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The Everett Interpretation: Probability 1 

Simon Saunders 

 

The Everett interpretation of quantum mechanics is, inter alia, an interpretation of objective 
probability: an account of what probability really is. In this respect, it is unlike other realist 
interpretations of quantum theory or indeed any proposed modification to quantum mechanics 
(like pilot-wave theory and dynamical collapse theories); in none of these is probability itself 
the locus of inquiry. As for why the Everett interpretation is so engaged with the question of 
probability, it is in its nature: its starting point is the unitary, deterministic equations of quantum 
mechanics, and it introduces no hidden variables with values unknown. 

Does it explain what objective probability is, or does it explain it away? If there are chances 
out there in the world, they are the branch weights. All who take the Everett interpretation 
seriously are agreed on this much: there is macroscopic branching structure to the wave-
function, and there are the squared amplitudes of those branches, the branch weights. The 
branches are worlds – provisionally, worlds at some time. The approach offers a picture of a 
branching tree with us at some branch, place, and time within. But whether these weights 
should properly be called “chances” or “physical probabilities” is another matter. For some, 
even among Everett’s defenders, it is a disappearance theory of chance; there are no physical 
chances; probability only lives on as implicit in the preferences of rational agents, or as a 
“caring measure” over branches, or in degrees of confidence when it comes to the confirmation 
of theories or laws; probability has no place in the physics itself.2 The interpretation was 
published by Hugh Everett III in 1957 under the name “‘Relative state’ formulation of quantum 
mechanics”; he named a much longer manuscript “Wave Mechanics Without Probability.”3 

Dissent on this point among Everett’s defenders is significant. If the basic category of 
probability is to be abolished, Everett’s approach can hardly claim to be an interpretation of 
quantum mechanics: for is not the theory couched in terms of the language of probability? 
Critics may well conclude that their work has been done for them, but for three reasons they 
should think again: 

First, because many of the criticisms that apply to probability in the Everett interpretation apply 
to every other half-way serious theory of physical probability. The difficulties may only be 
more vivid, more obvious, in the Everett interpretation; that may be to its credit.4  

Second, because in philosophy of probability over the last three decades (and a mark of the 
influence of David Lewis’s writings) a great deal of attention has been devoted to “reductive” 
theories of chance: theories that start with a non-chancy, “base” level of properties and relations 
(“Humean” properties and relations), on which probabilities, if any, are to supervene. Everett 
called his work “wave mechanics without probability” for good reason: it provides a non-
chancy base level of categorical properties and relations, deterministically evolving in time. It 
fits this mold – branching and branch amplitudes don’t seem to involve chance. This is typical 
of reduction: neither do wavelengths of light and relative spectral reflectancies of surfaces seem 
to involve colours. Moreover, all this philosophical time and energy has only gone to show just 
how difficult the chance concept is in comparison to other more successful reductive projects 
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(of colours and other secondary qualities, causation, modality, persons, and even mind). It was 
with chance, famously, that Lewis feared his “Humean supervenience” project would fail. 
Naïve frequentism, the view that chances at t are relative frequencies up to time t, fails for well-
known reasons.5 The proposal that they may depend on future relative frequencies too, one of 
Lewis’s main innovations, falls prey to “undermining” (see Section 5). But the Everett 
interpretation of quantum mechanics provides a different supervenience basis (a branching 
structure) and new primitive relations (relations in phase and amplitude), and the differences 
appear to be decisive: armed with these, the usual criteria for reductive theories of chance can 
be met to perfection.  

Third, among those criteria for a successful reductive theory of chance there is one that has 
rarely been met even in isolation: “the decision-theory link”, the link between physical 
probability and rational belief. As distilled by Lewis and others, it is to explain, or justify, the 
“Principal Principle”, roughly speaking the principle that if you know the chance of E at t is x, 
then your credence in E at t should be x. The theory of probability as it was developed by Blaise 
Pascal and Pierre-Simon Laplace had always included this link, for they based probability on 
a principle of indifference, in turn based on the symmetries of actual things. That worked well 
for games of chance (where dice, coins and cards have obvious symmetries), but less so for 
subsequent applications of probability theory to physics.6 In the mathematical development 
probability theory in terms of measure theory and Boolean algebras by Emile Borel at the end 
of the 19th century, the link with symmetries was lost. Principles of indifference have played 
little role in philosophy of probability since.  

In this context the observation made by David Deutsch in 1999 that certain symmetries in 
quantum theory force a principle of indifference is of great importance. His further 
demonstration that by the use of various ancillary devices, the principle in effect forces the 
Born rule is game-changing. The argument was substantially strengthened by David Wallace, 
making do with considerably weaker axioms of decision theory, supplemented instead by 
explicit appeal to the decoherence-based Everett interpretation. Wallace’s book The Emergent 
Multiverse published in 2012 is a landmark in the foundations of both probability and quantum 
mechanics: nothing comparable for the decision-theory link has been achieved in any one-
world theory of chance, however fanciful, let alone one based on any extant science. 

