Product-free Lambek Calculus is NP-complete

Yury Savateev
Department of Mathematical Logic and Theory of Algorithms
Moscow State University

Abstract

In this paper we prove that the derivability problems for product-free Lambek calculus and product-free Lambek calculus allowing empty premises are NPcomplete. Also we introduce a new derivability characterization for these calculi.

Keywords: Lambek calculus, algorithmic complexity, proof nets.
2010 MSC: 03B47, 03F52

Introduction

Lambek calculus L was first introduced in [3]. Lambek calculus uses syntactic types that are built from primitive types using three binary connectives: multiplication, left division, and right division. Natural fragments of Lambek calculus are the product-free Lambek calculus $\mathrm{L}(\backslash, /)$, which does not use multiplication, and the unidirectional Lambek calculi, which have only one connective left: a division (left or right).

For the non-associative variant of Lambek calculus the derivability can be checked in polynomial time as shown in [2] (for the product-free fragment of the non-associative Lambek calculus this was proved already in [1]).

In [5] NP-completeness was proved for the derivability problem for full associative Lambek calculus. In [6] there was presented a polynomial algorithm for its unidirectional fragments.

We show that the classical satisfiability problem $S A T$ is polynomial time reducible to the $\mathrm{L}(\backslash, /)$-derivability problem and thus $\mathrm{L}(\backslash, /)$ is NP-complete.

After first presenting this result, the author was pointed to [4], where a very similar (but more complex) technique to explore the derivability for product-free Lambek calculus was presented, though without proving any complexity results.

1. Product-free Lambek Calculus

Product-free Lambek calculus $\mathrm{L}(\backslash, /)$ can be constructed as follows. Let $\mathbf{P}=\left\{p_{0}, p_{1}, \ldots\right\}$ be a countable set of what we call primitive types. Let Tp be the set of types constructed from primitive types with two binary connectives $/, \backslash$. We will denote primitive types by small letters (p, q, r, \ldots) and types by capital letters (A, B, C, \ldots). By capital greek letters ($\Pi, \Gamma, \Delta, \ldots$) we will denote finite (possibly empty) sequences of types. Expressions like $\Pi \rightarrow A$, where Π is not empty, are called sequents.

Axioms and rules of $\mathrm{L}(\backslash, /)$:

$$
\begin{array}{cl}
\text { A } \rightarrow A, & \frac{\Phi \rightarrow B \quad \Gamma B \Delta \rightarrow A}{\Gamma \Phi \Delta \rightarrow A}(\mathrm{CUT}), \\
\frac{\Pi A \rightarrow B}{\Pi \rightarrow(B / A)}(\rightarrow /), & \frac{\Phi \rightarrow A \quad \Gamma B \Delta \rightarrow C}{\Gamma(B / A) \Phi \Delta \rightarrow C}(/ \rightarrow), \\
\frac{A \Pi \rightarrow B}{\Pi \rightarrow(A \backslash B)}(\rightarrow \backslash), & \frac{\Phi \rightarrow A \quad \Gamma B \Delta \rightarrow C}{\Gamma \Phi(A \backslash B) \Delta \rightarrow C}(\backslash \rightarrow),
\end{array}
$$

(Here Γ and Δ can be empty.)
In this paper we will consider two calculi - $\mathrm{L}(\backslash, /)$ and $\mathrm{L}^{*}(\backslash, /)$, called product-free Lambek calculus allowing empty premises. In $L^{*}(\backslash, /)$ we allow the antecedent of a sequent to be empty.

It can be shown that in these calculi every derivable sequent has a cutfree derivation where all instances of the axiom are of the form $p \rightarrow p$ where $p \in \mathbf{P}$.

2. Reduction from $S A T$

Let $c_{1} \wedge \ldots \wedge c_{m}$ be a Boolean formula in conjunctive normal form with clauses $c_{1} \ldots c_{m}$ and variables $x_{1} \ldots x_{n}$. The reduction maps the formula to a sequent, which is derivable in $\mathrm{L}(\backslash, /)$ (and in $\mathrm{L}^{*}(\backslash, /)$) if and only if the formula $c_{1} \wedge \ldots \wedge c_{m}$ is satisfiable.

For any Boolean variable x_{i} let $\neg_{0} x_{i}$ stand for the literal $\neg x_{i}$ and $\neg_{1} x_{i}$ stand for the literal x_{i}.

Note that $\left\langle t_{1}, \ldots, t_{n}\right\rangle \in\{0,1\}^{n}$ is a satisfying assignment for the Boolean formula $c_{1} \wedge \ldots \wedge c_{m}$ if and only if for every $j \leq m$ there exists $i \leq n$ such that the literal $\neg_{t_{i}} x_{i}$ appears in the clause c_{j} (as usual, 1 stands for "true" and 0 stands for "false").

Let $p_{i}^{j}, q_{i}^{j}, a_{i}^{j}, b_{i}^{j} ; 0 \leq i \leq n, 0 \leq j \leq m$ be distinct primitive types from \mathbf{P}.

We define the following families of types:

$$
\begin{aligned}
G^{0} & \rightleftharpoons\left(p_{0}^{0} \backslash p_{n}^{0}\right), \\
G^{j} & \rightleftharpoons\left(q_{n}^{j} /\left(\left(q_{0}^{j} \backslash p_{0}^{j}\right) \backslash G^{j-1}\right)\right) \backslash p_{n}^{j}, \quad G \rightleftharpoons G^{m} \\
A_{i}^{0} & \rightleftharpoons\left(a_{i}^{0} \backslash p_{i}^{0}\right), \\
A_{i}^{j} & \rightleftharpoons\left(q_{i}^{j} /\left(\left(b_{i}^{j} \backslash a_{i}^{j}\right) \backslash A_{i}^{j-1}\right)\right) \backslash p_{i}^{j}, \quad A_{i} \rightleftharpoons A_{i}^{m}, \\
E_{i}^{0}(t) & \rightleftharpoons p_{i-1}^{0}, \\
E_{i}^{j}(t) & \rightleftharpoons \begin{cases}q_{i}^{j} /\left(\left(\left(q_{i-1}^{j} / E_{i}^{j-1}(t)\right) \backslash p_{i-1}^{j}\right) \backslash p_{i}^{j-1}\right), \quad \text { if } \neg_{t} x_{i} \text { appears in } c_{j} \\
\left(q_{i-1}^{j} /\left(q_{i}^{j} /\left(E_{i}^{j-1}(t) \backslash p_{i}^{j-1}\right)\right)\right) \backslash p_{i-1}^{j}, \quad \text { if } \neg_{t} x_{i} \text { does not appear in } c_{j}, \\
F_{i}(t) & \rightleftharpoons\left(E_{i}^{m}(t) \backslash p_{i}^{m}\right), \\
B_{i}^{0} & \rightleftharpoons a_{i}^{0}, \\
B_{i}^{j} & \rightleftharpoons q_{i-1}^{j} /\left(\left(\left(b_{i}^{j} / B_{i}^{j-1}\right) \backslash a_{i}^{j}\right) \backslash p_{i-1}^{j-1}\right), \quad B_{i} \rightleftharpoons B_{i}^{m} \backslash p_{i-1}^{m} .\end{cases}
\end{aligned}
$$

Let Π_{i} denote the following sequences of types:

$$
\left(F_{i}(0) /\left(B_{i} \backslash A_{i}\right)\right) F_{i}(0)\left(F_{i}(0) \backslash F_{i}(1)\right) .
$$

Theorem 2.1. The following statements are equivalent:

1. $c_{1} \wedge \ldots \wedge c_{m}$ is satisfiable.
2. $\mathrm{L}(\backslash, /) \vdash \Pi_{1} \ldots \Pi_{n} \rightarrow G$.
3. $\mathrm{L}^{*}(\backslash, /) \vdash \Pi_{1} \ldots \Pi_{n} \rightarrow G$.

This theorem will be proven in section 6 .

3. Derivability Characterization

Let At be the set of atoms or primitive types with superscripts, $\left\{p^{\langle i\rangle} \mid p \in\right.$ $\mathbf{P}, i \in \mathbb{Z}\}$. Let FS be the free monoid (the set of all finite strings) generated by elements of At. We will denote elements of FS by $\mathbb{A}, \mathbb{B}, \mathbb{C}$ and so on, by ε we will denote the empty string.

Consider two mappings:

$$
t: \mathrm{FS} \rightarrow \mathbf{P}, \quad t\left(\mathbb{A} p^{\langle i\rangle}\right)=p ; \quad d: \mathrm{FS} \rightarrow \mathbb{Z}, \quad d\left(\mathbb{A} p^{(i\rangle}\right)=i
$$

Let $\mathbb{A} \sqsubset \mathbb{B}$ denote that \mathbb{A} is a strict prefix of \mathbb{B} (i.e. there is $\mathbb{C} \neq \varepsilon \in \mathrm{FS}$ such that $\mathbb{B}=\mathbb{A} \mathbb{C}$). We will denote such \mathbb{C} as $\mathbb{A} \backslash \mathbb{B}$. By $\mathbb{A} \sqsubseteq \mathbb{B}$ we will denote that either $\mathbb{A} \sqsubset \mathbb{B}$ or $\mathbb{A}=\mathbb{B}$. We can define in the usual way the following notions: $\min _{\sqsubset}$, $\max _{\sqsubset}$, $\inf _{\sqsubset}$, $\sup _{\sqsubset},[\mathbb{A}, \mathbb{B}]_{\sqsubset}$, and $(\mathbb{A}, \mathbb{B}]_{\sqsubset}$.

For $\mathbb{A} \in \mathrm{FS}, \mathbb{A} \neq \varepsilon$ let $\mathcal{P}_{\mathbb{A}}=\{\mathbb{B} \mid \mathbb{B} \sqsubseteq \mathbb{A}, \mathbb{B} \neq \varepsilon\}$. The relation \sqsubseteq is a total order on $\mathcal{P}_{\mathbb{A}}$.

Let α be a partial function on $\mathcal{P}_{\mathbb{A}}$. For each such function we can define the following:

$$
\begin{aligned}
& \mathbb{B}<_{\alpha} \mathbb{C} \Leftrightarrow \exists n \geq 1, \alpha^{n}(\mathbb{B})=\mathbb{C}, \\
& \mathbb{B} \leq_{\alpha} \mathbb{C} \Leftrightarrow \mathbb{B}<_{\alpha} \mathbb{C} \vee \mathbb{B}=\mathbb{C}, \\
& \mu_{\alpha}^{-}(\mathbb{B})=\min _{\ulcorner }(\mathbb{B}, \alpha(\mathbb{B})), \\
& \mu_{\alpha}^{+}(\mathbb{B})=\max _{\ulcorner }(\mathbb{B}, \alpha(\mathbb{B})), \\
& \mathcal{F}_{\alpha}(\mathbb{B})=\left\{\mathbb{C} \mid \mathbb{C} \leq_{\alpha} \mathbb{B}\right\}, \\
& \nu_{\alpha}^{-}(\mathbb{B})=\inf _{\ulcorner }\left(\mathcal{F}_{\alpha}(\mathbb{B})\right), \\
& \nu_{\alpha}^{+}(\mathbb{B})=\sup _{\ulcorner }\left(\mathcal{F}_{\alpha}(\mathbb{B})\right) .
\end{aligned}
$$

A function $f: X \rightarrow X$ is an antiendomorphism if $\forall a, b \in X, f(a b)=$ $f(b) f(a)$. In a free monoid it can be defined by its actions on the generators. Consider two antiendomorphisms $(\cdot)^{\leftarrow}$ and $(\cdot)^{\rightarrow}$ on FS defined by

$$
\begin{gathered}
\left(p^{\langle 0\rangle}\right)^{\leftarrow}=p^{\langle-1\rangle}, \quad\left(p^{\langle 0\rangle}\right)^{\rightarrow}=p^{\langle 1\rangle}, \\
\left(p^{\langle i\rangle}\right)^{\leftarrow}=\left(p^{\langle i\rangle}\right)^{\rightarrow}=p^{\langle-i-\operatorname{sgn}(i)\rangle}, \text { for } i \neq 0 .
\end{gathered}
$$

