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Abstract

In this paper we prove that the derivability problems for product-free Lambek
calculus and product-free Lambek calculus allowing empty premises are NP-
complete. Also we introduce a new derivability characterization for these
calculi.
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Introduction

Lambek calculus L was first introduced in [3]. Lambek calculus uses
syntactic types that are built from primitive types using three binary con-
nectives: multiplication, left division, and right division. Natural fragments
of Lambek calculus are the product-free Lambek calculus L(\, /), which does
not use multiplication, and the unidirectional Lambek calculi, which have
only one connective left: a division (left or right).

For the non-associative variant of Lambek calculus the derivability can
be checked in polynomial time as shown in [2] (for the product-free fragment
of the non-associative Lambek calculus this was proved already in [1]).

In [5] NP-completeness was proved for the derivability problem for full as-
sociative Lambek calculus. In [6] there was presented a polynomial algorithm
for its unidirectional fragments.

We show that the classical satisfiability problem SAT is polynomial time
reducible to the L(\, /)-derivability problem and thus L(\, /) is NP-complete.

After first presenting this result, the author was pointed to [4], where
a very similar (but more complex) technique to explore the derivability for
product-free Lambek calculus was presented, though without proving any
complexity results.

Preprint submitted to Annals of Pure and Applied Logic September 12, 2011



1. Product-free Lambek Calculus

Product-free Lambek calculus L(\, /) can be constructed as follows. Let
P = {p0, p1, . . .} be a countable set of what we call primitive types. Let Tp be
the set of types constructed from primitive types with two binary connectives
/, \. We will denote primitive types by small letters (p, q, r, . . .) and types
by capital letters (A, B, C, . . .). By capital greek letters (Π, Γ, ∆,. . .) we will
denote finite (possibly empty) sequences of types. Expressions like Π → A,
where Π is not empty, are called sequents.

Axioms and rules of L(\, /):

A→ A,
Φ→ B ΓB∆→ A

ΓΦ∆→ A
(CUT),

ΠA→ B
Π→ (B/A)

(→ /), Φ→ A ΓB∆→ C
Γ(B/A)Φ∆→ C

(/→),

AΠ→ B
Π→ (A\B)

(→ \), Φ→ A ΓB∆→ C
ΓΦ(A\B)∆→ C

(\ →),

(Here Γ and ∆ can be empty.)
In this paper we will consider two calculi — L(\, /) and L∗(\, /), called

product-free Lambek calculus allowing empty premises. In L∗(\, /) we allow
the antecedent of a sequent to be empty.

It can be shown that in these calculi every derivable sequent has a cut-
free derivation where all instances of the axiom are of the form p→ p where
p ∈ P.

2. Reduction from SAT

Let c1 ∧ . . . ∧ cm be a Boolean formula in conjunctive normal form with
clauses c1 . . . cm and variables x1 . . . xn. The reduction maps the formula to
a sequent, which is derivable in L(\, /) (and in L∗(\, /)) if and only if the
formula c1 ∧ . . . ∧ cm is satisfiable.

For any Boolean variable xi let ¬0xi stand for the literal ¬xi and ¬1xi
stand for the literal xi.

Note that 〈t1, . . . , tn〉 ∈ {0, 1}n is a satisfying assignment for the Boolean
formula c1 ∧ . . . ∧ cm if and only if for every j ≤ m there exists i ≤ n such
that the literal ¬tixi appears in the clause cj (as usual, 1 stands for “true”
and 0 stands for “false”).

Let pji , q
j
i , a

j
i , b

j
i ; 0 ≤ i ≤ n, 0 ≤ j ≤ m be distinct primitive types from P.
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We define the following families of types:

G0 
 (p00\p0n),

Gj 
 (qjn/((q
j
0\p

j
0)\Gj−1))\pjn, G
 Gm

A0
i 
 (a0i \p0i ),

Aji 
 (qji /((b
j
i\a

j
i )\A

j−1
i ))\pji , Ai 
 Ami ,

E0
i (t)
 p0i−1,

Ej
i (t)


{
qji /(((q

j
i−1/E

j−1
i (t))\pji−1)\p

j−1
i ), if ¬txi appears in cj

(qji−1/(q
j
i /(E

j−1
i (t)\pj−1i )))\pji−1, if ¬txi does not appear in cj,

Fi(t)
 (Em
i (t)\pmi ),

B0
i 
 a0i ,

Bj
i 
 qji−1/(((b

j
i/B

j−1
i )\aji )\p

j−1
i−1 ), Bi 
 Bm

i \pmi−1.

Let Πi denote the following sequences of types:

(Fi(0)/(Bi\Ai)) Fi(0) (Fi(0)\Fi(1)).

Theorem 2.1. The following statements are equivalent:

1. c1 ∧ . . . ∧ cm is satisfiable.

2. L(\, /) ` Π1 . . .Πn → G.

3. L∗(\, /) ` Π1 . . .Πn → G.

This theorem will be proven in section 6.

3. Derivability Characterization

Let At be the set of atoms or primitive types with superscripts, {p〈i〉|p ∈
P, i ∈ Z}. Let FS be the free monoid (the set of all finite strings) generated
by elements of At. We will denote elements of FS by A, B, C and so on, by
ε we will denote the empty string.

Consider two mappings:

t : FS→ P, t(Ap〈i〉) = p; d : FS→ Z, d(Ap〈i〉) = i.
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Let A @ B denote that A is a strict prefix of B (i.e. there is C 6= ε ∈ FS
such that B = AC). We will denote such C as A�B. By A v B we will
denote that either A @ B or A = B. We can define in the usual way the
following notions: min@, max@, inf@, sup@, [A,B]@, and (A,B]@.

For A ∈ FS,A 6= ε let PA = {B | B v A,B 6= ε}. The relation v is a
total order on PA.

Let α be a partial function on PA. For each such function we can define
the following:

B <α C⇔ ∃n ≥ 1, αn(B) = C,
B ≤α C⇔ B <α C ∨ B = C,
µ−α (B) = min

@
(B, α(B)),

µ+
α (B) = max

@
(B, α(B)),

Fα(B) = {C | C ≤α B},
ν−α (B) = inf

@
(Fα(B)),

ν+α (B) = sup
@

(Fα(B)).