It is not any old science. Quantum mechanics, by a long shot, is the most accurate, prolific, and 
unifying physical theory that has ever been seen – while yet, somehow, remaining the least 
understood. If the Everett interpretation is correct, it explains that fact as well. If in reality there 
is macroscopic branching satisfying the Schrödinger equation, and no hidden variables, no 
wonder quantum mechanics is so difficult to understand for those (the great majority) intent on 
a one-world interpretation. In contrast, none of the usual paradoxes of quantum mechanics pose 
any problem to the Everett interpretation: the measurement problem is solved, the appearance 
of Bell non-locality is explained,7 and no special posits are needed, over and above the 
assumption that the Schrödinger equation applies to everything. 
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1 The Connection with Uncertainty 

Many of the conceptual questions that arise with probability on the Everett interpretation of 
quantum mechanics arise equally in one-world theories, but one stands out:8 unlike in classical 
statistical mechanics and hidden-variable quantum theories, and unlike in a stochastic 
dynamical theory, there seems to be no room in the theory for the usual connection between 
chance and uncertainty. Knowing the quantum state and given a unitary deterministic process 
(the Schrödinger equation), in the absence of any additional and “hidden” variables, when a 
simple quantum experiment is performed the result is a superposition of all the outcomes, with 
varying phases and amplitudes. If that is all that there is, it seems we know everything there is 
to know of any salience – but then it seems there can be no place for uncertainty; and with no 
uncertainty, then there can be no probability either. It is difficult even to say what credences 
could possibly mean: degrees of belief in what, exactly? 

I offer three answers, increasingly deflationary, all consistent with one another. The first is that 
the model of measurement on which the argument rests is only a fragment of a realistic analysis. 
The branching structure of macroscopic bodies involves much more – inter alia, it requires the 
quantum histories formalism and the theory of quasiclassical domains (as argued in a 
companion paper, “The Everett interpretation: structure”9). In this formalism, there are 
superpositions of worlds understood as serial quasiclassical histories that extend to future 
times. The perspective is structural, a “quantum block universe”, using the Heisenberg-picture. 
But from this perspective there is an obvious candidate for ignorance: we do not know which 
history is our own. Uncertainty is self-locating uncertainty, and degrees of belief are beliefs 
about one’s location among all these histories. 

A similar conclusion can be arrived at from a number of different philosophical directions, 
beginning from any of persons, persistence, language use, or identity. Take personhood: what 
are persons in terms of the Everettian reductive base? In a one-world setting a popular answer 
is that they are continuants, four-dimensional histories, spatially localized at each time (so 
spacetime worms or world tubes). The same can be taken over to branching structure (work 
backward, from arbitrary future times). Then given the usual attribution of speech acts to 
persons, ignorance in the face of branching is inevitable. If a person asks, at time t, prior to 
branching, what happens next to her, she cannot possibly know.10 

This may seem like a cheat. Normally expressions that use indexicals like “here” or “now” or 
personal pronouns like “she” are tagged to places, times, persons, in a way that is causally 
informative. Prior to branching, how do persons that only differ with respect to future 
contingents presently pick themselves out? But they don’t have to: the perspective is non-local 
in time, as is appropriate to human agency. 

A second argument for uncertainty is a stripped-down version of the first. According to this, 
uncertainty is still bound up with self-location, but it is localized to the chance process. This 
will need some stage setting. Consider a simple schematic measurement process, say the 
measurement of the z-component of spin in the Stern-Gerlach experiment. Let the apparatus or 
observer be initially in a “ready” state |0⟩, and suppose that when presented with a spin system 
with positive z-component of spin in the state |𝜙!⟩	 it passes to a state in which it registers spin 
plus, denote | +⟩ , and presented with a state |𝜙"⟩ it passes to a state in which it registers spin 
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minus, denote | −⟩. That is, the unitary evolution UM (the subscript “M” is for measurement) 
should satisfy: 

																																									|𝜙!⟩⨂|0⟩ 		#!
)* 	|𝜙!$ ⟩⨂| +⟩																																												(1a)	 

																																														|𝜙"⟩⨂|0⟩ 		#!
)* 	|𝜙"$ ⟩⨂| −⟩.																																											(1b)					 

(There is no need to assume the experiment is repeatable; hence the primes on the spin states 
following the measurement, which could be anything.) For an initial state  

																																							|𝜓⟩ = 𝑐!|𝜙!⟩ +	𝑐"|𝜙"⟩																																																		(2) 

where 𝑐! and 𝑐" are non-zero complex numbers it follows from unitarity that  

																																						|𝜓⟩⨂|0⟩
#!
)* 𝑐!|𝜙!$ ⟩⨂| +⟩ +	𝑐"	|𝜙"$ ⟩⨂| −⟩.																(3) 

There are the two states at the end, in a superposition, two macroscopic branches; but there is 
only the one before the measurement. If we suppose, contrary to the preceding account, that 
persons are localized in time, and are fully described by a quantum state (like the initial state 
|0⟩), then prior to the measurement it seems there can be no self-locating uncertainty.11 But 
look again. Eq. (3) can equally be written:   

𝑐!|𝜙!⟩⨂|0⟩ +	𝑐"|𝜙"⟩⨂|0⟩ #!
)* 𝑐!|𝜙$!6⨂| +⟩ +	𝑐"	|𝜙

$
"6⨂| −⟩.														(4) 

There is an observer in the state |0⟩ correlated with the state |𝜙!⟩ (but who does not know it), 
prior to the measurement interaction, who will unitarily evolve to record the value plus, and 
there is an observer correlated with |𝜙"⟩ (who does not know it), similarly without interaction, 
who will go on to record the value minus. Why does Eq. (3) suggest the right reading, and not 
Eq. (4)?  