Consider $\llbracket \cdot \rrbracket: \mathrm{Tp} \rightarrow$ FS, a mapping from Lambek types to elements of the free monoid defined by

$$
\llbracket p \rrbracket=p^{\langle 0\rangle}, \quad \llbracket(A / B) \rrbracket=\llbracket B \rrbracket \rightarrow \llbracket A \rrbracket, \quad \llbracket(A \backslash B) \rrbracket=\llbracket B \rrbracket \llbracket A \rrbracket \leftarrow
$$

Let $A \in \mathrm{Tp}$. Let us define φ - the partial function on $\mathcal{P}_{\llbracket A \rrbracket}$ that reflects the structure of A :

$$
\varphi(\mathbb{A})= \begin{cases}\inf _{\sqsubset}\{\mathbb{B}|\mathbb{A} \sqsubset \mathbb{B},|d(\mathbb{B})|=|d(\mathbb{A})|-1\}, & \text { if } d(\mathbb{A})>0 ; \\ \sup _{\sqsubset}\{\mathbb{B}|\mathbb{B} \sqsubset \mathbb{A},|d(\mathbb{B})|=|d(\mathbb{A})|-1\}, & \text { if } d(\mathbb{A})<0 .\end{cases}
$$

It can be easily shown that the following facts hold:

1. There is a unique $\mathbb{A}_{0} \in \mathcal{P}_{\llbracket A \rrbracket}$ such that $d\left(\mathbb{A}_{0}\right)=0$.
2. $\varphi(\mathbb{A})$ is defined for every $\mathbb{A} \neq \mathbb{A}_{0}$.
3. \leq_{φ} is a partial order on $\mathcal{P}_{\llbracket A \rrbracket}$.
4. For every $i \in \mathbb{N}$ such that $i<|d(\mathbb{A})|$ there exists \mathbb{B} such that $|d(\mathbb{B})|=i$ and $\mathbb{A}<_{\varphi} \mathbb{B}$, for instance $\mathbb{A} \leq_{\varphi} \mathbb{A}_{0}$.
5. If $\mathbb{A} \in\left[\mu_{\varphi}^{-}(\mathbb{B}), \mu_{\varphi}^{+}(\mathbb{B})\right]_{\llcorner }$, then $\mathbb{A} \leq_{\varphi} \varphi(\mathbb{B})$.

Suppose $\mathbb{A}, \mathbb{B} \in \mathcal{P}_{\llbracket A \rrbracket}$. There exists $\mathbb{C} \in \mathcal{P}_{\llbracket A \rrbracket}$ such that $\mathbb{A} \leq_{\varphi} \mathbb{C}, \mathbb{B} \leq_{\varphi} \mathbb{C}$, and for all $\mathbb{C}^{\prime} \in \mathcal{P}_{\llbracket A \rrbracket}$ such that $\mathbb{A}<_{\varphi} \mathbb{C}^{\prime}$ and $\mathbb{A} \leq_{\varphi} \mathbb{C}^{\prime}$, we have $\mathbb{C} \leq_{\varphi} \mathbb{C}^{\prime}$. Such \mathbb{C} is called the φ-join of \mathbb{A} and \mathbb{B}.

A set $\mathcal{G} \subset \mathcal{P}_{\llbracket A \rrbracket}$ is called φ-closed if there is no $\mathbb{A} \notin \mathcal{G}$ such that $\varphi(\mathbb{A}) \in \mathcal{G}$.
Let $\mathcal{N}_{\mathbb{A}}=\left\{\mathbb{B} \in \mathcal{P}_{\mathbb{A}} \mid d(\mathbb{B})=2 i+1, i \in \mathbb{Z}\right\}$.
Suppose we have a Lambek sequent $A_{1} \ldots A_{n} \rightarrow B$. Let

$$
\mathbb{W}=\llbracket\left(\ldots\left(B / A_{n}\right) / \ldots\right) / A_{1} \rrbracket=\llbracket A_{1} \rrbracket \rightarrow \ldots \llbracket A_{n} \rrbracket \rightarrow \llbracket B \rrbracket .
$$

Let π be a function on $\mathcal{P}_{\mathbb{W}}$, and ψ be a partial function defined by

$$
\psi(\mathbb{A})= \begin{cases}\pi(\mathbb{A}), & \text { if } \mathbb{A} \in \mathcal{N}_{\mathbb{W}} ; \\ \varphi(\mathbb{A}), & \text { if } \mathbb{A} \notin \mathcal{N}_{\mathbb{W}} \text { and } d(\mathbb{A}) \neq 0\end{cases}
$$

To characterize derivability of the sequent $A_{1} \ldots A_{n} \rightarrow B$ we shall use the following conditions, which we call proof conditions.

1. If $\mathbb{A} \in \mathcal{N}_{\mathbb{W}}$, then $\pi(\mathbb{A}) \notin \mathcal{N}_{\mathbb{W}}$ and $\pi^{2}(\mathbb{A})=\mathbb{A}$ for all $\mathbb{A} \in \mathcal{P}_{\mathbb{W}}$.
2. $t(\pi(\mathbb{A}))=t(\mathbb{A})$.
3. $\mu_{\pi}^{-}(\mathbb{A}) \sqsubset \mu_{\pi}^{-}(\mathbb{B}) \Rightarrow \mu_{\pi}^{+}(\mathbb{A}) \sqsubset \mu_{\pi}^{-}(\mathbb{B}) \vee \mu_{\pi}^{+}(\mathbb{B}) \sqsubset \mu_{\pi}^{+}(\mathbb{A})$.
4. $\mathbb{A} \in \mathcal{N}_{\mathbb{W}} \Longrightarrow \mathbb{A}<_{\psi} \varphi(\mathbb{A})$ or equivalently $\forall \mathbb{A} \in \mathcal{P}_{\mathbb{W}}, \mathcal{F}_{\varphi}(\mathbb{A}) \subset \mathcal{F}_{\psi}(\mathbb{A})$.
5. $\mathbb{A} \notin \mathcal{N}_{\mathbb{W}} \wedge \mathbb{A} \neq \mathbb{A}_{0} \Longrightarrow \exists \mathbb{B}\left(\mathbb{B}<_{\psi} \mathbb{A} \wedge \mathbb{B} \not \chi_{\varphi} \mathbb{A}\right)$.

Theorem 3.1 (Derivability Criterion). $\mathrm{L}^{*}(\backslash, /) \vdash A_{1} \ldots A_{n} \rightarrow B$ if and only if there exists π satisfying proof conditions (1)-(4).
$\mathrm{L}(\backslash, /) \vdash A_{1} \ldots A_{n} \rightarrow B$ if and only if $n>0$ and there exists π satisfying proof conditions (1)-(5).

This theorem will be proven in section 5 .
We will call $\mathcal{G} \subset \mathcal{P}_{\mathbb{W}} \pi$-closed if for all $\mathbb{A} \in \mathcal{G}, \pi(\mathbb{A}) \in \mathcal{G}$. It is readily seen that if π satisfies proof conditions (1) and (3), then for every $\mathbb{A} \in \mathcal{N}_{\mathbb{W}}$, $\left[\mu_{\pi}^{-}(\mathbb{A}), \mu_{\pi}^{+}(\mathbb{A})\right]_{\sqsubset}$ and $\mathcal{P}_{\mathbb{W}} \backslash\left[\mu_{\pi}^{-}(\mathbb{A}), \mu_{\pi}^{+}(\mathbb{A})\right]_{\sqsubset}$ are π-closed. If π satisfies proof conditions (1) and (2), then \mathcal{G} cannot be π-closed if for given $p \in \mathbf{P}$ there are odd number of $\mathbb{A} \in \mathcal{G}$ such that $t(\mathbb{A})=p$.

Lemma 3.1. Suppose we have two sequents $A_{1} \ldots A_{n} \rightarrow B$ and $C_{1} \ldots C_{m} \rightarrow$ D. Let $\mathrm{L}^{*}(\backslash, /) \vdash A_{1} \ldots A_{n} \rightarrow B$. Let $\mathbb{W}=\llbracket A_{1} \rrbracket \rightarrow \ldots A_{n} \rrbracket \rightarrow \llbracket B \rrbracket$ and $\mathbb{W}^{\prime}=$ $\llbracket C_{1} \rrbracket \rightarrow \ldots \llbracket C_{m} \rrbracket \rightarrow \llbracket D \rrbracket$. Suppose that there is a mapping $\beta: \mathcal{P}_{\mathbb{W}^{\prime}} \rightarrow \mathcal{P}_{\mathbb{W}}$ such that the following holds:

1. β is injective,
2. For all $\mathbb{A} \in \mathcal{P}_{\mathbb{W}^{\prime}}, t(\beta(\mathbb{A}))=t(\mathbb{A}), d(\beta(\mathbb{A}))=d(\mathbb{A})$,
3. For all $\mathbb{A}, \mathbb{B} \in \mathbb{P}_{\mathbb{W}^{\prime}}, \mathbb{A} \sqsubset \mathbb{B}$ if and only if $\beta(\mathbb{A}) \sqsubset \beta(\mathbb{B})$.

Let $\mathcal{G}=\left\{\mathbb{A} \in \mathcal{P}_{\mathbb{W}} \mid \neg \exists \mathbb{B} \in \mathcal{P}_{\mathbb{W}^{\prime}}, \beta(\mathbb{B})=\mathbb{A}\right\}$. If \mathcal{G} is π-closed and φ-closed, then $\mathrm{L}^{*}(\backslash, /) \vdash C_{1} \ldots C_{n} \rightarrow D$.

Proof. Let φ^{\prime} be φ for $\mathcal{P}_{\mathbb{W}^{\prime}}$. Since \mathcal{G} is φ-closed, for all $\mathbb{A} \in \mathcal{P}_{\mathbb{W}^{\prime}}, \varphi^{\prime}(\mathbb{A})=$ $\beta^{-1}(\varphi(\beta(\mathbb{A})))$. Since \mathcal{G} is π-closed, π^{\prime} defined as $\beta^{-1} \pi \beta$ is defined on all $\mathcal{P}_{\mathbb{W}^{\prime}}$ and satisfies proof conditions (1)-(4). Therefore by Theorem 3.1

$$
\mathrm{L}^{*}(\backslash, /) \vdash C_{1} \ldots C_{n} \rightarrow D .
$$

4. Graphic Representation

Consider the following Lambek sequent:

$$
(p /(r \backslash q))(r \backslash q)(p \backslash s) \rightarrow s
$$

The corresponding element of FS is

$$
p^{\langle 1\rangle} q^{\langle-2\rangle} r^{\langle-3\rangle} r^{\langle 2\rangle} q^{\langle 1} p^{\langle 2\rangle} s^{\langle 1\rangle} s^{\langle 0\rangle} .
$$

Elements of $\mathcal{P}_{\mathbb{W}}$ correspond to occurences of atoms in the string. So we can draw arrows between such occurences to represent functions φ and ψ. We draw arrows for π for members of $\mathcal{N}_{\mathbb{W}}$ in the upper semiplane of the string and arrows for φ in the lower semiplane. Dotted arrows denote parts of φ that are not part of ψ. Consider the following diagram:

Such diagrams are called proof nets.

Proof nets provide useful intuition about proof conditions. For example proof condition (3) is equivalent to the statement "arrows in the upper semiplane can be drawn without intersections". Proof condition (4) states that for every dotted arrow if we start at its origin and follow solid arrows we will reach its destination.

It is readily seen that this proofnet satisfies proof conditions (1)-(5) and thus $\mathrm{L}(\backslash, /) \vdash(p /(r \backslash q))(r \backslash q)(p \backslash s) \rightarrow s$.