A function f : X → X is an antiendomorphism if ∀a, b ∈ X, f(ab) =
f(b)f(a). In a free monoid it can be defined by its actions on the generators.
Consider two antiendomorphisms (·)← and (·)→ on FS defined by

(p〈0〉)← = p〈−1〉, (p〈0〉)→ = p〈1〉,

(p〈i〉)← = (p〈i〉)→ = p〈−i−sgn(i)〉, for i 6= 0.

Consider J·K : Tp → FS, a mapping from Lambek types to elements of
the free monoid defined by

JpK = p〈0〉, J(A/B)K = JBK→JAK, J(A\B)K = JBKJAK←.

Let A ∈ Tp. Let us define ϕ — the partial function on PJAK that reflects
the structure of A:

ϕ(A) =

{
inf@{B | A @ B, |d(B)| = |d(A)| − 1}, if d(A) > 0;

sup@{B | B @ A, |d(B)| = |d(A)| − 1}, if d(A) < 0.

It can be easily shown that the following facts hold:
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1. There is a unique A0 ∈ PJAK such that d(A0) = 0.

2. ϕ(A) is defined for every A 6= A0.

3. ≤ϕ is a partial order on PJAK.

4. For every i ∈ N such that i < |d(A)| there exists B such that |d(B)| = i
and A <ϕ B, for instance A ≤ϕ A0.

5. If A ∈ [µ−ϕ (B), µ+
ϕ (B)]@, then A ≤ϕ ϕ(B).

Suppose A,B ∈ PJAK. There exists C ∈ PJAK such that A ≤ϕ C, B ≤ϕ C,
and for all C′ ∈ PJAK such that A <ϕ C′ and A ≤ϕ C′, we have C ≤ϕ C′.
Such C is called the ϕ-join of A and B.

A set G ⊂ PJAK is called ϕ-closed if there is no A /∈ G such that ϕ(A) ∈ G.
Let NA = {B ∈ PA | d(B) = 2i+ 1, i ∈ Z}.
Suppose we have a Lambek sequent A1 . . . An → B. Let

W = J(. . . (B/An)/ . . .)/A1K = JA1K→ . . . JAnK→JBK.

Let π be a function on PW, and ψ be a partial function defined by

ψ(A) =

{
π(A), if A ∈ NW;

ϕ(A), if A /∈ NW and d(A) 6= 0.

To characterize derivability of the sequent A1 . . . An → B we shall use the
following conditions, which we call proof conditions.

1. If A ∈ NW, then π(A) /∈ NW and π2(A) = A for all A ∈ PW.

2. t(π(A)) = t(A).

3. µ−π (A) @ µ−π (B)⇒ µ+
π (A) @ µ−π (B) ∨ µ+

π (B) @ µ+
π (A).

4. A ∈ NW =⇒ A <ψ ϕ(A) or equivalently ∀A ∈ PW,Fϕ(A) ⊂ Fψ(A).

5. A /∈ NW ∧ A 6= A0 =⇒ ∃B(B <ψ A ∧ B 6<ϕ A).

Theorem 3.1 (Derivability Criterion). L∗(\, /) ` A1 . . . An → B if and only
if there exists π satisfying proof conditions (1)-(4).

L(\, /) ` A1 . . . An → B if and only if n > 0 and there exists π satisfying
proof conditions (1)-(5).

This theorem will be proven in section 5.
We will call G ⊂ PW π-closed if for all A ∈ G, π(A) ∈ G. It is readily

seen that if π satisfies proof conditions (1) and (3), then for every A ∈ NW,
[µ−π (A), µ+

π (A)]@ and PW \ [µ−π (A), µ+
π (A)]@ are π-closed. If π satisfies proof

conditions (1) and (2), then G cannot be π-closed if for given p ∈ P there
are odd number of A ∈ G such that t(A) = p.
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Lemma 3.1. Suppose we have two sequents A1 . . . An → B and C1 . . . Cm →
D. Let L∗(\, /) ` A1 . . . An → B. Let W = JA1K→ . . . JAnK→JBK and W′ =
JC1K→ . . . JCmK→JDK. Suppose that there is a mapping β : PW′ → PW such
that the following holds:

1. β is injective,

2. For all A ∈ PW′, t(β(A)) = t(A), d(β(A)) = d(A),

3. For all A,B ∈ PW′, A @ B if and only if β(A) @ β(B).

Let G = {A ∈ PW | ¬∃B ∈ PW′ , β(B) = A}. If G is π-closed and ϕ-closed,
then L∗(\, /) ` C1 . . . Cn → D.

Proof. Let ϕ′ be ϕ for PW′ . Since G is ϕ-closed, for all A ∈ PW′ , ϕ′(A) =
β−1(ϕ(β(A))). Since G is π-closed, π′ defined as β−1πβ is defined on all PW′
and satisfies proof conditions (1)-(4). Therefore by Theorem 3.1

L∗(\, /) ` C1 . . . Cn → D.

4. Graphic Representation

Consider the following Lambek sequent:

(p/(r\q)) (r\q) (p\s)→ s.

The corresponding element of FS is

p〈1〉q〈−2〉r〈−3〉r〈2〉q〈1p〈2〉s〈1〉s〈0〉.

Elements of PW correspond to occurences of atoms in the string. So we can
draw arrows between such occurences to represent functions ϕ and ψ. We
draw arrows for π for members of NW in the upper semiplane of the string
and arrows for ϕ in the lower semiplane. Dotted arrows denote parts of ϕ
that are not part of ψ. Consider the following diagram:

p〈1〉
��

OOq〈−2〉
OO

r〈−3〉
��

OO r〈2〉 OOq
〈1〉

��
p〈2〉 OOs

〈1〉
��

OOs
〈0〉

Such diagrams are called proof nets.
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Proof nets provide useful intuition about proof conditions. For example
proof condition (3) is equivalent to the statement ”arrows in the upper semi-
plane can be drawn without intersections”. Proof condition (4) states that
for every dotted arrow if we start at its origin and follow solid arrows we will
reach its destination.

It is readily seen that this proofnet satisfies proof conditions (1)-(5) and
thus L(\, /) ` (p/(r\q))(r\q)(p\s)→ s.