An added principle seems to be needed to rule out reading Eq. (4) in this way, perhaps a version 
of Leibniz’s principle of identity of indiscernibles, locally enforceable. For those so insistent, 
still an account of uncertainty can be given, shifting the period of uncertainty from immediately 
prior to the measurement, to a time immediately following. The observer, we may suppose, 
simply closes her eyes.12 Given which, post-measurement there are undoubtedly two observers 
present, with different properties (denote |0!⟩, |0"⟩), neither as yet aware of the outcome. In 
place of Eq. (4), we have: 

																																													|𝜓⟩⨂|0⟩
#!
)* 𝑐!|𝜙!⟩⨂|0!⟩ +		𝑐"|𝜙"⟩⨂|0"⟩														(5a)					 

																																																									
#"
)* 𝑐!|𝜙!⟩⨂| +⟩ +		𝑐"|𝜙"⟩⨂| −⟩																(5b) 

where 𝑈% is as before the measurement process, yielding a superposition of macroscopically 
distinct outcomes, and 𝑈& represents the further act of observation by the observer of what that 
outcome is. After Eq. (5a) but before Eq. (5b), there are unequivocally distinct observers, for 
the two states |0±6 ex hypothesis differ physically, each ignorant of which state they are in, 
and with which state they are correlated. Eq. (4) gives momentary pre-measurement 
uncertainty, and Eq. (5a) gives momentary post-measurement pre-observation uncertainty. 
Arguably, anticipating uncertainty to come is a form of pre-measurement uncertainty.13 
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A third and still weaker notion of uncertainty appeals only to behavior.14 Call predictive 
behavior with respect to E behavior or action that (i) predicts 𝐸 and (ii) commits solely to 𝐸, 
which selectively anticipates E to the exclusion of all other possibilities. Much of our behavior 
is predictive, in social interactions as in the natural world, as night follows day. But for other 
events, among them ruinous events, predictive behavior is often impossible – not because we 
cannot prepare for them but because we do not know when or whether they will occur. We 
cannot commit to more than one, by definition of “commitment”; we can of course still commit 
to just one, so at least in that eventuality we are fully prepared – and be right in that eventually, 
but then we will be wrong otherwise. Better, we do not commit to one eventuality at all; we 
prepare for all or several of them, taking out an insurance policy instead. We do not behave 
predictively; we entertain several possibilities; we call this uncertainty. 

Consider now branching in quantum mechanics, in the special case where the branching 
structure is fully known, as in performing a simple quantum experiment. Let some of the 
ruinous events be among the outcomes of the experiment (it is almost as bad as Schrödinger’s 
cat). Still predictive behavior is impossible, not because events 𝐸, 𝐸$, 𝐸$$… on different 
branches are unpredictable, as happening at unforeseen times, but because they are all 
happening at the same foreseen time. Any action initiated prior to measurement will take the 
same form in every branch, and if it is especially fitted to one, it will be unfitted to all the 
others. We can still commit to just one, so that at least in that branch we will be fully prepared 
– but at the price that in all the others we are unready.  

Resourcing events that occur unpredictably, at different times, is no different from resourcing 
events that occur at the same time, in different branches. Predictive behavior in both cases is 
impossible. A limited transfer of resources, from the times and branches in which ruinous 
events do not intrude to the times and branches in which they do, is the rational strategy. We 
should behave as we do when we are uncertain. Uncertainty in the face of branching, on this 
approach, does not require lack of propositional knowledge, or lack of self-locating knowledge, 
but reflects rather the lack of an ability: knowing everything there is to know, we still cannot 
act predictively. It is because the same ability is lacking when predictions cannot be made, our 
usual predicament, that we think probability must involve ignorance. Degrees of belief are 
important because they are salient to action; so too, and more directly, are degrees of 
commitment. 

 

2. The Connection with Statistics 

A second standard objection to the identification of probability with branch weight is that the 
connection with statistics is wrong. To take the measurement of spin with protocol (1), after N 
repetitions, with the same initial state (2) prepared for each trial, the result is a superposition 
of 2N branches, one for each possible sequence of outcomes, of varying weight depending on 
the sequence. Everett’s insight was that for large N, the collective weight – the squared 
amplitude – of the superposition of all those branches with anomalous statistics falls off 
exponentially in N in comparison to the weight of all those with the correct statistics.15 This is 
an example of a quantum law of large numbers (a “quantum Bernoulli theorem”). It is essential 
for the interpretation of branch weights as probabilities, but it is not sufficient for it; it does 
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not, for example, imply that anomalous histories are not there – only that they have low 
collective weight. For those who understood the theorem as an attempt to derive probabilities 
from statistics, the attempt fails.16 That was not, however, Everett’s intent, which was rather to 
show parity with the way probability enters in classical statistical mechanics.  

But is there parity? It is true that on any theory of probability there is a non-zero probability of 
anomalous statistics; but in a one-world setting, events of small enough probability may never 
happen. However, they will happen, eventually, in a one-world stochastic theory for 
sufficiently many trials, and likewise in a one-world deterministic theory for a world of finite 
volume, given sufficient time. In a spatially large enough world, deterministic or stochastic, 
they happen, somewhere, all the time.  Given the size of the visible universe, and in the sure 
knowledge that it extends far beyond our event horizon, it is hard to set much store on the 
argument that the key difference with probability in Everett’s approach is that in one-world 
theories the universe may in fact be small enough not to contain anomalous statistics. 17  

Denizens of anomalous branches, or of anomalous stretches of history in one-world theories, 
will be misled by the observed statistics of measurements. They will conclude that quantum 
mechanics (or at least the Born rule) is false. But they will simply be unlucky. We already have 
to live with this: the earth is large enough, and people are numerous enough, to play out the 
same argument. There are those among us who have been struck by lightning many times: how 
can they not believe, in their heart of hearts, that someone is out to get them? – and that 
someone is protecting them too. They are epistemically unlucky. We are used to this.  

Questions of epistemology go over to questions of measurability. How can branch weights be 
measured? In the Everett interpretation, this is a purely dynamical question. It is the question 
of how amplitudes as they figure in a state of the form (2) can be reliably correlated with 
macroscopic indicators (a “probability meter"). The answer is that only the ratio of the 
amplitudes can reliably be measured, where “reliable” means: in branches with collective 
amplitude close to unity, when the number of trials is large.  We are back to the law of large 
numbers, derived from the unitary dynamics of quantum theory. In the same way, the 
Kolmogorov axioms themselves are derived as approximate, “high-level” laws. We are used 
to abstract theories of geometry, as opposed to physical geometry; there is likewise abstract 
probability theory, as opposed to physical probability.  