5. Proof of the Derivability Criterion

Suppose we have a sequent $A_{1} \ldots A_{n} \rightarrow B$. Let $\mathbb{W}=\llbracket A_{1} \rrbracket \rightarrow \ldots \llbracket A_{n} \rrbracket \rightarrow \llbracket B \rrbracket$. Proof conditions:

1. If $\mathbb{A} \in \mathcal{N}_{\mathbb{W}}$, then $\pi(\mathbb{A}) \notin \mathcal{N}_{\mathbb{W}}$ and $\pi^{2}(\mathbb{A})=\mathbb{A}$ for all $\mathbb{A} \in \mathcal{P}_{\mathbb{W}}$.
2. $t(\pi(\mathbb{A}))=t(\mathbb{A})$.
3. $\mu_{\pi}^{-}(\mathbb{A}) \sqsubset \mu_{\pi}^{-}(\mathbb{B}) \Rightarrow \mu_{\pi}^{+}(\mathbb{A}) \sqsubset \mu_{\pi}^{-}(\mathbb{B}) \vee \mu_{\pi}^{+}(\mathbb{B}) \sqsubset \mu_{\pi}^{+}(\mathbb{A})$.
4. $\mathbb{A} \in \mathcal{N}_{\mathbb{W}} \Longrightarrow \mathbb{A}<_{\psi} \varphi(\mathbb{A})$ or equivalently $\forall \mathbb{A} \in \mathcal{P}_{\mathbb{W}}, \mathcal{F}_{\varphi}(\mathbb{A}) \subset \mathcal{F}_{\psi}(\mathbb{A})$.
5. $\mathbb{A} \notin \mathcal{N}_{\mathbb{W}} \wedge \mathbb{A} \neq \mathbb{A}_{0} \Longrightarrow \exists \mathbb{B}\left(\mathbb{B}<_{\psi} \mathbb{A} \wedge \mathbb{B} \nless_{\varphi} \mathbb{A}\right)$.

Lemma 5.1. If $\mathrm{L}^{*}(\backslash, /) \vdash A_{1} \ldots A_{n} \rightarrow B$, then there exists π on $\mathcal{P}_{\mathbb{W}}$ satisfying proof conditions (1)-(4).

If $\mathrm{L}(\backslash, /) \vdash A_{1} \ldots A_{n} \rightarrow B$, then there exists π on $\mathcal{P}_{\mathbb{W}}$ satisfying proof conditions (1)-(5).

Proof. Suppose that $\mathrm{L}^{(*)}(\backslash, /) \vdash A_{1} \ldots A_{n} \rightarrow B$. Induction on the length of the derivation.

If the sequent is of the form $p \rightarrow p$, then $\mathbb{W}=p^{\langle 1\rangle} p^{\langle 0\rangle}, \mathcal{P}_{\mathbb{W}}=\left\{p^{\langle 1\rangle}, p^{\langle 1\rangle} p^{\langle 0\rangle}\right\}$, $\mathcal{N}_{\mathbb{W}}=\left\{p^{\langle 1\rangle}\right\}$ and π such that $\pi\left(p^{\langle 1\rangle}\right)=p^{\langle 1\rangle} p^{\langle 0\rangle}$ and $\pi\left(p^{(1\rangle} p^{\langle 0\rangle}\right)=p^{\langle 1\rangle}$ satisfies all necessary proof conditions.

Suppose that the last step in the derivation of $A_{1} \ldots A_{n} \rightarrow B$ was an application of the rule $(\rightarrow /)$. Then $B=(C / D), \mathrm{L}^{(*)}(\backslash, /) \vdash A_{1} \ldots A_{n} D \rightarrow C$ and for $\mathcal{P}_{\mathbb{W}^{\prime}}$, where $\mathbb{W}^{\prime}=\llbracket A_{1} \rrbracket \rightarrow \ldots \llbracket A_{n} \rrbracket \rightarrow \llbracket D \rrbracket \rightarrow \llbracket C \rrbracket$ there exists π^{\prime} satisfying all necessary proof conditions. But in this case $\mathbb{W}=\mathbb{W}^{\prime}$, and therefore this π^{\prime} works for the sequent $A_{1} \ldots A_{n} \rightarrow B$ too.

Suppose that the last step in the derivation of $A_{1} \ldots A_{n} \rightarrow B$ was an application of the rule $(\rightarrow \backslash)$. Then $B=(C \backslash D), \mathbb{W}=\llbracket A_{1} \rrbracket \rightarrow \ldots \llbracket A_{n} \rrbracket \rightarrow \llbracket D \rrbracket \llbracket C \rrbracket \leftarrow$, $\mathrm{L}^{(*)}(\backslash, /) \vdash C A_{1} \ldots A_{n} \rightarrow D$, and by induction hypothesis for $\mathcal{P}_{\mathbb{W}^{\prime}}$, where

$$
\mathbb{W}^{\prime}=\llbracket C \rrbracket \rightarrow \llbracket A_{1} \rrbracket \rightarrow \ldots \llbracket A_{n} \rrbracket \rightarrow \llbracket D \rrbracket
$$

there exists π^{\prime} satisfying all necessary proof conditions. Consider

$$
\beta: \mathcal{P}_{\mathbb{W}^{\prime}} \rightarrow \mathcal{P}_{\mathbb{W}}, \beta(\mathbb{A})= \begin{cases}\llbracket A_{1} \rrbracket \rightarrow \ldots \llbracket A_{n} \rrbracket \rightarrow \llbracket D \rrbracket\left(\mathbb{A}^{-1}\right)^{\leftarrow}, & \text { if } \mathbb{A} \sqsubseteq \llbracket C \rrbracket \rightarrow ; \\ \llbracket C \rrbracket \rightarrow \backslash \mathbb{A}, & \text { if } \llbracket C \rrbracket \rightarrow \sqsubset \mathbb{A} .\end{cases}
$$

Let $\pi(\mathbb{A})=\beta\left(\pi^{\prime}\left(\beta^{-1}(\mathbb{A})\right)\right)$. Such π satisfies all necessary proof conditions.
Suppose that the last step in the derivation of $A_{1} \ldots A_{n} \rightarrow B$ was an application of the rule $(/ \rightarrow)$. Then $A_{1} \ldots A_{n} \rightarrow B$ is of the form

$$
C_{1} \ldots\left(C_{i} / D\right) D_{1} \ldots D_{k} C_{i+1} \ldots C_{l} \rightarrow C
$$

so that $\mathrm{L}^{(*)}(\backslash, /) \vdash C_{1} \ldots C_{l} \rightarrow C$ and $\mathrm{L}^{(*)}(\backslash, /) \vdash D_{1} \ldots D_{k} \rightarrow D$.
Consider $\mathbb{W}^{\prime}=\llbracket C_{1} \rrbracket \rightarrow \ldots \llbracket C_{l} \rrbracket \rightarrow \llbracket C \rrbracket$ and $\mathbb{W}^{\prime \prime}=\llbracket D_{1} \rrbracket \rightarrow \ldots \llbracket D_{k} \rrbracket \rightarrow \llbracket D \rrbracket$. By induction hypothesis there are π^{\prime} and $\pi^{\prime \prime}$ - functions on $\mathcal{P}_{\mathbb{W}^{\prime}}$ and $\mathcal{P}_{\mathbb{W}^{\prime \prime}}$ respectively, satisfying all necessary proof conditions.

Let $\mathbb{C}=\llbracket C_{1} \rrbracket \rightarrow \ldots \llbracket C_{i} \rrbracket \rightarrow$ and $\mathbb{D}=\llbracket D_{1} \rrbracket \rightarrow \ldots \llbracket D_{k} \rrbracket \rightarrow$. Consider

$$
\beta^{\prime}: \mathcal{P}_{\mathbb{W}^{\prime}} \rightarrow \mathcal{P}_{\mathbb{W}}, \beta^{\prime}(\mathbb{A})= \begin{cases}\mathbb{A}, & \text { if } \mathbb{A} \sqsubseteq \mathbb{C} ; \\ \mathbb{C}(\llbracket D \rrbracket \rightarrow) \rightarrow \mathbb{D}(\mathbb{C} \backslash \mathbb{A}), & \text { if } \mathbb{C} \sqsubset \mathbb{A} ;\end{cases}
$$

and $\beta^{\prime \prime}: \mathcal{P}_{\mathbb{W}} \prime \prime \rightarrow \mathcal{P}_{\mathbb{W}}, \beta^{\prime \prime}(\mathbb{A})=\left\{\begin{array}{ll}\mathbb{C}(\llbracket D \rrbracket \rightarrow) \rightarrow \mathbb{A}, & \text { if } \mathbb{A} \sqsubseteq \mathbb{D} ; \\ \mathbb{C}((\mathbb{D} \backslash \mathbb{A}) \rightarrow) \rightarrow, & \text { if } \mathbb{D} \sqsubset \mathbb{A} ;\end{array}\right.$.
Let $\pi(\mathbb{A})=\left\{\begin{array}{ll}\beta^{\prime}\left(\pi^{\prime}\left(\beta^{\prime-1}(\mathbb{A})\right)\right), & \text { if } \mathbb{A} \sqsubseteq \mathbb{C} \text { or } \mathbb{C}(\llbracket D \rrbracket \rightarrow) \rightarrow \mathbb{D} \sqsubset \mathbb{A} ; \\ \beta^{\prime \prime}\left(\pi^{\prime \prime}\left(\beta^{\prime \prime-1}(\mathbb{A})\right)\right), & \text { if } \mathbb{C} \sqsubset \mathbb{A} \sqsubseteq \mathbb{C}(\llbracket D \rrbracket \rightarrow) \rightarrow \mathbb{D} ;\end{array}\right.$.
Such π satisfies all necessary proof conditions.
Suppose that the last step in the derivation of $A_{1} \ldots A_{n} \rightarrow B$ was an application of the rule $(\backslash \rightarrow)$. Then $A_{1} \ldots A_{n} \rightarrow B$ is of the form

$$
C_{1} \ldots C_{i-1} D_{1} \ldots D_{k}\left(D \backslash C_{i}\right) \ldots C_{l} \rightarrow C
$$

so that $\mathrm{L}^{(*)}(\backslash, /) \vdash C_{1} \ldots C_{l} \rightarrow C$ and $\mathrm{L}^{(*)}(\backslash, /) \vdash D_{1} \ldots D_{k} \rightarrow D$.
Consider $\mathbb{W}^{\prime}=\llbracket C_{1} \rrbracket \rightarrow \ldots \llbracket C_{l} \rrbracket \rightarrow \llbracket C \rrbracket$ and $\mathbb{W}^{\prime \prime}=\llbracket D_{1} \rrbracket \rightarrow \ldots \llbracket D_{k} \rrbracket \rightarrow \llbracket D \rrbracket . \quad$ By induction hypothesis there are π^{\prime} and $\pi^{\prime \prime}$ - functions on $\mathcal{P}_{\mathbb{W}^{\prime}}$ and $\mathcal{P}_{\mathbb{W}^{\prime \prime}}$ respectively, satisfying all necessary proof conditions.

Let $\mathbb{C}=\llbracket C_{1} \rrbracket \rightarrow \ldots \llbracket C_{i-1} \rrbracket \rightarrow$ and $\mathbb{D}=\llbracket D_{1} \rrbracket \rightarrow \ldots \llbracket D_{k} \rrbracket \rightarrow$. Consider

$$
\begin{gathered}
\beta^{\prime}: \mathcal{P}_{\mathbb{W}^{\prime}} \rightarrow \mathcal{P}_{\mathbb{W}}, \beta^{\prime}(\mathbb{A})= \begin{cases}\mathbb{A}, & \text { if } \mathbb{A} \sqsubseteq \mathbb{C} ; \\
\mathbb{C D}(\llbracket D \rrbracket \leftarrow) \rightarrow(\mathbb{C} \backslash \mathbb{A}), & \text { if } \mathbb{C} \sqsubset \mathbb{A} ;\end{cases} \\
\text { and } \beta^{\prime \prime}: \mathcal{P}_{\mathbb{W}^{\prime \prime}} \rightarrow \mathcal{P}_{\mathbb{W}}, \beta^{\prime \prime}(\mathbb{A})= \begin{cases}\mathbb{C} \mathbb{A}, & \text { if } \mathbb{A} \sqsubseteq \mathbb{D} ; \\
\mathbb{C D}\left((\mathbb{D} \backslash \mathbb{A})^{\leftarrow}\right) \rightarrow & \text { if } \mathbb{D} \sqsubset \mathbb{A} ;\end{cases} \\
\text { Let } \pi(\mathbb{A})= \begin{cases}\beta^{\prime}\left(\pi^{\prime}\left(\beta^{\prime-1}(\mathbb{A})\right)\right), & \text { if } \mathbb{A} \sqsubseteq \mathbb{C} \text { or } \mathbb{C D}\left(\llbracket D \rrbracket \rrbracket^{\leftarrow}\right) \rightarrow \sqsubset \mathbb{A} ; \\
\beta^{\prime \prime}\left(\pi^{\prime \prime}\left(\beta^{\prime \prime-1}(\mathbb{A})\right)\right), & \text { if } \mathbb{C} \sqsubset \mathbb{A} \sqsubseteq \mathbb{C D}\left(\llbracket D \rrbracket^{\leftarrow}\right)^{\circ} ;\end{cases}
\end{gathered}
$$

Such π satisfies all necessary proof conditions.
Thus the lemma is fully proven.
Now suppose that for the given sequent $A_{1} \ldots A_{n} \rightarrow B, n>0$, and for $\mathcal{P}_{\mathbb{W}}$ there exists π satisfying proof conditions (1)-(4).