5. Proof of the Derivability Criterion

Suppose we have a sequent A1 . . . An → B. LetW = JA1K→ . . . JAnK→JBK.
Proof conditions:

1. If A ∈ NW, then π(A) /∈ NW and π2(A) = A for all A ∈ PW.

2. t(π(A)) = t(A).

3. µ−π (A) @ µ−π (B)⇒ µ+
π (A) @ µ−π (B) ∨ µ+

π (B) @ µ+
π (A).

4. A ∈ NW =⇒ A <ψ ϕ(A) or equivalently ∀A ∈ PW,Fϕ(A) ⊂ Fψ(A).

5. A /∈ NW ∧ A 6= A0 =⇒ ∃B(B <ψ A ∧ B 6<ϕ A).

Lemma 5.1. If L∗(\, /) ` A1 . . . An → B, then there exists π on PW satis-
fying proof conditions (1)-(4).

If L(\, /) ` A1 . . . An → B, then there exists π on PW satisfying proof
conditions (1)-(5).

Proof. Suppose that L(∗)(\, /) ` A1 . . . An → B. Induction on the length of
the derivation.

If the sequent is of the form p→ p, thenW = p〈1〉p〈0〉, PW = {p〈1〉, p〈1〉p〈0〉},
NW = {p〈1〉} and π such that π(p〈1〉) = p〈1〉p〈0〉 and π(p〈1〉p〈0〉) = p〈1〉 satisfies
all necessary proof conditions.

Suppose that the last step in the derivation of A1 . . . An → B was an
application of the rule (→ /). Then B = (C/D), L(∗)(\, /) ` A1 . . . AnD → C
and for PW′ , where W′ = JA1K→ . . . JAnK→JDK→JCK there exists π′ satisfying
all necessary proof conditions. But in this case W = W′, and therefore this
π′ works for the sequent A1 . . . An → B too.

Suppose that the last step in the derivation of A1 . . . An → B was an appli-
cation of the rule (→ \). Then B = (C\D), W = JA1K→ . . . JAnK→JDKJCK←,
L(∗)(\, /) ` CA1 . . . An → D, and by induction hypothesis for PW′ , where

W′ = JCK→JA1K→ . . . JAnK→JDK
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there exists π′ satisfying all necessary proof conditions. Consider

β : PW′ → PW, β(A) =

{
JA1K→ . . . JAnK→JDK(A→−1

)←, if A v JCK→;

JCK→�A, if JCK→ @ A.

Let π(A) = β(π′(β−1(A))). Such π satisfies all necessary proof conditions.
Suppose that the last step in the derivation of A1 . . . An → B was an

application of the rule (/→). Then A1 . . . An → B is of the form

C1 . . . (Ci/D)D1 . . . DkCi+1 . . . Cl → C

so that L(∗)(\, /) ` C1 . . . Cl → C and L(∗)(\, /) ` D1 . . . Dk → D.
Consider W′ = JC1K→ . . . JClK→JCK and W′′ = JD1K→ . . . JDkK→JDK. By

induction hypothesis there are π′ and π′′ — functions on PW′ and PW′′ re-
spectively, satisfying all necessary proof conditions.

Let C = JC1K→ . . . JCiK→ and D = JD1K→ . . . JDkK→. Consider

β′ : PW′ → PW, β′(A) =

{
A, if A v C;

C(JDK→)→D(C�A), if C @ A;

and β′′ : PW′′ → PW, β′′(A) =

{
C(JDK→)→A, if A v D;

C((D�A)→)→, if D @ A;
.

Let π(A) =

{
β′(π′(β′−1(A))), if A v C or C(JDK→)→D @ A;

β′′(π′′(β′′−1(A))), if C @ A v C(JDK→)→D;
.

Such π satisfies all necessary proof conditions.
Suppose that the last step in the derivation of A1 . . . An → B was an

application of the rule (\ →). Then A1 . . . An → B is of the form

C1 . . . Ci−1D1 . . . Dk(D\Ci) . . . Cl → C

so that L(∗)(\, /) ` C1 . . . Cl → C and L(∗)(\, /) ` D1 . . . Dk → D.
Consider W′ = JC1K→ . . . JClK→JCK and W′′ = JD1K→ . . . JDkK→JDK. By

induction hypothesis there are π′ and π′′ — functions on PW′ and PW′′ re-
spectively, satisfying all necessary proof conditions.

8



Let C = JC1K→ . . . JCi−1K→ and D = JD1K→ . . . JDkK→. Consider

β′ : PW′ → PW, β′(A) =

{
A, if A v C;

CD(JDK←)→(C�A), if C @ A;

and β′′ : PW′′ → PW, β′′(A) =

{
CA, if A v D;

CD((D�A)←)→, if D @ A;
.

Let π(A) =

{
β′(π′(β′−1(A))), if A v C or CD(JDK←)→ @ A;

β′′(π′′(β′′−1(A))), if C @ A v CD(JDK←)→;
.

Such π satisfies all necessary proof conditions.
Thus the lemma is fully proven.

Now suppose that for the given sequent A1 . . . An → B, n > 0, and for
PW there exists π satisfying proof conditions (1)-(4).

Lemma 5.2. The relation ≤ψ is a partial order on PW.

Proof. Reflexivity and transitivity directly follow from the definition of ≤ψ.
Now lets prove antisymmetry. Suppose that there are B,C ∈ PW such

that B ≤ψ C and C ≤ψ B. If B 6= C then there is i > 0 such that ψi(B) = B
and thus for all j > 0, ψj(B) is defined.

If π satisfies proof condition (4) and A ≤ϕ B, then A ≤ψ B. There is
A0 ∈ PW such that d(A0) = 0, and for all A ∈ PW, A ≤ϕ A0. This means
that B ≤ϕ A0 and thus B ≤ψ A0. The function ψ is not defined on A0.
Contradiction.

Lemma 5.3. If A <ψ B and C is the ϕ-join of A and B, then C /∈ NW.