In one-world chance theories, how chances are measured will depend on what those theories 
say those chances are. This is work in progress (what, exactly, are chances in classical statistical 
mechanics, or in pilot-wave theory?), but no one expects to do any better than our actual 
practice. They will say: it follows from the concept of probability, that the best we can do is to 
measure relative frequencies, which will probably match the probabilities. However, if chances 
are the squared amplitudes of macroscopic branches, the Everett interpretation explains why 
they can only be measured in this way, as follow from dynamical considerations.18   

There are even those who criticize the Everett interpretation because of these limitative results; 
who insist that there must be a causal mechanism that will reliably bring about true beliefs 
about the amplitudes, where “reliable” does not involve probability; that it must be possible, if 
the unitary evolution is all that there is and if the theory is to be empirically adequate, for ratios 
in branch weights to be deterministically driven in to the memory of some measurement device 
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– and if this cannot be ensured then the Everett interpretation must be rejected.19 But no 
conventional theory of probability delivers so much; why demand it of quantum mechanics 
under the Everett interpretation?  

 

3. Decoherence Theory 

Two other objections will occupy us in this section and the next, both specific to the Everett 
interpretation. They both concern the reductive project itself, of giving an account of what 
probabilities are in terms of something that at first sight is not chancy. But some more stage- 
setting is needed.   

Everett offered up the picture of a branching structure to the wave-function in which branching 
was defined by measurement interactions; he had no account of it otherwise. But as a realist 
interpretation of quantum theory, branching cannot arise only with quantum measurements, as 
if, fantastically, only a single world existed before quantum mechanics was discovered, and 
before any quantum experiments were performed. How, in the absence of measurement 
interactions, does branching arise, and with respect to what basis?  

This was called the “preferred basis problem.”20 The solution lay in decoherence theory – 
roughly speaking, the theory of how the components of superpositions are subject to “effective” 
equations, yielding approximately classical behavior for the components, as a consequence of 
the unitary dynamics by which superpositions propagate as wholes. (for more background see 
the companion paper.) Where the rules break down (because only approximately satisfied), or 
where basis states propagate in the way of equations with dissipation and noise, each basis state 
evolves into further superpositions of basis states. Branching structure made out in this way is 
emergent: it involves approximations and the identification of salient dynamical variables, in 
much the same way that emergence is made out across the special sciences. But branching just 
is chancing; hence so too is chance. Physical probability is something emergent, along with 
classicality itself.21   

All this structure, thus revealed, is needed to show that branch weights play the chance roles – 
to obtain branching and branch weights to begin with. But decoherence theory itself involves 
probability. Take, for example, Ehrenfest’s theorem in the case of an initial state |𝜓⟩, well-
localized in position and momentum, important to Everett’s argument for branching (see the 
companion paper). There we define a quantity 〈𝒙?〉( that for sufficiently well-behaved 
potentials can be shown to satisfy classical equations. But the quantity 〈𝒙?〉( has a probabilistic 
interpretation: it is the expectation value of the position operator 𝒙? in the state |𝜓⟩, and it is 
measured by repeated experiments, invoking the Born rule.  

For another example, take the concept of a quasiclassical domain, as first defined by Murray 
Gell-Mann and James Hartle in 1989, likewise important to the Everett interpretation (see the 
companion paper). It is a history space “with probabilities peaked on quasiclassical histories.” 
According to Adrian Kent, a prominent critic, this shows that “the ontology is defined by 
applying the Born rule” (Kent 2010, pp. 337–338). Jonathan Halliwell, who has widely applied 
decoherent histories theory to quantum foundations, likewise speaks in probabilistic terms. For 
example, for a quasiclassical domain defined by hydrodynamical variables, he writes: 
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The final picture we have is as follows. We can imagine an initial state for the system 
which contains superpositions of macroscopically very distinct states. Decoherence of 
histories indicates that these states may be treated separately and we thus obtain a set 
of trajectories which may be regarded as exclusive alternatives each occurring with 
some probability. Those probabilities are peaked about the average values of the local 
densities. We have argued that each local density eigenstate may then tend to local 
equilibrium, and a set of hydrodynamic equations for the average values of the local 
densities then follows. We thus obtain a statistical ensemble of trajectories, each of 
which obeys hydrodynamic equations. These equations could be very different from 
one trajectory to the next, having, for example, significantly different values of 
temperature. In the most general case they could even be in different phases, for 
example one a gas, one a liquid.  (Halliwell, 2010, p. 111) 

The criticism, after all this stage-setting, is this. Probability talk is ubiquitous in the literature 
on decoherence theory. In order to have meaning, probabilities have to be assumed from the 
outset. But then it follows that there is no reductive, Humean base level of description, free of 
probabilistic reasoning, on which probabilities supervene. When it comes to probability in 
Everettian quantum mechanics, the project of Humean supervenience cannot even get off the 
ground.  

The point at issue, however, is not whether models of decoherence theory as usually derived 
and discussed involve probability; we grant that they do. Nor is it a surprise that these 
probabilities are interpreted in one-world terms (as in Halliwell’s writings): from its inception 
the decoherent histories theory was supposed to provide a one-world interpretation of quantum 
theory, without any need of Everett’s extreme ideas. The substantial objection can only be that 
these models cannot be divested of their probability interpretation, and of probability theory, 
not even on going over to the Everett interpretation.  

