whether this assumption is a natural
one from the point of view of the de Broglie-Bohm theory is another matter.)
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