Proof. Suppose that C ∈ NW. There is C1 such that A ≤ϕ C1 and ϕ(C1) =
C. There is C2 6= C1 such that B ≤ϕ C2 and ϕ(C2) = C. This means that
A ≤ψ C1, B ≤ψ C2, and since A ≤ψ B, either C1 <ψ C2 or C2 <ψ C1. But
since ψ(C1) = ψ(C2) = C, we get C <ψ C. Contradiction.

Consider the following abbreviations:

• Ai = JA1K→ . . . JAiK→.

• If Ai = A′i/A
′′
i , then A′i = JA1K→ . . . JA′iK→.

• If Ai = A′′i \A′i, then A′i = JA1K→ . . . (JA′′i K←)→.
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Lemma 5.4. L∗(\, /) ` A1 . . . An → B.

Proof. Induction on total number of connectives in the sequent.
If there are no connectives, the sequent is of the form p1 . . . pn → q and

W = p
〈1〉
1 . . . p

〈1〉
n q〈0〉. The function π satisfies proof condition (1), thus |NW| =

|PW\NW|. This means that n = 1. So PW = {p〈1〉1 , p
〈1〉
1 q〈0〉} and NW = {p〈1〉1 }.

The function π satisfies proof condition (2), therefore p1 = q, and the sequent
is an axiom.

If B = (C/D), then the sequent A1 . . . AnD → C has less connectives
then the original sequent, but JA1K→ . . . JAnK→JDK→JCK = W, and therefore
π satisfies all necessary proof conditions for the new sequent. By induction
hypothesis this means that L∗(\, /) ` A1 . . . AnD → C and by applying the
rule (→ /) we get L∗(\, /) ` A1 . . . An → B.

If B = (C\D), then the sequent CA1 . . . An → D has less connectives
then the original sequent.

Let W′ = JCK→AnJDK. Consider

β : PW′ → PW, β(B) =

{
AnJDK(B→−1

)←, if B v JCK→;

JCK→�B, if JCK→ @ B;
.

Let π′(B) = β−1(π(β(B))). Such π′ satisfies all necessary proof conditions.
By induction hypothesis this means that L∗(\, /) ` CA1 . . . An → D, and by
applying the rule (→ \) we get L∗(\, /) ` A1 . . . An → B.

Now we can only consider sequents of the form A1 . . . An → p. This means
that W = Anp〈0〉. Let B1 = π(W). Since π satisfies proof condition (4) and ψ
is not defined on W, ϕ(B1) = W. Therefore d(B1) = 1 and for every C @W
we have C ≤ψ B1. There is no C ∈ PW such that µ−ψ (C) @ B1 @ µ+

ψ (C).
There exists i ≤ n such that B1 ∈ (Ai−1,Ai].

Suppose that Ai = (A′i/A
′′
i ). There exists a unique D ∈ PJA′′i K such

that d(D) = 0. Consider B2 = A′i(D→)→ ∈ PW. Obviously d(B2) = −2,
ϕ(B2) = B1, ψ

2(B2) = W, and there is no C ∈ PW such that B2 @ C and
ϕ(C) = A1.

Also Fψ(B2) = [ν−ψ (B2), ν
+
ψ (B2)]@ = (A′i,Al]@ for some l ≥ i.

Let us prove this statement. There are no C ∈ Fψ(B2) such that C @ B1.
There are no C ∈ Fψ(B2) such that C ∈ (B1,A′i], because in this case ϕ-
join of C and B2 is B1 ∈ NW. Since (A′i,Ai]@ = Fϕ(B2) ⊂ Fψ(B2), we
have ν−ψ (B2) = ν−ϕ (B2) and Ai v ν+ψ (B2). If C <ϕ D, then C <ψ D. This
means that if C ∈ Fψ(B2), then either ϕ(C) ∈ Fψ(B2), or ϕ(C) = B1 and
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C = B2, or ϕ(C) = W and d(C) = 1. Since Fψ(B2) is ϕ-closed, this means
that ν+ψ (B2) = Al for some l ≥ i. Consider C ∈ (Ai,Al]@. There exists
C′ ∈ (Ai,Al]@, such that C ≤ϕ C′ and d(C′) = 1. If C′ <ψ B2, then C <ψ B2.
Otherwise there exists D ∈ Fψ(B2) ∩ NW such that C′ ∈ [µ−π (D), µ+

π (D)]@.
Since D 6<ϕ C′, we have C ∈ [µ−π (D), µ+

π (D)]@. Thus for all C ∈ (Ai,Al]@
we have ψ(C) ∈ (A′i,Al]@. Thus the only element E ∈ [ν−ψ (B2), ν

+
ψ (B2)]@

such that ψ(E) /∈ [ν−ψ (B2), ν
+
ψ (B2)]@ is B2. Since C <ψ B1, this means that

C <ψ B2.
ConsiderW′ = A′iJAl+1K→ . . . JAnK→p〈0〉 andW′′ = JAi+1K→ . . . JAlK→JA′′i K.

Let C = JA1K→ . . . JAi−1K→JCK→ and D = JAi+1K→ . . . JAlK→. Consider

β′ : PW′ → PW, β′(B) =

{
B, if B v A′i;
A′i(JA′′i K→)→D(A′i�B), if A′i @ B;

,

β′′ : PW′′ → PW, β′′(B) =

{
A′i(JA′′i K→)→B, if B v D;

Ai, ((D�B)→)→, if D @ B;
.

The functions π′ = β′−1πβ′ and π′′ = β′′−1πβ′′ satisfy all necessary proof
conditions. By induction hypothesis this means that

L∗(\, /) ` A1 . . . Ai−1A
′
iAl+1 . . . An → p

and L∗(\, /) ` Ai+1 . . . Al → A′′i . By applying the rule (/→) we get

L∗(\, /) ` A1 . . . An → p.

Suppose that Ai = (A′′i \A′i). There exists a unique D ∈ PJA′′i K such that
d(D) = 0. Let B2 = Ai−1(D←)→ ∈ PW. Obviously d(B2) = 2, ϕ(B2) = B1,
ψ2(B2) = W, and there is no C ∈ PW such that C @ B2 and ϕ(C) = B1. Like
in the previous case we can say that Fψ(A2) = [ν−ψ (A2), ν

+
ψ (A2)]@ = (Al,A′i]@

for some l ≤ i− 1.
Consider W′ = AlJA′iK→JAi+1K→ . . . JAnK→p〈0〉 and

W′′ = JAl+1K→ . . . JAi−1K→JA′′i K.