Is this true? To take the case of Gell-Mann and Hartle’s definition of a quasiclassical domain, 
here is a replacement formulation: it is a space of histories for which the amplitudes are strongly 
peaked on histories obeying a closed system of equations. “Strongly peaked amplitude” does 
not, prior to defining the branching structure of the state, have to be interpreted as “highly 
probable.” Halliwell’s summary can similarly be reworded, noting that the “average values of 
local densities” are defined not by averaging the densities, but as the values of the local 
densities on those trajectories on which the amplitudes are (very sharply) peaked. In the case 
of Ehrenfest’s theorem, whilst it is possible to interpret 〈𝒙?〉( operationally, in terms of multiple 
measurements (assuming similar systems can be prepared in the same state |𝜓⟩), it is also 
possible (when |𝜓⟩ is sharply peaked in position and momentum) to interpret it realistically, as 
the location of the peak of the wave-function as it evolves over time, in accordance with 
classical equations (as in the companion paper).  

To give another example, take the requirement of consistency among histories (the condition 
that the so-called “sum rules” be satisfied). This is supposedly an a priori constraint on any 
probability theory on a history space. In the quantum histories formalism, it forces the 
vanishing of the real part of the inner product of states of distinct histories, but that in turn can 
be directly related to interference between histories, which is hardly built into the concept of 
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probability. In fact the stronger condition, that real and imaginary parts vanish, is both more 
natural and far more widely used. As such it is the requirement that the structure to the quantum 
state, as defined in terms of quantum histories, is to be made out in terms of orthogonal vectors: 
in terms of a basis. Orthogonality is as useful to get at the structure of the state over a period 
of time, as it is for the structure to the state at an instant of time. Probability need not come into 
it.22  

The objection may concern justification rather than understanding, particularly if decoherence 
theory is used to derive the Born rule. According to Wojciech Zurek, an early pioneer of 
decoherence theory, concepts like “partial trace” and “reduced density matrix” cannot be used 
for that purpose “because their physical significance depends on Born’s rule.”23 For a more 
recent critique:  

In order to neglect small values in favour of larger values, we have to establish that the 
magnitude of the corresponding variable is related to the entry’s effect on the 
measurement to be performed. Since experimental testing and the entries in the density 
matrix are related in terms of the probabilities for measuring certain outcomes, in order 
to establish the negligibility of small entries in the density matrix we must introduce 
the Born rule. 

There is another way to analyze the effect on the measurement to be performed, however: 
model that measurement device explicitly in the formalism – precisely Everett’s method. So 
long as we may interpret the quantum state that results, for example, in terms of a macroscopic 
pointer position, it can be established whether it depends on those small entries – on whether 
the off-diagonal elements in the reduced density matrix (for example) can be neglected, without 
consequence. And pointer positions, as we have just seen, move about in three-dimensional 
space, within the limits of Ehrenfest’s theorem, as do classical particles, and can be picked out 
on that basis without any need for probabilities – despite the fact (this being the Everett 
interpretation) they occur in superpositions. 

As W.V. Quine said, a physical theory is tested as a whole; it is the exception when different 
parts of it can be isolated as independently testable. It is a virtue where it is possible, not a 
requirement to which theories must be held accountable. This is “meaning holism”, otherwise 
known as “the Duhem-Quine thesis”, and it has been widely accepted in philosophy of science 
in the last century. 

 

4. Branch Counting 

Given the branching structure to the universal wave function, it is clear what is the intended 
interpretation of probability (ratios in branch weights). Are we sure there is no rival alternative? 
There is one that has been taken seriously even by those sympathetic to Everett’s ideas: the 
branch-counting rule.24 It is the rule that on any branching event, all outcomes, all histories 
that have ensued at any given time are equiprobable. If from repeated measurements a large 
slew of histories result, the number with a given relative frequency (divided by the total 
number) determines the probability of that relative frequency. 
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The result, for the Everett interpretation, is mayhem. To take again the measurement of spin 
with initial state (2), after N measurements the vast majority of states have relative frequency 
of plus-outcomes equal to one half, and likewise for minus-outcomes one half, entirely 
independent of |𝑐!|) and |𝑐"|). When this ratio differs significantly from unity, only a tiny 
minority of branches after N trials comply with the Born-rule. 

The branch-counting rule makes nonsense of quantum mechanics but it appears to be suggested 
by the picture of branching. It spells trouble for a reductive approach to probability if the base 
provides two quite different candidates for the chance role, ratios in branch weights, and ratios 
in branch numbers. We know which one is wrong, on empirical grounds, but what makes the 
one probability, and not the other? Probability, it suddenly seems, may have to be taken as a 
primitive after all.    

In point of fact (as shown by Wallace 2012), this probability rule – call it “naive” branch 
counting – conflicts rather straightforwardly with axioms of probability. Thus, consider Eq. 
(5a), and suppose, in place of Eq. (5b), a second measurement is made at time 𝑡*, but only in 
the branch with the plus-outcome, of something else entirely, say position, producing two 
further branches at 𝑡), each with the plus-outcome. In the branch with a minus-outcome, no 
further measurement is made, so there is only one such branch at 𝑡). So what is the probability 
of the plus outcome at 𝑡)? At 𝑡* it was one-half, at 𝑡) two-thirds, but the latter cannot be 
obtained by updating in time, for it is in conflict with the sum rule: 

Pr(+; 𝑡)) = Pr	(+; 𝑡)/+; 𝑡*)Pr	(+; 𝑡*)	 +	Pr		(+; 𝑡)/−; 𝑡*)Pr	(−; 𝑡*)																			(6) 

which follows from the probability calculus for histories when the probabilities of plus and 
minus outcomes at 𝑡* sum to unity. Using naive branch counting, Eq. (6) yields one-half, not 
two-thirds. 25 

It follows that the naive branch counting rule is not, in fact, a coherent probability rule at all. 
If this were the only alternative to the Born rule, there would be no problem of 
underdetermination as alleged. But there is another branch-counting rule that is if anything 
more intuitive: it is that on each branching event, the probabilities of each branch thus produced 
are the same, with probabilities for branches at subsequent times not equiprobable, but 
depending on how each branch came about, all conforming to sum rules of the form (6).26 

This new branch-counting rule is in general just as hopelessly at odds with the Born rule; 
moreover, it is manifestly in conflict with locality (as permitting super-luminary signaling). 27 
But that is only grist to the skeptic’s mill: the skeptic is arguing that the branching structure to 
the state on measurement, with number equal to the number of possible outcomes, the central 
concept of the Everett interpretation, suggests an altogether inappropriate concept of 
probability. If it is at odds with relativity as well as the Born rule, so much the worse for the 
Everett interpretation.   