Lemma 5.2. The relation \leq_{ψ} is a partial order on $\mathcal{P}_{\mathbb{W}}$.
Proof. Reflexivity and transitivity directly follow from the definition of \leq_{ψ}.
Now lets prove antisymmetry. Suppose that there are $\mathbb{B}, \mathbb{C} \in \mathcal{P}_{\mathbb{W}}$ such that $\mathbb{B} \leq_{\psi} \mathbb{C}$ and $\mathbb{C} \leq_{\psi} \mathbb{B}$. If $\mathbb{B} \neq \mathbb{C}$ then there is $i>0$ such that $\psi^{i}(\mathbb{B})=\mathbb{B}$ and thus for all $j>0, \psi^{j}(\mathbb{B})$ is defined.

If π satisfies proof condition (4) and $\mathbb{A} \leq_{\varphi} \mathbb{B}$, then $\mathbb{A} \leq_{\psi} \mathbb{B}$. There is $\mathbb{A}_{0} \in \mathcal{P}_{\mathbb{W}}$ such that $d\left(\mathbb{A}_{0}\right)=0$, and for all $\mathbb{A} \in \mathcal{P}_{\mathbb{W}}, \mathbb{A} \leq_{\varphi} \mathbb{A}_{0}$. This means that $\mathbb{B} \leq_{\varphi} \mathbb{A}_{0}$ and thus $\mathbb{B} \leq_{\psi} \mathbb{A}_{0}$. The function ψ is not defined on \mathbb{A}_{0}. Contradiction.

Lemma 5.3. If $\mathbb{A}<_{\psi} \mathbb{B}$ and \mathbb{C} is the φ-join of \mathbb{A} and \mathbb{B}, then $\mathbb{C} \notin \mathcal{N}_{\mathbb{W}}$.
Proof. Suppose that $\mathbb{C} \in \mathcal{N}_{\mathbb{W}}$. There is \mathbb{C}_{1} such that $\mathbb{A} \leq_{\varphi} \mathbb{C}_{1}$ and $\varphi\left(\mathbb{C}_{1}\right)=$ \mathbb{C}. There is $\mathbb{C}_{2} \neq \mathbb{C}_{1}$ such that $\mathbb{B} \leq_{\varphi} \mathbb{C}_{2}$ and $\varphi\left(\mathbb{C}_{2}\right)=\mathbb{C}$. This means that $\mathbb{A} \leq_{\psi} \mathbb{C}_{1}, \mathbb{B} \leq_{\psi} \mathbb{C}_{2}$, and since $\mathbb{A} \leq_{\psi} \mathbb{B}$, either $\mathbb{C}_{1}<_{\psi} \mathbb{C}_{2}$ or $\mathbb{C}_{2}<_{\psi} \mathbb{C}_{1}$. But since $\psi\left(\mathbb{C}_{1}\right)=\psi\left(\mathbb{C}_{2}\right)=\mathbb{C}$, we get $\mathbb{C}<_{\psi} \mathbb{C}$. Contradiction.

Consider the following abbreviations:

- $\mathbb{A}_{i}=\llbracket A_{1} \rrbracket \rightarrow \ldots A_{i} \rrbracket \rightarrow$.
- If $A_{i}=A_{i}^{\prime} / A_{i}^{\prime \prime}$, then $\mathbb{A}_{i}^{\prime}=\llbracket A_{1} \rrbracket \rightarrow \ldots A_{i}^{\prime} \rrbracket$.
- If $A_{i}=A_{i}^{\prime \prime} \backslash A_{i}^{\prime}$, then $\mathbb{A}_{i}^{\prime}=\llbracket A_{1} \rrbracket \rightarrow \ldots\left(\llbracket A_{i}^{\prime \prime} \rrbracket \leftarrow\right) \rightarrow$.

Lemma 5.4. $\mathrm{L}^{*}(\backslash, /) \vdash A_{1} \ldots A_{n} \rightarrow B$.
Proof. Induction on total number of connectives in the sequent.
If there are no connectives, the sequent is of the form $p_{1} \ldots p_{n} \rightarrow q$ and $\mathbb{W}=p_{1}^{\langle 1\rangle} \ldots p_{n}^{\langle 1\rangle} q^{\langle 0\rangle}$. The function π satisfies proof condition (1), thus $\left|\mathcal{N}_{\mathbb{W}}\right|=$ $\left|\mathcal{P}_{\mathbb{W}} \backslash \mathcal{N}_{\mathbb{W}}\right|$. This means that $n=1$. So $\mathcal{P}_{\mathbb{W}}=\left\{p_{1}^{\langle 1\rangle}, p_{1}^{\langle 1\rangle} q^{\langle 0\rangle}\right\}$ and $\mathcal{N}_{\mathbb{W}}=\left\{p_{1}^{\langle 1\rangle}\right\}$. The function π satisfies proof condition (2), therefore $p_{1}=q$, and the sequent is an axiom.

If $B=(C / D)$, then the sequent $A_{1} \ldots A_{n} D \rightarrow C$ has less connectives then the original sequent, but $\llbracket A_{1} \rrbracket \rightarrow \ldots \llbracket A_{n} \rrbracket \rightarrow \llbracket D \rrbracket \rightarrow \llbracket C \rrbracket=\mathbb{W}$, and therefore π satisfies all necessary proof conditions for the new sequent. By induction hypothesis this means that $\mathrm{L}^{*}(\backslash, /) \vdash A_{1} \ldots A_{n} D \rightarrow C$ and by applying the rule $(\rightarrow /)$ we get $\mathrm{L}^{*}(\backslash, /) \vdash A_{1} \ldots A_{n} \rightarrow B$.

If $B=(C \backslash D)$, then the sequent $C A_{1} \ldots A_{n} \rightarrow D$ has less connectives then the original sequent.

Let $\mathbb{W}^{\prime}=\llbracket C \rrbracket \rightarrow \mathbb{A}_{n} \llbracket D \rrbracket$. Consider

$$
\beta: \mathcal{P}_{\mathbb{W}^{\prime}} \rightarrow \mathcal{P}_{\mathbb{W}}, \beta(\mathbb{B})= \begin{cases}\mathbb{A}_{n} \llbracket D \rrbracket\left(\mathbb{B}^{\rightarrow^{-1}}\right)^{\leftarrow}, & \text { if } \mathbb{B} \sqsubseteq \llbracket C \rrbracket \rightarrow ; \\ \llbracket C \rrbracket \rightarrow \backslash \mathbb{B}, & \text { if } \llbracket C \rrbracket \rightarrow \sqsubset \mathbb{B} ;\end{cases}
$$

Let $\pi^{\prime}(\mathbb{B})=\beta^{-1}(\pi(\beta(\mathbb{B})))$. Such π^{\prime} satisfies all necessary proof conditions. By induction hypothesis this means that $\mathrm{L}^{*}(\backslash, /) \vdash C A_{1} \ldots A_{n} \rightarrow D$, and by applying the rule $(\rightarrow \backslash)$ we get $\mathrm{L}^{*}(\backslash, /) \vdash A_{1} \ldots A_{n} \rightarrow B$.

Now we can only consider sequents of the form $A_{1} \ldots A_{n} \rightarrow p$. This means that $\mathbb{W}=\mathbb{A}_{n} p^{\langle 0\rangle}$. Let $\mathbb{B}_{1}=\pi(\mathbb{W})$. Since π satisfies proof condition (4) and ψ is not defined on $\mathbb{W}, \varphi\left(\mathbb{B}_{1}\right)=\mathbb{W}$. Therefore $d\left(\mathbb{B}_{1}\right)=1$ and for every $\mathbb{C} \sqsubset \mathbb{W}$ we have $\mathbb{C} \leq_{\psi} \mathbb{B}_{1}$. There is no $\mathbb{C} \in \mathcal{P}_{\mathbb{W}}$ such that $\mu_{\psi}^{-}(\mathbb{C}) \sqsubset \mathbb{B}_{1} \sqsubset \mu_{\psi}^{+}(\mathbb{C})$. There exists $i \leq n$ such that $\mathbb{B}_{1} \in\left(\mathbb{A}_{i-1}, \mathbb{A}_{i}\right]$.

Suppose that $A_{i}=\left(A_{i}^{\prime} / A_{i}^{\prime \prime}\right)$. There exists a unique $\mathbb{D} \in \mathcal{P}_{\llbracket A_{i}^{\prime \prime} \rrbracket}$ such that $d(\mathbb{D})=0$. Consider $\mathbb{B}_{2}=\mathbb{A}_{i}^{\prime}(\mathbb{D} \rightarrow) \rightarrow \in \mathcal{P}_{\mathbb{W}}$. Obviously $d\left(\mathbb{B}_{2}\right)=-2$, $\varphi\left(\mathbb{B}_{2}\right)=\mathbb{B}_{1}, \psi^{2}\left(\mathbb{B}_{2}\right)=\mathbb{W}$, and there is no $\mathbb{C} \in \mathcal{P}_{\mathbb{W}}$ such that $\mathbb{B}_{2} \sqsubset \mathbb{C}$ and $\varphi(\mathbb{C})=\mathbb{A}_{1}$.

Also $\mathcal{F}_{\psi}\left(\mathbb{B}_{2}\right)=\left[\nu_{\psi}^{-}\left(\mathbb{B}_{2}\right), \nu_{\psi}^{+}\left(\mathbb{B}_{2}\right)\right]_{\sqsubset}=\left(\mathbb{A}_{i}^{\prime}, \mathbb{A}_{l}\right]_{\sqsubset}$ for some $l \geq i$.
Let us prove this statement. There are no $\mathbb{C} \in \mathcal{F}_{\psi}\left(\mathbb{B}_{2}\right)$ such that $\mathbb{C} \sqsubset \mathbb{B}_{1}$. There are no $\mathbb{C} \in \mathcal{F}_{\psi}\left(\mathbb{B}_{2}\right)$ such that $\mathbb{C} \in\left(\mathbb{B}_{1}, \mathbb{A}_{i}^{\prime}\right]$, because in this case φ join of \mathbb{C} and \mathbb{B}_{2} is $\mathbb{B}_{1} \in \mathcal{N}_{\mathbb{W}}$. Since $\left(\mathbb{A}_{i}^{\prime}, \mathbb{A}_{i}\right]_{\sqsubset}=\mathcal{F}_{\varphi}\left(\mathbb{B}_{2}\right) \subset \mathcal{F}_{\psi}\left(\mathbb{B}_{2}\right)$, we have $\nu_{\psi}^{-}\left(\mathbb{B}_{2}\right)=\nu_{\varphi}^{-}\left(\mathbb{B}_{2}\right)$ and $\mathbb{A}_{i} \sqsubseteq \nu_{\psi}^{+}\left(\mathbb{B}_{2}\right)$. If $\mathbb{C}<_{\varphi} \mathbb{D}$, then $\mathbb{C}<_{\psi} \mathbb{D}$. This means that if $\mathbb{C} \in \mathcal{F}_{\psi}\left(\mathbb{B}_{2}\right)$, then either $\varphi(\mathbb{C}) \in \mathcal{F}_{\psi}\left(\mathbb{B}_{2}\right)$, or $\varphi(\mathbb{C})=\mathbb{B}_{1}$ and
$\mathbb{C}=\mathbb{B}_{2}$, or $\varphi(\mathbb{C})=\mathbb{W}$ and $d(\mathbb{C})=1$. Since $\mathcal{F}_{\psi}\left(\mathbb{B}_{2}\right)$ is φ-closed, this means that $\nu_{\psi}^{+}\left(\mathbb{B}_{2}\right)=\mathbb{A}_{l}$ for some $l \geq i$. Consider $\mathbb{C} \in\left(\mathbb{A}_{i}, \mathbb{A}_{l}\right]_{\sqsubset}$. There exists $\mathbb{C}^{\prime} \in\left(\mathbb{A}_{i}, \mathbb{A}_{l}\right]_{\sqsubset}$, such that $\mathbb{C} \leq_{\varphi} \mathbb{C}^{\prime}$ and $d\left(\mathbb{C}^{\prime}\right)=1$. If $\mathbb{C}^{\prime}<_{\psi} \mathbb{B}_{2}$, then $\mathbb{C}<_{\psi} \mathbb{B}_{2}$. Otherwise there exists $\mathbb{D} \in \mathcal{F}_{\psi}\left(\mathbb{B}_{2}\right) \cap \mathcal{N}_{\mathbb{W}}$ such that $\mathbb{C}^{\prime} \in\left[\mu_{\pi}^{-}(\mathbb{D}) \text {, } \mu_{\pi}^{+}(\mathbb{D})\right]_{\sqsubset}$. Since $\mathbb{D} \not \nless \varphi^{C^{\prime}}$, we have $\mathbb{C} \in\left[\mu_{\pi}^{-}(\mathbb{D}) \text {, } \mu_{\pi}^{+}(\mathbb{D})\right]_{\sqsubset}$. Thus for all $\mathbb{C} \in\left(\mathbb{A}_{i}, \mathbb{A}_{l}\right]_{\sqsubset}$ we have $\psi(\mathbb{C}) \in\left(\mathbb{A}_{i}^{\prime}, \mathbb{A}_{l}\right]_{\sqsubset}$. Thus the only element $\mathbb{E} \in\left[\nu_{\psi}^{-}\left(\mathbb{B}_{2}\right), \nu_{\psi}^{+}\left(\mathbb{B}_{2}\right)\right]_{\sqsubset}$ such that $\psi(\mathbb{E}) \notin\left[\nu_{\psi}^{-}\left(\mathbb{B}_{2}\right), \nu_{\psi}^{+}\left(\mathbb{B}_{2}\right)\right]_{\sqsubset}$ is \mathbb{B}_{2}. Since $\mathbb{C}<_{\psi} \mathbb{B}_{1}$, this means that $\mathbb{C}<_{\psi} \mathbb{B}_{2}$.