Let D = JAl+1K→ . . . JAi−1K→. Consider
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β′ : PW′ → PW, β′(B) =

{
B, if B v Al;
AlD(JA′′i K←)→(Al�B), if Al @ B;

,

β′′ : PW′′ → PW, β′′(B) =

{
AlB, if B v D;

AlD((D�B)←)→, if D @ B;
.

The functions π′ = β′−1πβ′ and π′′ = β′′−1πβ′′ satisfy all necessary proof
conditions. By induction hypothesis this means that

L∗(\, /) ` A1 . . . AlA
′
iAi+1 . . . An → p

and L∗(\, /) ` Al+1 . . . Ai−1 → A′′i . By applying the rule (\ →) we get

L∗(\, /) ` A1 . . . An → p.

The lemma is fully proven.

Lemma 5.5. If π also satisfies proof condition (5), then

L(\, /) ` A1 . . . An → B.

Proof. By Lemma 5.4 we have L∗(\, /) ` A1 . . . An → B. The construction
given in the proof of Lemma 5.4 provides us with a possible last step of the
derivation. Hence we can construct a derivation. If π satisfies proof condition
(5), then there will be no B2 such that Fψ(B2) = Fϕ(B2), and thus there will
be no steps in derivation that require sequents of the form→ A. This means
that L(\, /) ` A1 . . . An → B.

Lemmas 5.1, 5.4, and 5.5 together gives us Theorem 3.1.
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6. Proof of the Main Theorem

By definition of J·K we have:

JG0K = p0〈0〉n p
0〈−1〉
0

JGjK = pj〈0〉n qj〈−1〉n (JGj−1K→)←q
j〈4〉
0 p

j〈−3〉
0

JGK = JGmK

JE0
i (t)K = p

0〈0〉
i−1

JEj
i (t)K =

{
p
j〈2〉
i−1q

j〈−3〉
i−1 (((JEj−1

i (t)K→)←)←)→p
j−1〈1〉
i q

j〈0〉
i , if ¬txi appears in cj

p
j〈0〉
i−1q

j〈−1〉
i−1 (((JEj−1

i (t)K←)→)→)←p
j−1〈3〉
i q

j〈−2〉
i , if ¬txi does not appear in cj

JFi(t)K→ = (JEm
i (t)K←)→p

m〈1〉
i

Consider W = JF1(t1)K→ . . . JFn(tn)K→JGK.
For these sequents it is convienient to use different type of proofnet. Let

us write W like this

...
...

OO
... . . .

...

... ...
��

Starting from lower left corner, one atom per cell in a matrix with 2m + 1
rows and 2n+ 2 columns.

If a primitive type occurs in the sequent F1(t1) . . . Fn(tn)→ G, it occurs
exactly twice. Let Pj+i be the element of NW such that t(Pj+i ) = pji (the
corresponding atom occurence in the matrix is at row 2j + 1 and column 2i
for i > 0 and 2n + 2 for i = 0) and Pj−i be the element of PW \ NW such
that t(Pj−i ) = pji (row 2j+ 1, column 2i+ 1). In the same way we define Qj+

i

(row 2j, column 2j + 1) and Qj−
i (row 2j, column 2i for i > 0 and 2n+ 2 for

i = 0).
The following facts hold:

1. d(Pm−n ) = 0.

2. If ¬tixi does not appear in the clause cj, then ϕ3(Pj−1+i ) = ϕ2(Qj−
i ) =

13



ϕ(Qj+
i−1) = Pj−i−1.

p
j−1〈4l+5〉
i

��

q
j〈−4l−3〉
i−1

��

q
j〈−4l−4〉
i

oo

p
j〈±(4l+2)〉
i−1

3. If ¬tixi appears in clause cj, then ϕ3(Qj+
i−1) = ϕ2(Pj−i−1) = ϕ(Pj−1+i ) =

Qj−
i .

p
j−1〈4l+3〉
i

��

q
j〈−4l−5〉
i−1

��

q
j〈±(4l+2)〉
i

p
j〈4l+4〉
i−1

BB

4. ϕ4(Qj−
0 ) = ϕ3(Pj+0 ) = ϕ2(Pj−1−n ) = ϕ(Qj+

n ) = Pj−n .

p
j−1〈−2l−2〉
n

��

q
j〈−2l−1〉
n

��

q
j〈2l+4〉
0

��

p
j〈2l〉
n p

j〈−2l−3〉
0

]]

Here l = m− j.
The function π can only satisfy proof conditions (1) and (2) if for every

i and j, π(Pj+i ) = Pj−i and π(Qj+
i ) = Qj−

i . If it is so, then π satisfies proof
conditions (3) and (5).

Example 6.1. Consider the boolean formula x1 ∨ x2.
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The proof net for F1(1)F2(0)→ G will be the following:

p
0〈−6〉
0

��

p
0〈3〉
1

//

��

p
0〈6〉
1

// p
0〈5〉
2

//

��

p
0〈−2〉
2

��

p
0〈−3〉
0

oo//

q
1〈−5〉
0

��

ooq
1〈2〉
1

��

q
1〈−3〉
1

oo

��

q
1〈−4〉
2

oo q
1〈−1〉
2

oo

��

q
1〈4〉
0

��

p
1〈4〉
0

GG

p
1〈1〉
1

//
OO

p
1〈2〉
1

// p
1〈1〉
2

//
OO

p
1〈0〉
2 p

1〈−3〉
0

XX

//

Lemma 6.1. For every 0 < i ≤ n and j > 0, Pj−1+i <ψ Qj−
i .