But is this branching number so defined central to the Everett interpretation? It was prior to 
decoherence theory, when appeal to experiments, with a definite number of possible outcomes, 
was the only way that branching was defined. But decoherence theory changed all that. 
Decoherence theory, as argued in the companion paper, just is the theory of branching 
structure, but as it occurs naturally, independent of whether any experiments are performed. 
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Using decoherence theory, when measurements are made, branching number has nothing to do 
with the number of readings that can be made. Consider again the measurement of spin, and 
specifically, consider just one of the two protocols, say Eq. (1a). Is there just one way this 
experiment can come about – as a physical process? Consider all the quasiclassical processes 
going on – the thermal fluctuations, variations in pressure, Brownian motions, cascades of 
phonons, scattering of light – all of them involving branching, and all that just on opening the 
laboratory door. There are clearly countless different ways that the apparatus can obey Eq. 
(1a), evolving from macrostates in which it reads “ready” to those in which it reads “+” even 
when the initial spin state that is measured is always |𝜙!⟩. Here, “countless” means undefined: 
the number of branches, specified by what goes on in each branch during the process of 
measurement, is undefined.  

 This could be work in progress. It may be, for example, that there is a finest-grained history 
space that is a decohering history space, indeed, a quasiclassical domain – and we just don’t 
happen to know how to approximate it. We use a convenient definition, and relative to this the 
branch number is fixed; the number is somewhat arbitrary to be sure, depending on the coarse-
graining, but it might be thought of as our best guess on what the “correct” fine-graining is. If 
it can be shown that the probabilities thus defined (as ratios in finite numbers) are insensitive 
to this coarse-graining, including coarse-graining in time, the new branch-counting rule would 
be definable after all – to the possible discredit of the Everett interpretation.28 

The true nature of the difficulty only now comes into focus. For of all of these branches, thus 
defined, waiting to be counted: is it all of them, or only the ones with non-zero amplitudes? 
Neither choice makes any sense. If it is all of them, then the numbers are completely 
independent of the state; in what sense is this an interpretation of the structure of the state? But 
if only non-zero amplitude branches are counted, the numbers will be discontinuous functions 
of the amplitudes. The tiniest variation in amplitude may make for arbitrarily large variations 
in branch numbers.29 Yet continuity in the amplitudes (in the Hilbert-space norm, the norm 
topology) is essential to decoherence theory and the unitary dynamics; as likewise to spectral 
theory, and the whole edifice of quantum mechanics. 

The two objections to Everett’s approach – that decoherence theory must be founded on a 
probability rule, and that one such rule is the branch-counting rule – can now be nicely brought 
together. Given the branch-counting rule as just stated, indeed no approximation can be made, 
no low-amplitude history neglected, without checking with that rule. But it is a Pyrrhic victory, 
twice over. Branch counting is hardly a rival to the branch-weight rule as an interpretation of 
branching structure, if it brings that branching structure crashing down. And of course the 
tiniest of approximations used in a theoretical model must be justified by the probability rule, 
if the latter is so patently at variance with the mathematical structure of the theory. 

The supervenience project goes precisely the other way. Branch numbers can always be defined 
in terms of the branch weights, by the requirement that they have equal weight. The absolute 
numbers thus arrived at are arbitrary, to be sure, but ratios in those numbers are well-defined, 
free of any convention, in agreement with the Born rule.30   
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5. Undermining 

The philosophical literature on reductive “Humean” theories of chance has led to a certain 
consensus. Such a theory should satisfy the following:31  

(i) The Principal Principle – one should set one’s credence in E at t equal to the chance of 
E at t, no matter what else one knows, provided one has no magical (no “inadmissible”) 
information from the future. 

(ii) Quantitative constraints – the chance of an event after it occurs is always 1 or 0; an 
event that has value 0 or 1 at one time retains that value for all subsequent times.  

(iii) The chance-frequency link – the relative frequency of Es in an ensemble of systems all 
prepared in the same state approaches the probability of E in that state as the size of the 
ensemble increases, but the possibility of divergence in any finite ensemble remains, 
no matter how large the ensemble.   

It has led to a consensus, in particular, that in a conventional Humean setting (meaning, inter 
alia, a one-world setting) no such theory has been found. Indeed, many conclude no such theory 
can be found, that there can be no “perfect” theory of chance.32 The difficulty is that the link 
between chance and the reductive base must be slack – to countenance (iii) – so, for example, 
there must be possible worlds in which the statistics are the same and the chances different, or 
the chances the same and the statistics different; but no, the link has to be tight, the chances 
cannot drift far from actual events. If the two were distinct existences, there would be a world 
where E occurs at time t, but where the chance of E at some later time is not one, contrary to 
(ii).  