Consider $\mathbb{W}^{\prime}=\mathbb{A}_{i}^{\prime} \llbracket A_{l+1} \rrbracket \rightarrow \ldots \llbracket A_{n} \rrbracket \rightarrow p^{\langle 0\rangle}$ and $\mathbb{W}^{\prime \prime}=\llbracket A_{i+1} \rrbracket \rightarrow \ldots \llbracket A_{l} \rrbracket \rightarrow \llbracket A_{i}^{\prime \prime} \rrbracket$. Let $\mathbb{C}=\llbracket A_{1} \rrbracket \rightarrow \ldots \llbracket A_{i-1} \rrbracket \rightarrow \llbracket C \rrbracket \rightarrow$ and $\mathbb{D}=\llbracket A_{i+1} \rrbracket \rightarrow \ldots \llbracket A_{l} \rrbracket \rightarrow$. Consider

$$
\begin{aligned}
& \beta^{\prime}: \mathcal{P}_{\mathbb{W}^{\prime}} \rightarrow \mathcal{P}_{\mathbb{W}}, \quad \beta^{\prime}(\mathbb{B})= \begin{cases}\mathbb{B}, & \text { if } \mathbb{B} \sqsubseteq \mathbb{A}_{i}^{\prime} ; \\
\mathbb{A}_{i}^{\prime}\left(\llbracket A_{i}^{\prime \prime} \rrbracket\right) \rightarrow \mathbb{D}\left(\mathbb{A}_{i}^{\prime} \backslash \mathbb{B}\right), & \text { if } \mathbb{A}_{i}^{\prime} \sqsubset \mathbb{B} ;\end{cases} \\
& \beta^{\prime \prime}: \mathcal{P}_{\mathbb{W}^{\prime \prime}} \rightarrow \mathcal{P}_{\mathbb{W}}, \quad \beta^{\prime \prime}(\mathbb{B})= \begin{cases}\mathbb{A}_{i}^{\prime}\left(\llbracket A_{i}^{\prime \prime} \rrbracket\right) \rightarrow \mathbb{B}, & \text { if } \mathbb{B} \sqsubseteq \mathbb{D} ; \\
\mathbb{A}_{i},((\mathbb{D} \backslash \mathbb{B}) \rightarrow) \rightarrow, & \text { if } \mathbb{D} \sqsubset \mathbb{B} ;\end{cases}
\end{aligned}
$$

The functions $\pi^{\prime}=\beta^{\prime-1} \pi \beta^{\prime}$ and $\pi^{\prime \prime}=\beta^{\prime \prime-1} \pi \beta^{\prime \prime}$ satisfy all necessary proof conditions. By induction hypothesis this means that

$$
\mathrm{L}^{*}(\backslash, /) \vdash A_{1} \ldots A_{i-1} A_{i}^{\prime} A_{l+1} \ldots A_{n} \rightarrow p
$$

and $\mathrm{L}^{*}(\backslash, /) \vdash A_{i+1} \ldots A_{l} \rightarrow A_{i}^{\prime \prime}$. By applying the rule $(/ \rightarrow)$ we get

$$
\mathrm{L}^{*}(\backslash, /) \vdash A_{1} \ldots A_{n} \rightarrow p
$$

Suppose that $A_{i}=\left(A_{i}^{\prime \prime} \backslash A_{i}^{\prime}\right)$. There exists a unique $\mathbb{D} \in \mathcal{P}_{\llbracket A_{i}^{\prime \prime} \rrbracket}$ such that $d(\mathbb{D})=0$. Let $\mathbb{B}_{2}=\mathbb{A}_{i-1}\left(\mathbb{D}^{\leftarrow}\right) \rightarrow \in \mathcal{P}_{\mathbb{W}}$. Obviously $d\left(\mathbb{B}_{2}\right)=2, \varphi\left(\mathbb{B}_{2}\right)=\mathbb{B}_{1}$, $\psi^{2}\left(\mathbb{B}_{2}\right)=\mathbb{W}$, and there is no $\mathbb{C} \in \mathcal{P}_{\mathbb{W}}$ such that $\mathbb{C} \sqsubset \mathbb{B}_{2}$ and $\varphi(\mathbb{C})=\mathbb{B}_{1}$. Like in the previous case we can say that $\mathcal{F}_{\psi}\left(\mathbb{A}_{2}\right)=\left[\nu_{\psi}^{-}\left(\mathbb{A}_{2}\right), \nu_{\psi}^{+}\left(\mathbb{A}_{2}\right)\right]_{\sqsubset}=\left(\mathbb{A}_{l}, \mathbb{A}_{i}^{\prime}\right]_{\sqsubset}$ for some $l \leq i-1$.

Consider $\mathbb{W}^{\prime}=\mathbb{A}_{l} \llbracket A_{i}^{\prime} \rrbracket \rightarrow \llbracket A_{i+1} \rrbracket \rightarrow \ldots \llbracket A_{n} \rrbracket \rightarrow p^{\langle 0\rangle}$ and

$$
\mathbb{W}^{\prime \prime}=\llbracket A_{l+1} \rrbracket \rightarrow \ldots \llbracket A_{i-1} \rrbracket \rightarrow \llbracket A_{i}^{\prime \prime} \rrbracket .
$$

Let $\mathbb{D}=\llbracket A_{l+1} \rrbracket \rightarrow \ldots \llbracket A_{i-1} \rrbracket \rightarrow$. Consider

$$
\begin{aligned}
& \beta^{\prime}: \mathcal{P}_{\mathbb{W}^{\prime}} \rightarrow \mathcal{P}_{\mathbb{W}}, \quad \beta^{\prime}(\mathbb{B})= \begin{cases}\mathbb{B}, & \text { if } \mathbb{B} \sqsubseteq \mathbb{A}_{l} ; \\
\mathbb{A}_{l} \mathbb{D}\left(\llbracket A_{i}^{\prime \prime} \rrbracket^{\leftarrow}\right) \rightarrow\left(\mathbb{A}_{l} \backslash \mathbb{B}\right), & \text { if } \mathbb{A}_{l} \sqsubset \mathbb{B} ;\end{cases} \\
& \beta^{\prime \prime}: \mathcal{P}_{\mathbb{W}^{\prime \prime}} \rightarrow \mathcal{P}_{\mathbb{W}}, \quad \beta^{\prime \prime}(\mathbb{B})= \begin{cases}\mathbb{A}_{l} \mathbb{B}, & \text { if } \mathbb{B} \sqsubseteq \mathbb{D} ; \\
\mathbb{A}_{l} \mathbb{D}\left((\mathbb{D} \backslash \mathbb{B})^{\leftarrow}\right)^{\prime}, & \text { if } \mathbb{D} \sqsubset \mathbb{B} ;\end{cases}
\end{aligned}
$$

The functions $\pi^{\prime}=\beta^{\prime-1} \pi \beta^{\prime}$ and $\pi^{\prime \prime}=\beta^{\prime \prime-1} \pi \beta^{\prime \prime}$ satisfy all necessary proof conditions. By induction hypothesis this means that

$$
\mathrm{L}^{*}(\backslash, /) \vdash A_{1} \ldots A_{l} A_{i}^{\prime} A_{i+1} \ldots A_{n} \rightarrow p
$$

and $\mathrm{L}^{*}(\backslash, /) \vdash A_{l+1} \ldots A_{i-1} \rightarrow A_{i}^{\prime \prime}$. By applying the rule $(\backslash \rightarrow)$ we get

$$
\mathrm{L}^{*}(\backslash, /) \vdash A_{1} \ldots A_{n} \rightarrow p
$$

The lemma is fully proven.
Lemma 5.5. If π also satisfies proof condition (5), then

$$
\mathrm{L}(\backslash, /) \vdash A_{1} \ldots A_{n} \rightarrow B .
$$

Proof. By Lemma 5.4 we have $\mathrm{L}^{*}(\backslash, /) \vdash A_{1} \ldots A_{n} \rightarrow B$. The construction given in the proof of Lemma 5.4 provides us with a possible last step of the derivation. Hence we can construct a derivation. If π satisfies proof condition (5), then there will be no \mathbb{B}_{2} such that $\mathcal{F}_{\psi}\left(\mathbb{B}_{2}\right)=\mathcal{F}_{\varphi}\left(\mathbb{B}_{2}\right)$, and thus there will be no steps in derivation that require sequents of the form $\rightarrow A$. This means that $\mathrm{L}(\backslash, /) \vdash A_{1} \ldots A_{n} \rightarrow B$.

Lemmas 5.1, 5.4, and 5.5 together gives us Theorem 3.1.

6. Proof of the Main Theorem

By definition of $\llbracket \cdot \rrbracket$ we have:

$$
\begin{aligned}
\llbracket G^{0} \rrbracket & =p_{n}^{0\langle 0\rangle} p_{0}^{0\langle-1\rangle} \\
\llbracket G^{j} \rrbracket & =p_{n}^{j\langle 0\rangle} q_{n}^{j\langle-1\rangle}\left(\llbracket G^{j-1} \rrbracket \rightarrow\right) \leftarrow q_{0}^{j\langle 4\rangle} p_{0}^{j\langle-3\rangle} \\
\llbracket G \rrbracket & =\llbracket G^{m} \rrbracket \\
\llbracket E_{i}^{0}(t) \rrbracket & =p_{i-1}^{0\langle 0\rangle} \\
\llbracket E_{i}^{j}(t) \rrbracket & = \begin{cases}p_{i-1}^{j\langle 2\rangle} q_{i-1}^{j\langle-3\rangle}\left(\left(\left(\llbracket E_{i}^{j-1}(t) \rrbracket \rightarrow\right) \leftarrow\right) \leftarrow\right) \rightarrow p_{i}^{j-1\langle 1\rangle} q_{i}^{j\langle 0\rangle}, & \text { if } \neg_{t} x_{i} \text { appears in } c_{j} \\
p_{i-1}^{j 0\rangle} q_{i-1}^{j\langle-1\rangle}\left(\left(\left(\llbracket E_{i}^{j-1}(t) \rrbracket \leftarrow\right) \rightarrow\right) \rightarrow\right)^{\leftarrow} p_{i}^{j-1\langle 3\rangle} q_{i}^{j\langle-2\rangle}, & \text { if }{ }_{\neg_{t}} x_{i} \text { does not appear in } c_{j} \\
\llbracket F_{i}(t) \rrbracket \rightarrow & =\left(\llbracket E_{i}^{m}(t) \rrbracket \leftarrow\right) \rightarrow p_{i}^{m\langle 1\rangle}\end{cases}
\end{aligned}
$$

Consider $\mathbb{W}=\llbracket F_{1}\left(t_{1}\right) \rrbracket \rightarrow \ldots \llbracket F_{n}\left(t_{n}\right) \rrbracket \rightarrow \llbracket G \rrbracket$.
For these sequents it is convienient to use different type of proofnet. Let us write \mathbb{W} like this

Starting from lower left corner, one atom per cell in a matrix with $2 m+1$ rows and $2 n+2$ columns.