Proof. For i = n this is true, because

ψ3(Pj−1+n ) = πϕπ(Pj−1+n ) = πϕ(Pj−1−n ) = π(Qj+
n ) = Qj−

n .

p
j−1〈4l+4±1〉
n

//

��

p
j−1〈−2l−2〉
n

��

q
j〈±(4l+3±1)〉
n q

j〈−2l−1〉
n

oo

Now suppose that for all i′ > i this was already proven. There are four
possibilities:

1. If ¬ti+1
xi+1 does not appear in the clauses cj−1 and cj, then ψ2(Pj−1+i ) =

Pj−1+i+1 , ψ2(Qj−
i+1) = Qj−

i , and Pj−1+i+1 <ψ Qj−
i+1. Thus Pj−1+i <ψ Qj−

i .

p
j−1〈4l+4±1〉
i

//

��

p
j−1〈4l+6〉
i

// p
j−1〈4l+5〉
i+1

��

q
j〈±(4l+3±1)〉
i q

j〈−4l−3〉
i

oo q
j〈±(−4l−4)〉
i+1

oo

2. If ¬ti+1
xi+1 does not appear in the clause cj−1, but appears in cj, then

ψ3(Pj−1+i ) = πϕπ(Pj−1+i ) = πϕ(Pj−1−i ) = π(Qj+
i ) = Qj−

i .

p
j−1〈4l+4±1〉
i

//

��

p
j−1〈−4l−6〉
i

��

q
j〈±(4l+3±1)〉
i q

j〈−4l−5〉
i

oo

15



3. If ¬ti+1
xi+1 appears in the clause cj−1, but does not appear in cj, then

ψ2(Pj−1+i ) = Pj−2+i+1 , ψ2(Qj
i+1) = Qj−

i , ϕ(Qj−1+
i+1 ) = Pj−1+i+1 , Pj−2+i+1 <ψ

Qj−1−
i+1 , and Pj−1+i+1 <ψ Qj−

i+1. Thus Pj−1+i <ψ Qj−
i .

p
j−2〈4l+7〉
i+1

��

q
j−1〈4l+6〉
i+1

��

p
j−1〈4l+4±1〉
i

//

��

p
j−1〈4l+8〉
i

BB

p
j−1〈4l+5〉
i+1

��

q
j〈±(4l+3±1)〉
i q

j〈−4l−3〉
i

oo q
j〈−4l−4〉
i+1

oo

4. If ¬ti+1
xi+1 appears in both clauses cj−1 and cj, then ψ2(Pj−1+i ) =

Pj−2+i+1 , ψ2(Qj−1−
i+1 ) = Qj−

i , and Pj−2+i+1 <ψ Qj−1−
i+1 . Thus Pj−1+i <ψ Qj−

i .

p
j−2〈4l+7〉
i+1

��

q
j−1〈−4l−6〉
i+1

��

p
j−1〈4l+4±1〉
i

//

��

p
j−1〈4l+8〉
i

AA

q
j〈±(4l+3±1)〉
i q

j〈±(−4l−5)〉
i

oo

Lemma 6.2. For every 0 ≤ i < n and j > 0, Qj+
i <ψ Pj−i .

Proof. For i = 0 this is true, because

ψ3(Qj+
0 ) = πϕπ(Qj+

0 ) = πϕ(Qj−
0 ) = π(Pj+0 ) = Pj−0 .
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q
j〈−4l−4±1〉
0

...

oo

��

q
j〈2l+4〉
0

��

p
j〈±(4l+3±1)〉
0 p

j〈−2l−3〉
0

...

//

Now suppose that for all i′ < i this was already proven. There are four
possibilities:

1. If ¬tixi does not appear in the clauses cj+1 and cj, then ψ2(Qj+
i ) = Qj+

i−1,

ψ2(Pj−i−1) = Pj−i , and Qj+
i−1 <ψ Pj−i−1. Thus Qj+

i <ψ Pj−i .

q
j〈−4l−3〉
i−1

��

q
j〈−4l−4〉
i

oo q
j〈−4l−4±1〉
i

oo

��

p
j〈4l+2〉
i−1

// p
j〈4l+1〉
i

// p
j〈±(4l+3±1)〉
i

2. If ¬tixi does not appear in the clause cj+1, but appears in cj, then
ψ3(Qj+

i ) = πϕπ(Qj+
i ) = πϕ(Qj−

i ) = π(Pj+i ) = Pj−i .

q
j〈4l+2〉
i

��

q
j〈−4l−4±1〉
i

oo

��

p
j〈4l+1〉
i

// p
j〈±(4l+3±1)〉
i

3. If ¬tixi appears in the clause cj+1, but does not appear in cj, then
ψ2(Qj+

i ) = Qj+
i−1, ψ

2(Pj+1−
i−1 ) = Pj−i , ϕ(Pj+i−1) = Qj+1+

i−1 , Qj+
i−1 <ψ Pj−i−1,

and Qj+1+
i−1 <ψ Pj+1−

i−1 . Thus Qj+
i <ψ Pj−i .

q
j〈−4l−3〉
i−1

��

q
j〈−4l−4〉
i

oo q
j〈−4l−4±1〉
i

oo

��

p
j〈−4l−2〉
i−1

��

p
j〈4l−1〉
i

// p
j〈±(4l+3±1)〉
i

q
j+1〈−4l−1〉
i−1

��

p
j+1〈4l〉
i−1

BB
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4. If ¬tixi appears in both clauses cj+1 and cj, then ψ2(Qj+
i ) = Qj+1+

i−1 ,

ψ2(Pj+1−
i−1 ) = Pj−i , and Qj+1+

i−1 <ψ Pj+1−
i−1 . Thus Qj+

i <ψ Pj−i .

q
j〈−4l−2〈
i

��

q
j〈−4l−4±1〉
i

oo

��

p
j〈4l−1〉
i

// p
j〈±(4l+3±1)〉
i

q
j+1〈−4l−1〉
i−1

��

p
j+1〈4l〉
i−1

BB

From lemmas 6.1 and 6.2 we can conclude that if i > 0 and j ≤ j′ then
Pj+i <ψ Pj

′+
i .

Lemma 6.3. If i < i′, then Pj+i <ψ Pj+i′ .

Proof. If ¬ti+1
xi+1 appears in clause cj, then ψ2(Pj+i ) = Pj−1+i+1 and Pj−1+i+1 <ψ

Pj+i+1. If ¬ti+1
xi+1 appears in clause cj+1, then ψ(Pj+1−

i ) = Pj+i+1 and Pj−i <ψ

Pj+1+
i . If neither of this is the case, then ψ2(Pj+i ) = Pj+i+1. This means that

Pj+i <ψ Pj+i+1 and thus Pj+i <ψ Pj+i′ .