Add to these the Basic Chance Principle (BCP) (Bigelow et al., 1993), the principle, roughly, 
that the chance for an event E at some future time may be the same, as determined by events 
up to some earlier time, whether or not E actually happens. Indexing to worlds and to times it 
is the principle: 

(iv) BCP – if the chance of E at world w at time t is 𝑃+,(𝐸) > 0, then there exists a world 
𝑤$ which (a) matches w up to time t, (b) contains E, and (c) satisfies 𝑃+,(𝐸) = 𝑃+,#(𝐸). 

If there were no such world 𝑤$, then the chance of E at t could not be the same independent of 
whether or not E happens – for if the BCP fails, there is no world containing 𝐸 for which the 
chance at t is the same. Yet it seems the BCP must fail – either that, or there are no patterns of 
events 𝐸, 𝐸′, that yield distinct chance theories in any worlds 𝑤, 𝑤′ in which 𝐸 and 𝐸′ occur; 
distinct, in particular, in that at some t, 𝑃+,(𝐸) ≠ 𝑃+,#(𝐸), and 𝑃+,(𝐸′) ≠ 𝑃+,#(𝐸′).  

This is an instance of “undermining.” A similar argument shows that (i), the Principal Principle, 
must fail; in effect, it shows that knowing the chance at t for such patterns is to have magical 
information about the future – is itself inadmissible – because what that chance is depends on 
what happens at future times.33 But if there are no patterns of this kind, the very idea of a 
Humean reductive theory of chance is in trouble.  

Back to Everett. A quasiclassical history, divested of amplitude and phase, just is one local 
pattern of events after another; each is a Humean tapestry of events, a Lewisian world 𝑤. The 
Everett interpretation thus provides a home for Lewis’s metaphysics, but with these essential 
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differences: the worlds are emergent structures, so no best-system analysis based on them can 
hope to give the fundamental laws (at most they may give the emergent laws); the worlds bear 
new and irreducible relations to each other, defined in terms of amplitude and phase; and the 
worlds have branching structure,34 as defined by these amplitudes and phases. 

On the most straightforward identifications, Lewisian worlds correspond to quasiclassical 
histories,35 but the reductive base is the collection of all these histories in a superposition – a 
branching structure – or, in Lewisian terms, a collection of worlds. The chance theory for this 
collection, arranged in (derived from) this branching structure, is that chance events are 
branching events, and chances are ratios in branch weights: chancing is branching. By that 
theory, for any world w at time t, the chances are determined only by its history up to time t, 
for that alone (with the unitary dynamics) determines the amplitudes of branching events 
thereafter. They are the same (as functions 𝑃+, from an event space to chances) for all worlds 
w in the branching structure that match up to time t. There is just the one set of chances, at a 
branching event, regardless of subsequent branching events. 

This theory of chance meets the principles (ii)–(iv) to perfection. The indexing to times in (ii) 
is automatically taken care of: chances are relations between branch weights, indexed to times, 
and they are retrodictively 0s and 1s because of branching structure (no recombination of 
branches; see the companion paper). (iii) is satisfied, reading “possibly” to mean there exist 
anomalous histories, albeit of vanishingly small amplitude. (iv) is satisfied: for every world w’ 
that matches w up to time t, the chances at t of E are the same, for chances at t are determined 
by the prior history at t. There is no undermining: the conclusion of the undermining argument 
was that either the BCP is wrong or (roughly) present chances in world  𝑤 are not determined 
by future events in 𝑤; but the latter is now a feature of the chance theory, not a bug. 

How is it a feature, and isn’t there a cost? Yes: what was before an instability in what the 
chances really are (if dependent on future chance events, as well as past), now shows up as a 
mismatch of relative frequencies to branch weights in some branches. It has turned into the 
problem of anomalous statistics, already considered. There are worlds whose inhabitants will 
be misled by the observed statistics, the epistemically unlucky ones. In the overwhelming 
majority of worlds,37 their inhabitants will be led to the right theory. The Born rule remains the 
best-systems analysis of all the branching worlds, but it does not supervene on the statistics in 
each world, rather it supervenes on – is a simple function of – the branch weights of all the 
worlds. Could the denizens of the unlucky worlds survey the entire branching structure, their 
favored best systems analysis would be the Born rule. 

There remains (i), Lewis’s famous Principal Principle. But here too there has been progress. 
 

6. The Principal Principle 

Failing an account of what chances are, as indexed to times, it was obscure why credence as 
indexed to times should conform to them.38 It was already obscure why they should if chances 
are relative frequencies of events up to that time, although there at least the obscurity was 
dignified as a philosophical problem (the “problem of induction”). In this context, the recently 
proved Born-rule theorem is little short of a philosophical sensation: it is the derivation of the 
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Principle Principal in the special case where the chances are identified as branch weights and 
chance processes are identified as branching processes. Alternatively, assuming the Princpal 
Princple, it shows that branch weights should be identified as physical probabilities, for the 
latter are whatever satisfy the Principal Principle. Either way, it shows why credences should 
conform to branch weights. 

The result turns on the principle of indifference already announced, but it also depends on 
rational choice theory, and, specifically, on the operational techniques first introduced by Frank 
Ramsey and Bruno de Finetti in the early part of the last century, whereby credences are 
operationalized in terms of betting behavior. The Dutch book argument is a case in point: 
agents were sure to lose money whatever the outcomes of bets, if their betting quotients did 
not conform to the axioms of probability theory. In Leonard Savage’s 1954 landmark, The 
Foundations of Statistics (published by Princeton just as Everett began his studies), this took 
the form of a representation theorem: if the preferences of an agent among bets (of sufficient 
number and variety) conform to certain rules in decision theory, then there is an essentially 
unique credence function and utility function, such that those preferences are the same as by 
ranking by expected utility. That one’s credence and utility function should dictate a rank 
ordering is obvious, it is the converse, perhaps, that is surprising. Still, that credence function, 
other than qualifying as a bone fide probability distribution, could be anything, as likewise 
one’s utilities.  