If a primitive type occurs in the sequent $F_{1}\left(t_{1}\right) \ldots F_{n}\left(t_{n}\right) \rightarrow G$, it occurs exactly twice. Let \mathbb{P}_{i}^{j+} be the element of $\mathcal{N}_{\mathbb{W}}$ such that $t\left(\mathbb{P}_{i}^{j+}\right)=p_{i}^{j}$ (the corresponding atom occurence in the matrix is at row $2 j+1$ and column $2 i$ for $i>0$ and $2 n+2$ for $i=0$) and \mathbb{P}_{i}^{j-} be the element of $\mathcal{P}_{\mathbb{W}} \backslash \mathcal{N}_{\mathbb{W}}$ such that $t\left(\mathbb{P}_{i}^{j-}\right)=p_{i}^{j}($ row $2 j+1$, column $2 i+1)$. In the same way we define \mathbb{Q}_{i}^{j+} (row $2 j$, column $2 j+1$) and \mathbb{Q}_{i}^{j-} (row $2 j$, column $2 i$ for $i>0$ and $2 n+2$ for $i=0)$.

The following facts hold:

1. $d\left(\mathbb{P}_{n}^{m-}\right)=0$.
2. If $\neg_{i} x_{i}$ does not appear in the clause c_{j}, then $\varphi^{3}\left(\mathbb{P}_{i}^{j-1+}\right)=\varphi^{2}\left(\mathbb{Q}_{i}^{j-}\right)=$

$$
\varphi\left(\mathbb{Q}_{i-1}^{j+}\right)=\mathbb{P}_{i-1}^{j-} .
$$

3. If $\neg_{t_{i}} x_{i}$ appears in clause c_{j}, then $\varphi^{3}\left(\mathbb{Q}_{i-1}^{j+}\right)=\varphi^{2}\left(\mathbb{P}_{i-1}^{j-}\right)=\varphi\left(\mathbb{P}_{i}^{j-1+}\right)=$ \mathbb{Q}_{i}^{j-}.

4. $\varphi^{4}\left(\mathbb{Q}_{0}^{j-}\right)=\varphi^{3}\left(\mathbb{P}_{0}^{j+}\right)=\varphi^{2}\left(\mathbb{P}_{n}^{j-1-}\right)=\varphi\left(\mathbb{Q}_{n}^{j+}\right)=\mathbb{P}_{n}^{j-}$.

Here $l=m-j$.
The function π can only satisfy proof conditions (1) and (2) if for every i and $j, \pi\left(\mathbb{P}_{i}^{j+}\right)=\mathbb{P}_{i}^{j-}$ and $\pi\left(\mathbb{Q}_{i}^{j+}\right)=\mathbb{Q}_{i}^{j-}$. If it is so, then π satisfies proof conditions (3) and (5).

Example 6.1. Consider the boolean formula $x_{1} \vee x_{2}$.

The proof net for $F_{1}(1) F_{2}(0) \rightarrow G$ will be the following:

Lemma 6.1. For every $0<i \leq n$ and $j>0, \mathbb{P}_{i}^{j-1+}<_{\psi} \mathbb{Q}_{i}^{j-}$.
Proof. For $i=n$ this is true, because

$$
\begin{gathered}
\psi^{3}\left(\mathbb{P}_{n}^{j-1+}\right)=\pi \varphi \pi\left(\mathbb{P}_{n}^{j-1+}\right)=\pi \varphi\left(\mathbb{P}_{n}^{j-1-}\right)=\pi\left(\mathbb{Q}_{n}^{j+}\right)=\mathbb{Q}_{n}^{j-} . \\
p_{n}^{j-1\langle 4 l+4 \pm 1\rangle} \longrightarrow p_{n}^{j-1\langle-2 l-2\rangle} \\
\vdots \\
q_{n}^{j\langle \pm(4 l+3 \pm 1)\rangle} \longleftrightarrow q_{n}^{j\langle-2 l-1\rangle}
\end{gathered}
$$

Now suppose that for all $i^{\prime}>i$ this was already proven. There are four possibilities:

1. If $\neg t_{i+1} x_{i+1}$ does not appear in the clauses c_{j-1} and c_{j}, then $\psi^{2}\left(\mathbb{P}_{i}^{j-1+}\right)=$ $\mathbb{P}_{i+1}^{j-1+}, \psi^{2}\left(\mathbb{Q}_{i+1}^{j-}\right)=\mathbb{Q}_{i}^{j-}$, and $\mathbb{P}_{i+1}^{j-1+}<_{\psi} \mathbb{Q}_{i+1}^{j-}$. Thus $\mathbb{P}_{i}^{j-1+}<_{\psi} \mathbb{Q}_{i}^{j-}$.

2. If $\neg_{t_{i+1}} x_{i+1}$ does not appear in the clause c_{j-1}, but appears in c_{j}, then $\psi^{3}\left(\mathbb{P}_{i}^{j-1+}\right)=\pi \varphi \pi\left(\mathbb{P}_{i}^{j-1+}\right)=\pi \varphi\left(\mathbb{P}_{i}^{j-1-}\right)=\pi\left(\mathbb{Q}_{i}^{j+}\right)=\mathbb{Q}_{i}^{j-}$.

3. If $\neg_{t_{i+1}} x_{i+1}$ appears in the clause c_{j-1}, but does not appear in c_{j}, then $\psi^{2}\left(\mathbb{P}_{i}^{j-1+}\right)=\mathbb{P}_{i+1}^{j-2+}, \psi^{2}\left(\mathbb{Q}_{i+1}^{j}\right)=\mathbb{Q}_{i}^{j-}, \varphi\left(\mathbb{Q}_{i+1}^{j-1+}\right)=\mathbb{P}_{i+1}^{j-1+}, \mathbb{P}_{i+1}^{j-2+}<_{\psi}$ \mathbb{Q}_{i+1}^{j-1-}, and $\mathbb{P}_{i+1}^{j-1+}<_{\psi} \mathbb{Q}_{i+1}^{j-}$. Thus $\mathbb{P}_{i}^{j-1+}<_{\psi} \mathbb{Q}_{i}^{j-}$.

4. If $\neg_{t_{i+1}} x_{i+1}$ appears in both clauses c_{j-1} and c_{j}, then $\psi^{2}\left(\mathbb{P}_{i}^{j-1+}\right)=$ $\mathbb{P}_{i+1}^{j-2+}, \psi^{2}\left(\mathbb{Q}_{i+1}^{j-1-}\right)=\mathbb{Q}_{i}^{j-}$, and $\mathbb{P}_{i+1}^{j-2+}<_{\psi} \mathbb{Q}_{i+1}^{j-1-}$. Thus $\mathbb{P}_{i}^{j-1+}<_{\psi} \mathbb{Q}_{i}^{j-}$.

Lemma 6.2. For every $0 \leq i<n$ and $j>0, \mathbb{Q}_{i}^{j+}<_{\psi} \mathbb{P}_{i}^{j-}$.
Proof. For $i=0$ this is true, because

$$
\psi^{3}\left(\mathbb{Q}_{0}^{j+}\right)=\pi \varphi \pi\left(\mathbb{Q}_{0}^{j+}\right)=\pi \varphi\left(\mathbb{Q}_{0}^{j-}\right)=\pi\left(\mathbb{P}_{0}^{j+}\right)=\mathbb{P}_{0}^{j-} .
$$

Now suppose that for all $i^{\prime}<i$ this was already proven. There are four possibilities:

1. If $\neg_{t_{i}} x_{i}$ does not appear in the clauses c_{j+1} and c_{j}, then $\psi^{2}\left(\mathbb{Q}_{i}^{j+}\right)=\mathbb{Q}_{i-1}^{j+}$, $\psi^{2}\left(\mathbb{P}_{i-1}^{j-}\right)=\mathbb{P}_{i}^{j-}$, and $\mathbb{Q}_{i-1}^{j+}<_{\psi} \mathbb{P}_{i-1}^{j-}$. Thus $\mathbb{Q}_{i}^{j+}<_{\psi} \mathbb{P}_{i}^{j-}$.

2. If $\neg_{t_{i}} x_{i}$ does not appear in the clause c_{j+1}, but appears in c_{j}, then $\psi^{3}\left(\mathbb{Q}_{i}^{j+}\right)=\pi \varphi \pi\left(\mathbb{Q}_{i}^{j+}\right)=\pi \varphi\left(\mathbb{Q}_{i}^{j-}\right)=\pi\left(\mathbb{P}_{i}^{j+}\right)=\mathbb{P}_{i}^{j-}$.

3. If $\neg_{t} x_{i}$ appears in the clause c_{j+1}, but does not appear in c_{j}, then $\psi^{2}\left(\mathbb{Q}_{i}^{j+}\right)=\mathbb{Q}_{i-1}^{j+}, \psi^{2}\left(\mathbb{P}_{i-1}^{j+1-}\right)=\mathbb{P}_{i}^{j-}, \varphi\left(\mathbb{P}_{i-1}^{j+}\right)=\mathbb{Q}_{i-1}^{j+1+}, \mathbb{Q}_{i-1}^{j+}<_{\psi} \mathbb{P}_{i-1}^{j-}$, and $\mathbb{Q}_{i-1}^{j+1+}<_{\psi} \mathbb{P}_{i-1}^{j+1-}$. Thus $\mathbb{Q}_{i}^{j+}<_{\psi} \mathbb{P}_{i}^{j-}$.

4. If $\neg_{t_{i}} x_{i}$ appears in both clauses c_{j+1} and c_{j}, then $\psi^{2}\left(\mathbb{Q}_{i}^{j+}\right)=\mathbb{Q}_{i-1}^{j+1+}$, $\psi^{2}\left(\mathbb{P}_{i-1}^{j+1-}\right)=\mathbb{P}_{i}^{j-}$, and $\mathbb{Q}_{i-1}^{j+1+}<_{\psi} \mathbb{P}_{i-1}^{j+1-}$. Thus $\mathbb{Q}_{i}^{j+}<_{\psi} \mathbb{P}_{i}^{j-}$.

From lemmas 6.1 and 6.2 we can conclude that if $i>0$ and $j \leq j^{\prime}$ then $\mathbb{P}_{i}^{j+}<_{\psi} \mathbb{P}_{i}^{j^{\prime}+}$.

Lemma 6.3. If $i<i^{\prime}$, then $\mathbb{P}_{i}^{j+}<_{\psi} \mathbb{P}_{i^{\prime}}^{j+}$.
Proof. If $\neg_{i+1} x_{i+1}$ appears in clause c_{j}, then $\psi^{2}\left(\mathbb{P}_{i}^{j+}\right)=\mathbb{P}_{i+1}^{j-1+}$ and $\mathbb{P}_{i+1}^{j-1+}<_{\psi}$ \mathbb{P}_{i+1}^{j+}. If $\neg_{t_{i+1}} x_{i+1}$ appears in clause c_{j+1}, then $\psi\left(\mathbb{P}_{i}^{j+1-}\right)=\mathbb{P}_{i+1}^{j+}$ and $\mathbb{P}_{i}^{j-}<_{\psi}$ \mathbb{P}_{i}^{j+1+}. If neither of this is the case, then $\psi^{2}\left(\mathbb{P}_{i}^{j+}\right)=\mathbb{P}_{i+1}^{j+}$. This means that $\mathbb{P}_{i}^{j+}<_{\psi} \mathbb{P}_{i+1}^{j+}$ and thus $\mathbb{P}_{i}^{j+}<_{\psi} \mathbb{P}_{i^{\prime}}^{j+}$.