Lemma 6.4. 〈t1, . . . , tn〉 is a satisfying assignment for c1 ∧ . . . ∧ cm if and
only if L∗(\, /) ` F1(t1) . . . Fn(tn)→ G and if and only if

L(\, /) ` F1(t1) . . . Fn(tn)→ G.

Proof. Suppose that 〈t1, . . . , tn〉 is a satisfying assignment for c1 ∧ . . . ∧ cm.
In view of lemmas 6.1 and 6.2 and the fact that for Pm+

i where i > 0 proof
condition (4) is satisfied automatically, because ϕ(Pm+

i ) = Pm−n , the only
members of NW for which we have not proved that π satisfies proof condition
(4) are Pj+0 .

We now prove that for every j > 0, Pj+0 <ψ ϕ(Pj+0 ) = Pj−1−n . There exists
i such that ¬tixi appears in the clause cj. This means that ψ(Pj−i−1) = Pj−1+i
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and by lemma 6.3 Pj+0 <ψ Pj+i and Pj−1+i <ψ Pj−1+n . Thus Pj+0 <ψ ϕ(Pj+0 ) =
Pj−1−n and by lemma 3.1 we can now say that L∗(\, /) ` F1(t1) . . . Fn(tn)→ G.

p
j−1〈4l+3〉
i′

... // p
j−1〈−2l−2〉
n

p
j〈±(4l+3±1)〉
0

... // p
j+1〈4l+4〉
i′

::

p
j〈−2l−3〉
0

ee

...

//

Suppose that 〈t1, . . . , tn〉 is not a satisfying assignment for c1 ∧ . . . ∧ cm.
There exists j such that no ¬tixi appear in the clause cj. This means that
for i ≤ n, ψ2i(Qj+

n ) = Qj+
n−i, ψ(Pj−1−n ) = Qj+

n , and ψ(Qj−
0 ) = Pj+0 . Thus

Pj−1−n <ψ Pj+0 . This means that π cannot satisfy proof condition (4). Thus
by lemma 2.1 L∗(\, /) 6` F1(t1) . . . Fn(tn)→ G.

p
j−1〈−2l−2〉
n

��

q
j〈±(4l+4±1)〉
0

...

ooq
j〈−2l−1〉
n...oo q

j〈2l+4〉
0

��

p
j〈−2l−3〉
0

]]

Since π satisfies proof condition (5),

L(\, /) ` F1(t1) . . . Fn(tn)→ G⇔ L∗(\, /) ` F1(t1) . . . Fn(tn)→ G

and thus the lemma is fully proven.

Lemma 6.5. If L(\, /) ` Π → A and Π′ → A′ is the result of replacing all
instances of primitive type p by primitive type q, then L(\, /) ` Π′ → A′.

Proof. If we replace p by q throughout the derivation of Π→ A, we will get
the derivation of Π′ → A′.

Lemma 6.6.

L(\, /) `Fi(1)→ (Bi\Ai),
L(\, /) `Fi(0)→ (Bi\Ai).
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Proof. Consider the boolean formula c′1 ∧ . . . ∧ c′m, where

c′i =

{
(x1 ∨ x2), if the literal ¬1xi appears in cj

x1, if the literal ¬1xi doesn’t appear in cj.

Let F ′1(1)F ′2(1) → G′ be the sequent constructed for this formula. By
Lemma 6.4 we can say that L(\, /) ` F ′1(1)F ′2(1)→ G′.

By replacing pj0 by aji , q
j
0 by bji , p

j
1 by pji−1, q

j
1 by qji−1, p

j
2 by pji , and qj2

by qji , we get BiFi(1) → Ai. By Lemma 6.5 we get L(\, /) ` BiFi(1) → Ai.
Therefore L(\, /) ` Fi(1)→ (Bi\Ai).

Doing the same for the boolean formula c′1 ∧ . . . ∧ c′m, where

c′i =

{
(x1 ∨ x2), if the literal ¬0xi appears in cj

x1, if the literal ¬0xi doesn’t appear in cj,

we get L(\, /) ` BiFi(0)→ Ai. Therefore L(\, /) ` Fi(0)→ (Bi\Ai).

Lemma 6.7. L(\, /) ` Πi → Fi(ti), where ti ∈ {0, 1}.

Proof. Using Lemma 6.6 we get

Fi(0)→ Fi(0) Fi(1)→ (Bi\Ai)
Fi(0)(Fi(0)\Fi(1))→ (Bi\Ai)

(\ →)
Fi(0)→ Fi(0)

(Fi(0)/(Bi\Ai))Fi(0)(Fi(0)\Fi(1))→ Fi(0)
(/→)

and

Fi(0)→ (Bi\Ai) Fi(0)→ Fi(0)

Fi(0)/(Bi\Ai)Fi(0)→ Fi(0)
(/→)

Fi(1)→ Fi(1)

(Fi(0)/(Bi\Ai))Fi(0)(Fi(0)\Fi(1))→ Fi(1)
(\ →)

Thus L(\, /) ` Πi → Fi(0) and L(\, /) ` Πi → Fi(1).

Lemma 6.8. If the formula c1∧. . .∧cm is satifiable, then L(\, /) ` Π1 . . .Πn →
G.

Proof. Suppose 〈t1, . . . , tn〉 is a satisfying assignment for c1∧. . .∧cm. Accord-
ing to Lemma 6.4 L(\, /) ` F1(t1) . . . Fn(tn)→ G. Now we apply Lemma 6.7
and the cut rule n times.
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Suppose that L∗(\, /) ` Π1 . . .Πn → G. Consider

W = J(F1(0)/(B1\A1))K→JF1(0)K→J(F1(0)\F1(1))K→ . . .
. . . J(Fn(0)/(Bn\An))K→JFn(0)K→J(Fn(0)\Fn(1))K→JGK.