Fairly obviously, it will be impossible to tie down the credence function further without 
knowing more about how the games are actually played, and what the agent knows about how 
the games are actually played – in short, without a physical theory governing those games, and 
agents who base their choices among games on that theory. But as before it is essential, if it is 
to serve its purpose, that that theory be divested of any probability interpretation: wave 
mechanics without probability to the rescue again. Moreover, it would be better if that theory 
is divested, even, of any talk of uncertainty, since that notion too is contested.39 Given all of 
which, the remarkable result first proved by Deutsch and as strengthened by Wallace is that 
wave mechanics, thus disinterpreted, is enough to tie down that credence function uniquely, to 
the point that it must conform to the branch weights. Agents, if rational, basing their choices 
on unitary quantum mechanics, and fully cognizant of the branching produced by each quantum 
game (as determined by the physics of the apparatus) and knowing the stake for each game and 
the rewards on each outcome, will order their preferences among games as if maximizing their 
expected utilities, for some utility function, using the Born rule. Difference in utilities will 
make a difference to their preferences, but their credence functions will always be the same: 
the Born rule.  

The core of the proof is a symmetry argument.40 Consider, for the last time, the measurement 
of the z-component of spin. Suppose an agent is to bet on the spin-plus outcome of the 
experiment, where the measurement process satisfies Eq. (1), that is, according to the protocol: 

𝑃1:											|𝜙!⟩⨂|0⟩ 		#$
)* | +⟩					 

													|𝜙"⟩⨂|0⟩ 		#$
)* | −⟩ 

(where we assume that the agent doesn’t care what happens to the state of the measured system 
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|𝜙±6 after the measurement, so it is just omitted). Let the agent’s credence in a spin-up outcome 
conditional on this protocol be 𝐶𝑟(+/𝑃1). Suppose now the protocol is changed to P2, 
according to which the same experiment is run, save that after the measurement the plus 
outcome is replaced by the minus-outcome, and vice versa. So the new protocol is: 

𝑃2:											|𝜙!⟩⨂|0⟩ #$
)*	| +⟩ 	

#%
)* | −⟩ 

																					|𝜙"⟩⨂|0⟩ 		#$
)*	| −⟩	

#%
)* | +⟩. 

Then 𝐶𝑟(+/𝑃1)		should be equal to 𝐶𝑟(−/𝑃2), since 𝑈) only swaps the outcomes after the 
measurement has been performed. But it follows that when the initial state is |𝜓⟩ as given by 
Eq. (2), the final state on P1 is (cf. Eq. (3)): 

																								|𝜓⟩⨂|0⟩
#$
)* 𝑐*| +⟩ + 𝑐)| −⟩ 

whereas on P2 it is: 

																																																																		|𝜓⟩⨂|0⟩
#%#$
)⎯⎯* 𝑐*| −⟩ + 𝑐)| +⟩																																							 

and in the particular case when	𝑐* = 𝑐) the two states at the end of the measurement are exactly 
the same, whichever protocol is used. Therefore, the agent should be indifferent (for this special 
case) which protocol is used. So:  

																																																																		𝐶𝑟	(±/𝑃1) = 𝐶𝑟(±	/𝑃2).																																				(7) 

We already have:  

																																																																										𝐶𝑟	(±/𝑃2) = 	𝐶𝑟(∓/𝑃1).																																  

So in the special case	𝑐* = 𝑐), it follows from Eq. (7): 

																																																																										𝐶𝑟	(±/𝑃1) = 	𝐶𝑟(∓/𝑃1)																																					  

and likewise for the protocol P2. The agent’s credences for the two outcomes, on either 
protocol, should be the same.  

Evidently, the argument at crucial moments appealed to normative judgments. The two states 
at the end of the two experiments, for the two protocols, won’t be exactly alike; but the agent 
shouldn’t care about microscopic inessentials. In extending the argument to rational ratios of 
|𝛼| and |𝛽|, ancillary devices are needed, which produce additional branching; but the agent 
shouldn’t care about that either, if the branches produced differ only in ways the agent doesn’t 
care about. The agent should only care about what is physically realized in each state (what 
can be given a dollar value in each state), and so on.  

Many of these normative judgments are based on pragmatic constraints, on the basis of that old 
adage, “ought” implies “can”; so contraposing, you ought not to care about branching per se, 
because you can’t (branching as determined by decoherence theory is ubiquitous). Others are 
more purely normative. The end result is a demonstration of why agents should care about 
branch weights, and why their credences should conform to them – and not, for example, to 
the number of four-leaf clovers on each branch, or the number of calibrations on the pointer 
dial.  
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Yet despite all these successes, the Born-rule theorem, for those convinced that the notion of 
probability in the Everett interpretation is otherwise unintelligible, has been found wanting. 
For them the theorem must carry the entire burden of probabilistic reasoning – whereby the 
explanation for the statistics of quantum experiments, normally provided by the Born rule, has 
to be provided instead by the betting strategies of experimentalists. But how can someone’s 
betting strategy explain why the radium atom has a half-life of less than a second? How can 
the Born rule, important to physics, be true by virtue of human behavior? Doesn’t it follow that 
there is no such thing as probability in a universe without people? Moreover, are there not 
alternatives to using the branch weights, no matter if fanciful or practically impossible to 
implement, that may not yet be irrational?41 But all this is to take the Born-rule theorem in 
isolation from the larger reductive project.  

The theorem demonstrates that the particular role ordinarily but mysteriously played by 
physical probabilities, whatever they are, in our rational lives, is played in a wholly perspicuous 
and unmysterious way by ratios in branch weights and branching in quantum mechanics, when 
known. It is because these quantities play all the other chance roles as well, that they deserve 
to be called probabilities.  
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