Lemma 6.4. $\left\langle t_{1}, \ldots, t_{n}\right\rangle$ is a satisfying assignment for $c_{1} \wedge \ldots \wedge c_{m}$ if and only if $\mathrm{L}^{*}(\backslash, /) \vdash F_{1}\left(t_{1}\right) \ldots F_{n}\left(t_{n}\right) \rightarrow G$ and if and only if

$$
\mathrm{L}(\backslash, /) \vdash F_{1}\left(t_{1}\right) \ldots F_{n}\left(t_{n}\right) \rightarrow G .
$$

Proof. Suppose that $\left\langle t_{1}, \ldots, t_{n}\right\rangle$ is a satisfying assignment for $c_{1} \wedge \ldots \wedge c_{m}$. In view of lemmas 6.1 and 6.2 and the fact that for \mathbb{P}_{i}^{m+} where $i>0$ proof condition (4) is satisfied automatically, because $\varphi\left(\mathbb{P}_{i}^{m+}\right)=\mathbb{P}_{n}^{m-}$, the only members of $\mathcal{N}_{\mathbb{W}}$ for which we have not proved that π satisfies proof condition (4) are \mathbb{P}_{0}^{j+}.

We now prove that for every $j>0, \mathbb{P}_{0}^{j+}<_{\psi} \varphi\left(\mathbb{P}_{0}^{j+}\right)=\mathbb{P}_{n}^{j-1-}$. There exists i such that $\neg_{t_{i}} x_{i}$ appears in the clause c_{j}. This means that $\psi\left(\mathbb{P}_{i-1}^{j-}\right)=\mathbb{P}_{i}^{j-1+}$
and by lemma $6.3 \mathbb{P}_{0}^{j+}<_{\psi} \mathbb{P}_{i}^{j+}$ and $\mathbb{P}_{i}^{j-1+}<_{\psi} \mathbb{P}_{n}^{j-1+}$. Thus $\mathbb{P}_{0}^{j+}<_{\psi} \varphi\left(\mathbb{P}_{0}^{j+}\right)=$ \mathbb{P}_{n}^{j-1-} and by lemma 3.1 we can now say that $L^{*}(\backslash, /) \vdash F_{1}\left(t_{1}\right) \ldots F_{n}\left(t_{n}\right) \rightarrow G$.

Suppose that $\left\langle t_{1}, \ldots, t_{n}\right\rangle$ is not a satisfying assignment for $c_{1} \wedge \ldots \wedge c_{m}$. There exists j such that no $\neg_{i} x_{i}$ appear in the clause c_{j}. This means that for $i \leq n, \psi^{2 i}\left(\mathbb{Q}_{n}^{j+}\right)=\mathbb{Q}_{n-i}^{j+}, \psi\left(\mathbb{P}_{n}^{j-1-}\right)=\mathbb{Q}_{n}^{j+}$, and $\psi\left(\mathbb{Q}_{0}^{j-}\right)=\mathbb{P}_{0}^{j+}$. Thus $\mathbb{P}_{n}^{j-1-}<_{\psi} \mathbb{P}_{0}^{j+}$. This means that π cannot satisfy proof condition (4). Thus by lemma 2.1 $\mathrm{L}^{*}(\backslash, /) \nvdash F_{1}\left(t_{1}\right) \ldots F_{n}\left(t_{n}\right) \rightarrow G$.

Since π satisfies proof condition (5),

$$
\mathrm{L}(\backslash, /) \vdash F_{1}\left(t_{1}\right) \ldots F_{n}\left(t_{n}\right) \rightarrow G \Leftrightarrow \mathrm{~L}^{*}(\backslash, /) \vdash F_{1}\left(t_{1}\right) \ldots F_{n}\left(t_{n}\right) \rightarrow G
$$

and thus the lemma is fully proven.
Lemma 6.5. If $\mathrm{L}(\backslash, /) \vdash \Pi \rightarrow A$ and $\Pi^{\prime} \rightarrow A^{\prime}$ is the result of replacing all instances of primitive type p by primitive type q, then $\mathrm{L}(\backslash, /) \vdash \Pi^{\prime} \rightarrow A^{\prime}$.

Proof. If we replace p by q throughout the derivation of $\Pi \rightarrow A$, we will get the derivation of $\Pi^{\prime} \rightarrow A^{\prime}$.

Lemma 6.6.

$$
\begin{aligned}
& \mathrm{L}(\backslash, /) \vdash F_{i}(1) \rightarrow\left(B_{i} \backslash A_{i}\right), \\
& \mathrm{L}(\backslash, /) \vdash F_{i}(0) \rightarrow\left(B_{i} \backslash A_{i}\right)
\end{aligned}
$$

Proof. Consider the boolean formula $c_{1}^{\prime} \wedge \ldots \wedge c_{m}^{\prime}$, where

$$
c_{i}^{\prime}= \begin{cases}\left(x_{1} \vee x_{2}\right), & \text { if the literal } \neg_{1} x_{i} \text { appears in } c_{j} \\ x_{1}, & \text { if the literal } \neg_{1} x_{i} \text { doesn't appear in } c_{j} .\end{cases}
$$

Let $F_{1}^{\prime}(1) F_{2}^{\prime}(1) \rightarrow G^{\prime}$ be the sequent constructed for this formula. By Lemma 6.4 we can say that $\mathrm{L}(\backslash, /) \vdash F_{1}^{\prime}(1) F_{2}^{\prime}(1) \rightarrow G^{\prime}$.

By replacing p_{0}^{j} by a_{i}^{j}, q_{0}^{j} by b_{i}^{j}, p_{1}^{j} by p_{i-1}^{j}, q_{1}^{j} by q_{i-1}^{j}, p_{2}^{j} by p_{i}^{j}, and q_{2}^{j} by q_{i}^{j}, we get $B_{i} F_{i}(1) \rightarrow A_{i}$. By Lemma 6.5 we get $\mathrm{L}(\backslash, /) \vdash B_{i} F_{i}(1) \rightarrow A_{i}$. Therefore $\mathrm{L}(\backslash, /) \vdash F_{i}(1) \rightarrow\left(B_{i} \backslash A_{i}\right)$.

Doing the same for the boolean formula $c_{1}^{\prime} \wedge \ldots \wedge c_{m}^{\prime}$, where

$$
c_{i}^{\prime}= \begin{cases}\left(x_{1} \vee x_{2}\right), & \text { if the literal } \neg_{0} x_{i} \text { appears in } c_{j} \\ x_{1}, & \text { if the literal } \neg_{0} x_{i} \text { doesn't appear in } c_{j},\end{cases}
$$

we get $\mathrm{L}(\backslash, /) \vdash B_{i} F_{i}(0) \rightarrow A_{i}$. Therefore $\mathrm{L}(\backslash, /) \vdash F_{i}(0) \rightarrow\left(B_{i} \backslash A_{i}\right)$.
Lemma 6.7. $\mathrm{L}(\backslash, /) \vdash \Pi_{i} \rightarrow F_{i}\left(t_{i}\right)$, where $t_{i} \in\{0,1\}$.
Proof. Using Lemma 6.6 we get

$$
\frac{\frac{F_{i}(0) \rightarrow F_{i}(0) \quad F_{i}(1) \rightarrow\left(B_{i} \backslash A_{i}\right)}{\frac{F_{i}(0)\left(F_{i}(0) \backslash F_{i}(1)\right) \rightarrow\left(B_{i} \backslash A_{i}\right)}{\left(F_{i}(0) /\left(B_{i} \backslash A_{i}\right)\right) F_{i}(0)\left(F_{i}(0) \backslash F_{i}(1)\right) \rightarrow F_{i}(0)} F_{i}(0) \rightarrow F_{i}(0)}(/ \rightarrow)}{}
$$

and

$$
\frac{F_{i}(0) \rightarrow\left(B_{i} \backslash A_{i}\right) \quad F_{i}(0) \rightarrow F_{i}(0)}{\frac{F_{i}(0) /\left(B_{i} \backslash A_{i}\right) F_{i}(0) \rightarrow F_{i}(0)}{\left(F_{i}(0) /\left(B_{i} \backslash A_{i}\right)\right) F_{i}(0)\left(F_{i}(0) \backslash F_{i}(1)\right) \rightarrow F_{i}(1)} \quad F_{i}(1) \rightarrow F_{i}(1)}(\backslash \rightarrow)
$$

Thus $\mathrm{L}(\backslash, /) \vdash \Pi_{i} \rightarrow F_{i}(0)$ and $\mathrm{L}(\backslash, /) \vdash \Pi_{i} \rightarrow F_{i}(1)$.
Lemma 6.8. If the formula $c_{1} \wedge \ldots \wedge c_{m}$ is satifiable, then $\mathrm{L}(\backslash, /) \vdash \Pi_{1} \ldots \Pi_{n} \rightarrow$ G.

Proof. Suppose $\left\langle t_{1}, \ldots, t_{n}\right\rangle$ is a satisfying assignment for $c_{1} \wedge \ldots \wedge c_{m}$. According to Lemma $6.4 \mathrm{~L}(\backslash, /) \vdash F_{1}\left(t_{1}\right) \ldots F_{n}\left(t_{n}\right) \rightarrow G$. Now we apply Lemma 6.7 and the cut rule n times.

Suppose that $\mathrm{L}^{*}(\backslash, /) \vdash \Pi_{1} \ldots \Pi_{n} \rightarrow G$. Consider

$$
\begin{aligned}
& \mathbb{W}=\llbracket\left(F_{1}(0) /\left(B_{1} \backslash A_{1}\right)\right) \rrbracket \rightarrow \llbracket F_{1}(0) \rrbracket \rightarrow \llbracket\left(F_{1}(0) \backslash F_{1}(1)\right) \rrbracket \rightarrow \ldots \\
& \ldots \llbracket\left(F_{n}(0) /\left(B_{n} \backslash A_{n}\right)\right) \rrbracket \llbracket \llbracket F_{n}(0) \rrbracket \rightarrow \llbracket\left(F_{n}(0) \backslash F_{n}(1)\right) \rrbracket \rightarrow \llbracket G \rrbracket .
\end{aligned}
$$

By Lemma 3.1 for $\mathcal{P}_{\mathbb{W}}$ there exists π satisfying proof conditions (1)-(4). Consider the following abbreviations:

$$
\mathbb{F}_{i}^{0}=\llbracket\left(F_{1}(0) /\left(B_{1} \backslash A_{1}\right)\right) \rrbracket \rightarrow \llbracket F_{1}(0) \rrbracket \rightarrow \llbracket\left(F_{1}(0) \backslash F_{1}(1)\right) \rrbracket \rightarrow \ldots \llbracket F_{i}(0) \rrbracket \rightarrow
$$

$$
\begin{aligned}
& \mathbb{F}_{i}^{0 \prime}=\llbracket F_{i}(0) \rrbracket \rightarrow \\
& \mathbb{A}_{i}=\mathbb{F}_{i}^{0}\left(\llbracket A_{i} \rrbracket^{\rightarrow}\right)^{\rightarrow} \quad \mathbb{A}_{i}^{\prime}=\left(\llbracket A_{i} \rrbracket^{\rightarrow}\right)^{\rightarrow} \\
& \mathbb{B}_{i}=\mathbb{A}_{i}\left(\left(\llbracket B_{i} \rrbracket^{\leftarrow}\right)^{\rightarrow}\right) \rightarrow \quad \mathbb{B}_{i}^{\prime}=\left(\left(\llbracket B_{i} \rrbracket^{\leftarrow}\right) \rightarrow\right)^{\rightarrow} \\
& \mathbb{H}_{i}=\mathbb{B}_{i} \llbracket F_{i}(0) \rrbracket \rightarrow \\
& \mathbb{C}_{i}=\mathbb{H}_{i}\left(\llbracket F_{i}(0) \rrbracket^{\leftarrow}\right) \rightarrow \quad \mathbb{F}_{i}^{0 \prime \prime}=\left(\llbracket F_{i}(0) \rrbracket^{\leftarrow}\right) \rightarrow \\
& \mathbb{F}_{i}^{1}=\mathbb{C}_{i} \llbracket F_{i}(1) \rrbracket \rightarrow \quad \quad \mathbb{F}_{i}^{1 \prime}=\llbracket F_{i}(1) \rrbracket \rightarrow
\end{aligned}
$$

Lemma 6.9. If $\mathrm{L}^{*}(\backslash, /) \vdash \Pi_{1} \ldots \Pi_{i} F_{i+1}\left(t_{i+1}\right) \ldots F_{n}\left(t_{n}\right) \rightarrow G$, then there is $t_{i} \in\{0,1\}$ such that $\mathrm{L}^{*}(\backslash, /) \vdash \Pi_{1} \ldots \Pi_{i-1} F_{i}\left(t_{i}\right) \ldots F_{n}\left(t_{n}\right) \rightarrow G$

Proof. Consider $\mathbb{W}^{\prime}=\mathbb{F}_{i}^{1} \mathbb{W}^{\prime \prime}$, where $\mathbb{W}^{\prime \prime}=\llbracket F_{i+1}\left(t_{i+1}\right) \rrbracket \rightarrow \ldots \llbracket F_{n}\left(t_{n}\right) \rrbracket \rightarrow \llbracket G \rrbracket$. By Lemma 3.1 for $\mathcal{P}_{\mathbb{W}^{\prime}}$ there exists π satisfying proof conditions (1)-(5).