By Lemma 3.1 for PW there exists π satisfying proof conditions (1)-(4).
Consider the following abbreviations:

F0i = J(F1(0)/(B1\A1))K→JF1(0)K→J(F1(0)\F1(1))K→ . . . JFi(0)K→

F0i ′ = JFi(0)K→

Ai = F0i (JAiK→)→ A′i = (JAiK→)→

Bi = Ai((JBiK←)→)→ B′i = ((JBiK←)→)→

Hi = BiJFi(0)K→

Ci = Hi(JFi(0)K←)→ F0i ′′ = (JFi(0)K←)→

F1i = CiJFi(1)K→ F1i ′ = JFi(1)K→

Lemma 6.9. If L∗(\, /) ` Π1 . . .ΠiFi+1(ti+1) . . . Fn(tn) → G, then there is
ti ∈ {0, 1} such that L∗(\, /) ` Π1 . . .Πi−1Fi(ti) . . . Fn(tn)→ G

Proof. Consider W′ = F1iW′′, where W′′ = JFi+1(ti+1)K→ . . . JFn(tn)K→JGK.
By Lemma 3.1 for PW′ there exists π satisfying proof conditions (1)-(5).

Let W′0 = F1i−1JFi(0)K→W′′ and W′1 = F1i−1JFi(1)K→W′′.
For each j there are only two elements of PW′ such that t(A) = aji and

two elements such that t(A) = bji . This means that these pairs of elements
are π-closed.

For each j there are six elements of PW′ such that t(A) = p0i . Let us
denote them by P1, . . . ,P6 so that P1 @ . . . @ P6. The following holds:

F1i−1 @ P1 @ F0i @ P2 @ Ai @ Bi @ P3 @ Hi @ P4 @ Ci @ P5 @ F1i @ P6.

{P1, . . . ,P6} is π-closed. P1,P3,P5 ∈ NW. [P1,P2]@,[P3,P6]@, and [P4,P5]@
cannot be π-closed, therefore there are only two possibilities: either π(P1) =
P4, π(P3) = P2, and π(P5) = P6,

F0i ′
��

A′i B′i F0i ′
��

F0i ′′ F1i ′
��
Fti+1

i+1
′
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or π(P1) = P6, π(P3) = P4, and π(P5) = P2.

F0i ′
��

A′i B′i F0i ′
��
F0i ′′ F1i ′

��
Fti+1

i+1
′

Suppose that π(P1) = P4, π(P3) = P2, and π(P5) = P6. Notice that t(Ci) =
pmi−1 and Ci ∈ NW′ .

If i = 1, then there are only two variants for π(Ci): one is p
m〈l〉
0 and the

other one is C1p
m〈l〉
0 , where l = 2 or l = 4. Therefore, since the ϕ-join of C1

and C1p
m〈l〉
0 is F11 ∈ NW′ , π(C1) = p

m〈l〉
0 and [p

m〈l〉
0 ,C1]@ is π-closed.

F01′
��

A′1 B′1 F01′
��

F01′′

?

��
?

��

...

OO
F11′

��

OO
Ft22 ′

If i > 1, then there are four variants for π(Ci): F1i−1p
m〈l〉
i−1 , Cipm〈l〉i−1 , where

l = 2 or l = 4, Hi−1p
m〈2〉
i−1 , and F0i−1p

m〈−2〉
i−1 . The second variant is ruled out. If

π(Ci) = Hi−1p
m〈2〉
i−1 , then π(Ci−1) = Ci−1pm〈l〉i−2 , where l = 2 or l = 4, and the

ϕ-join of Ci−1 and Ci−1pm〈l〉i−2 is F1i−1 ∈ NW′ . If π(Ci) = F0i−1p
m〈−2〉
i−1 , then since

the segment (F0i−1,Ci]@ is ϕ-closed and π-closed, G 6≤ψ F0i−1p
m〈−2〉
i−1 for all G /∈

(F0i−1,Ci]@. But ψ2(Ci) = ϕ(π(Ci)) = ϕ(F0i−1p
m〈−2〉
i−1 ) = F0i−1 /∈ (F0i−1,Ci]@.

Therefore Ci 6<ψ Hip
m〈2〉
i , but Ci <ϕ Hip

m〈2〉
i and thus proof condition (4) is

not satisfied. Therefore π(Ci) = F1i−1p
m〈l〉
i−1 and (F1i−1,Ci]@ is π-closed.

F0i−1′ A′i−1OO
B′i−1 F0i−1′ F0i−1′′

?
��

...
OO

F1i−1′OO F0i ′
��

A′i B′i F0i ′
��

F0
i
′′

?

��

?

��

?

��
?
��

...

OO
F1i ′

��

OO
Fti+1

i+1
′

Therefore, since (F1i−1,Ci]@ is π-closed and ϕ-closed, by Lemma 3.1 for
W′1 there is π′ satisfying proof conditions (1)-(4) and

L∗(\, /) ` Π1 . . .Πi−1Fi(1) . . . Fn(tn)→ G.

Suppose that π(P1) = P6, π(P3) = P4, and π(P5) = P2. Let E = F0i p
m〈−2〉
i+1 .
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There are only two variants for π(E): one is F0i and the other one is F1i .
The ϕ-join of E and F0i is F0

i ∈ NW. Therefore π(E) = F1i and (F0i ,F1i ]@ is
π-closed.

F0i ′
��

?

��
A′i

...

OO B′i F0i ′
��
F0i ′′ F1i ′

��

?

��
Fti+1

i+1
′

Therefore since (F0i ,F1i ]@ is π-closed and ϕ-closed, by Lemma 3.1 for W′0
there is π′ satisfying proof conditions (1)-(4) and

L∗(\, /) ` Π1 . . .Πi−1Fi(0) . . . Fn(tn)→ G.

Lemma 6.10. If L∗(\, /) ` Π1 . . .Πn → G, then the formula c1 ∧ . . . ∧ cm is
satisfiable.

Proof. Applying n times Lemma 6.9, we get that there exists 〈t1, . . . , tn〉 ∈
{0, 1}n such that L∗(\, /) ` F1(t1) . . . Fn(tn)→ G. By Lemma 6.4 this means
that 〈t1, . . . , tn〉 is a satisfying assignment for c1 ∧ . . . ∧ cm.

Since for all sequents L(\, /) ` Π → A ⇒ L∗(\, /) ` Π → A, Lemma 6.8
and Lemma 6.10 together give us Theorem 2.1.
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