Let $\mathbb{W}_{0}^{\prime}=\mathbb{F}_{i-1}^{1} \llbracket F_{i}(0) \rrbracket \rightarrow \mathbb{W}^{\prime \prime}$ and $\mathbb{W}_{1}^{\prime}=\mathbb{F}_{i-1}^{1} \llbracket F_{i}(1) \rrbracket \rightarrow \mathbb{W}^{\prime \prime}$.
For each j there are only two elements of $\mathcal{P}_{\mathbb{W}^{\prime}}$ such that $t(\mathbb{A})=a_{i}^{j}$ and two elements such that $t(\mathbb{A})=b_{i}^{j}$. This means that these pairs of elements are π-closed.

For each j there are six elements of $\mathcal{P}_{\mathbb{W}^{\prime}}$ such that $t(\mathbb{A})=p_{i}^{0}$. Let us denote them by $\mathbb{P}_{1}, \ldots, \mathbb{P}_{6}$ so that $\mathbb{P}_{1} \sqsubset \ldots \sqsubset \mathbb{P}_{6}$. The following holds:

$$
\mathbb{F}_{i-1}^{1} \sqsubset \mathbb{P}_{1} \sqsubset \mathbb{F}_{i}^{0} \sqsubset \mathbb{P}_{2} \sqsubset \mathbb{A}_{i} \sqsubset \mathbb{B}_{i} \sqsubset \mathbb{P}_{3} \sqsubset \mathbb{H}_{i} \sqsubset \mathbb{P}_{4} \sqsubset \mathbb{C}_{i} \sqsubset \mathbb{P}_{5} \sqsubset \mathbb{F}_{i}^{1} \sqsubset \mathbb{P}_{6}
$$

$\left\{\mathbb{P}_{1}, \ldots, \mathbb{P}_{6}\right\}$ is π-closed. $\mathbb{P}_{1}, \mathbb{P}_{3}, \mathbb{P}_{5} \in \mathcal{N}_{\mathbb{W}} .\left[\mathbb{P}_{1}, \mathbb{P}_{2}\right]_{\sqsubset},\left[\mathbb{P}_{3}, \mathbb{P}_{6}\right]_{\sqsubset}$, and $\left[\mathbb{P}_{4}, \mathbb{P}_{5}\right]_{\sqsubset}$ cannot be π-closed, therefore there are only two possibilities: either $\pi\left(\mathbb{P}_{1}\right)=$ $\mathbb{P}_{4}, \pi\left(\mathbb{P}_{3}\right)=\mathbb{P}_{2}$, and $\pi\left(\mathbb{P}_{5}\right)=\mathbb{P}_{6}$,

or $\pi\left(\mathbb{P}_{1}\right)=\mathbb{P}_{6}, \pi\left(\mathbb{P}_{3}\right)=\mathbb{P}_{4}$, and $\pi\left(\mathbb{P}_{5}\right)=\mathbb{P}_{2}$.

Suppose that $\pi\left(\mathbb{P}_{1}\right)=\mathbb{P}_{4}, \pi\left(\mathbb{P}_{3}\right)=\mathbb{P}_{2}$, and $\pi\left(\mathbb{P}_{5}\right)=\mathbb{P}_{6}$. Notice that $t\left(\mathbb{C}_{i}\right)=$ p_{i-1}^{m} and $\mathbb{C}_{i} \in \mathcal{N}_{\mathbb{W}^{\prime}}$.

If $i=1$, then there are only two variants for $\pi\left(\mathbb{C}_{i}\right)$: one is $p_{0}^{m\langle l\rangle}$ and the other one is $\mathbb{C}_{1} p_{0}^{m\langle l\rangle}$, where $l=2$ or $l=4$. Therefore, since the φ-join of \mathbb{C}_{1} and $\mathbb{C}_{1} p_{0}^{m\langle l\rangle}$ is $\mathbb{F}_{1}^{1} \in \mathcal{N}_{\mathbb{W}^{\prime}}, \pi\left(\mathbb{C}_{1}\right)=p_{0}^{m\langle l\rangle}$ and $\left[p_{0}^{m\langle l\rangle}, \mathbb{C}_{1}\right]_{\sqsubset}$ is π-closed.

If $i>1$, then there are four variants for $\pi\left(\mathbb{C}_{i}\right): \mathbb{F}_{i-1}^{1} p_{i-1}^{m\langle l\rangle}, \mathbb{C}_{i} p_{i-1}^{m\langle l\rangle}$, where $l=2$ or $l=4, \mathbb{H}_{i-1} p_{i-1}^{m\langle 2\rangle}$, and $\mathbb{F}_{i-1}^{0} p_{i-1}^{m\langle-2\rangle}$. The second variant is ruled out. If $\pi\left(\mathbb{C}_{i}\right)=\mathbb{H}_{i-1} p_{i-1}^{m\langle 2\rangle}$, then $\pi\left(\mathbb{C}_{i-1}\right)=\mathbb{C}_{i-1} p_{i-2}^{m\langle l\rangle}$, where $l=2$ or $l=4$, and the φ-join of \mathbb{C}_{i-1} and $\mathbb{C}_{i-1} p_{i-2}^{m\langle l\rangle}$ is $\mathbb{F}_{i-1}^{1} \in \mathcal{N}_{\mathbb{W}^{\prime}}$. If $\pi\left(\mathbb{C}_{i}\right)=\mathbb{F}_{i-1}^{0} p_{i-1}^{m\langle-2\rangle}$, then since the segment $\left(\mathbb{F}_{i-1}^{0}, \mathbb{C}_{i}\right]_{\sqsubset}$ is φ-closed and π-closed, $\mathbb{G} \not Z_{\psi} \mathbb{F}_{i-1}^{0} p_{i-1}^{m\langle-2\rangle}$ for all $\mathbb{G} \notin$ $\left(\mathbb{F}_{i-1}^{0}, \mathbb{C}_{i}\right]_{\sqsubset}$. But $\psi^{2}\left(\mathbb{C}_{i}\right)=\varphi\left(\pi\left(\mathbb{C}_{i}\right)\right)=\varphi\left(\mathbb{F}_{i-1}^{0} p_{i-1}^{m\langle-2\rangle}\right)=\mathbb{F}_{i-1}^{0} \notin\left(\mathbb{F}_{i-1}^{0}, \mathbb{C}_{i}\right]_{\Gamma}$. Therefore $\mathbb{C}_{i} \not \chi_{\psi} \mathbb{H}_{i} p_{i}^{m\langle 2\rangle}$, but $\mathbb{C}_{i}<_{\varphi} \mathbb{H}_{i} p_{i}^{m\langle 2\rangle}$ and thus proof condition (4) is not satisfied. Therefore $\pi\left(\mathbb{C}_{i}\right)=\mathbb{F}_{i-1}^{1} p_{i-1}^{m\langle l\rangle}$ and $\left(\mathbb{F}_{i-1}^{1}, \mathbb{C}_{i}\right]_{\sqsubset}$ is π-closed.

Therefore, since $\left(\mathbb{F}_{i-1}^{1}, \mathbb{C}_{i}\right]_{\sqsubset}$ is π-closed and φ-closed, by Lemma 3.1 for \mathbb{W}_{1}^{\prime} there is π^{\prime} satisfying proof conditions (1)-(4) and

$$
\mathrm{L}^{*}(\backslash, /) \vdash \Pi_{1} \ldots \Pi_{i-1} F_{i}(1) \ldots F_{n}\left(t_{n}\right) \rightarrow G .
$$

Suppose that $\pi\left(\mathbb{P}_{1}\right)=\mathbb{P}_{6}, \pi\left(\mathbb{P}_{3}\right)=\mathbb{P}_{4}$, and $\pi\left(\mathbb{P}_{5}\right)=\mathbb{P}_{2}$. Let $\mathbb{E}=\mathbb{F}_{i}^{0} p_{i+1}^{m\langle-2\rangle}$.

There are only two variants for $\pi(\mathbb{E})$: one is \mathbb{F}_{i}^{0} and the other one is \mathbb{F}_{i}^{1}. The φ-join of \mathbb{E} and \mathbb{F}_{i}^{0} is $\mathbb{F}_{i}^{0} \in \mathcal{N}_{\mathbb{W}}$. Therefore $\pi(\mathbb{E})=\mathbb{F}_{i}^{1}$ and $\left(\mathbb{F}_{i}^{0}, \mathbb{F}_{i}^{1}\right]_{\Gamma}$ is π-closed.

Therefore since $\left(\mathbb{F}_{i}^{0}, \mathbb{F}_{i}^{1}\right]_{\sqsubset}$ is π-closed and φ-closed, by Lemma 3.1 for \mathbb{W}_{0}^{\prime} there is π^{\prime} satisfying proof conditions (1)-(4) and

$$
\mathrm{L}^{*}(\backslash, /) \vdash \Pi_{1} \ldots \Pi_{i-1} F_{i}(0) \ldots F_{n}\left(t_{n}\right) \rightarrow G .
$$

Lemma 6.10. If $\mathrm{L}^{*}(\backslash, /) \vdash \Pi_{1} \ldots \Pi_{n} \rightarrow G$, then the formula $c_{1} \wedge \ldots \wedge c_{m}$ is satisfiable.

Proof. Applying n times Lemma 6.9, we get that there exists $\left\langle t_{1}, \ldots, t_{n}\right\rangle \in$ $\{0,1\}^{n}$ such that $\mathrm{L}^{*}(\backslash, /) \vdash F_{1}\left(t_{1}\right) \ldots F_{n}\left(t_{n}\right) \rightarrow G$. By Lemma 6.4 this means that $\left\langle t_{1}, \ldots, t_{n}\right\rangle$ is a satisfying assignment for $c_{1} \wedge \ldots \wedge c_{m}$.

Since for all sequents $\mathrm{L}(\backslash, /) \vdash \Pi \rightarrow A \Rightarrow \mathrm{~L}^{*}(\backslash, /) \vdash \Pi \rightarrow A$, Lemma 6.8 and Lemma 6.10 together give us Theorem 2.1.

Acknowledgements

I am most grateful to Prof. M. Pentus for his constant attention to my work.

References

[1] E. Aarts and K. Trautwein, Non-associative Lambek categorial grammar in polynomial time, Mathematical logic Quarterly 41 (1995) pp. 476484.
[2] Ph. de Groote, The non-associative Lambek calculus with product in polynomial time, in: Automated Reasoning with Analytic Tableaux and Related Methods, (N. V. Murray, ed.), LLNC vol. 1617, Springer (1999), pp. 128-139.
[3] J. Lambek, The mathematics of sentence structure, American Mathematical Monthly 65 (3) (1958) pp. 154-170.
[4] G. Penn, A Graph-Theoretic Approach to Polynomial-Time Recognition with the Lambek Calculus, Electronic Notes in Theoretical Computer Science vol. 53, Elsevier (2005).
[5] M. Pentus, Lambek calculus is NP-complete, Theoretical Computer Science 357, no. 1-3 (2006) pp. 186-201.
[6] Y. Savateev, Lambek grammars with one division are decidable in polynomial time, in: Computer Science - Theory and Applications, (E.A. Hirsch et al. eds.), LLNC vol. 5010, Springer (2008), pp. 273-282.

