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Abstract. Natural language contains simple lexical items for some but
not all Boolean operators. English, for example, contains conjunction
and, disjunction or, negated disjunction nor, but no word to express
negated conjunction *nand nor any other Boolean connective. Natural
language grammar can be described by a logic that expresses what the
lexicon can express by its primitives, and the rest compositionally. Such
logic for propositional connectives is described here as a bilateral exten-
sion of update semantics. The basic intuition is that a context can be
updated by assertion or by rejection, and by one or multiple propositions
at once. These distinctions suce to characterize the logic of the lexicon.
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1 Semantic Universals

Semantic universals are generalizations pertaining to semantics that hold across
natural languages [3,7]. A universal typically concerns what may or may not be
found in the lexicon of natural languages. For example, while many languages
contain simple words for conjunction ∧ (and), disjunction ∨ (or), and negated
disjunction nor (nor), no natural language contains a word for negated conjunc-
tion nand (the Sheer Stroke) [13]. Such concept is of course expressible, but
only compositionally, e.g. by ‘not both . . . and . . . ’. The same may be said of
other connectives, such as exclusive disjunction, the bi-conditional, and so on.

The existence of lexical gaps calls for an explanation. The explanation devel-
oped in this paper has to do with structural (logical) constraints on information-
transmission in a conversational setting.1 Following [14], a bilateral system of
updates is dened in which ∧, ∨, and nor, can be straightforwardly expressed,

1 A competing hypothesis is based on the possibility of expressing missing operators
by means of scalar reasoning [6,12,15,22]. For a criticism of this approach, see [14].
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but that lacks nand and all other connectives. Accordingly, semantic universals
may depend on cognitive asymmetries in the dynamic processing of logically
structured information.

2 Bilateral Updates

Standard semantics does not appear to oer a reason why ∧,∨, nor should be
lexicalizable instead of other functions of the same type. Dynamic semantics
might oer a reason. Dynamic semantics has been designed for, and applied to,
the study of dynamic phenomena, such as presupposition projection and default
reasoning [5,11,23]. I do not discuss these application here. Instead, I’ll apply
a version of dynamic semantics to the study of lexical gaps in the domain of
binary truth-conditional connectives.2

2.1 Outline of the Story

Following [14], two update systems are dened below. The rst, system U,
encodes ∧,∨, nor, but no other truth-function. The second, H, delivers classi-
cal logic and is obtained by adding to U the operation of complementation (i.e.,
classical negation). U captures the logic of the lexicon. All the logical distinc-
tions available in classical logic can be made, as in natural language, with the
added complexity that comes with system H and the use of classical negation
in combination with the lexical material already denable in U.

Of course, formal systems can be put together arbitrarily. In what sense is
this an explanation of lexical gaps? Here’s the story, in outline. There are only
so many ways information can be conveyed in speech. Some general constraints
on communication include the distinction between assertion and rejection, and
between updating with one or more sentences. These constraints are indepen-
dently plausible, and they suce to characterize the lexicalizable binary truth-
conditional connectives, as shown in U. All Boolean distinctions can be made
by extending U to H. The extension involves additional complexity, however,
in that one more primitive (complement negation) is required. As shown in [4],
learnability considerations on language evolution favor the lexicalization of oper-
ators codied by the simpler U (see [20,21] for similar considerations).

Update semantics allows to formalize the two conceptual primitives this work
is based on: the distinction between assertion and rejection, and the possibility
of updating a context with information from multiple sentences. Insofar as these
primitives are characteristic of human communication (and, presumably, they
are), then the logic of bilateral updates is justied by general and well-motivated
assumptions about how communication works.

2 In fact, the story holds for any many-place connectives with more than one argument.
The focus on two-place connectives is for ease of discussion.
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2.2 Denitions

For each sentence φ, I assume two update functions [+φ] and [−φ]: the positive
and negative update potentials of φ, for assertion and rejection. Moreover, I
assume that context can be modied by the use of a single sentence, c[±φ], or by
multiple sentences at once, c[±φ1, . . . ,

± φn]. One can also update with multiple
sentences one by one consecutively, (c[±φ1]) . . . [

±φn], but this generates order
eects, since a new context is dened after each update. For example, consider
updating c by the assertion of φ1 and φ2. If order matters, two contexts will be
dened, namely c[+φ1] rst, and then (c[+φ1])[

+φ2]. If order does not matter,
only one context will be dened, namely the result of simultaneously adding to
c the information carried by φ1 and the information carried by φ2, c[

+φ1,
+ φ2].

I begin with denitions.

Denition 1. An update system 〈L,W, ·[·], ·c,g〉 is a language L, a set of
indices W , an update function ·[·], and an interpretation function ·c,g rela-
tive to a context and variable assignment. L is built recursively on the following
signature:

L := p |  | ⊥ | ¬φ | φ ∧ φ | φ ∨ φ

The set of indices W can be modeled as the set of possible worlds (type st).
A context c is a subset of W , typically non-empty. The interpretation function
·c,g maps sentences of L to classical propositions. Superscripts are henceforth
omitted, since interpretation is standard and there are no bound variables in L.

An update function ·[±·] takes two arguments: a context (an object of type
st), and a non-empty set of (static) propositions (type s, st) decorated by a force
sign (+ or −). The force sign determines the relation between the context and
the set of propositions. Thus, assertion and rejection of atomic sentences are:

c[+p] = c ∩ {p} c[−p] = c\{p}

Thus assertion is intersection (as in Stalnaker [19]), and rejection is subtraction
(as Stalnaker is naturally extended). For updates with single atomic sentences,
this simplies: c[+p] = c ∩ p, and c[−p] = c\p.

To study updates we need a notion of validity. Dynamic validity captures
the intuitive idea that an argument is valid just in case asserting the premises
supports the assertion of the conclusion. A sentence φ is supported in context c
just in case c is the result of a positive update of c by φ. Following [23] and [24],
validity is then dened in terms of support.3

Denition 2. Support. For every c, c  φ i c[+φ] = c.

3 In fact, these denitions are slightly simpler, since the language under consideration
does not contain “genuinely dynamic” operators, such as modals or conditionals,
which are sometimes argued to deserve special treatment [9,25]. The relations of
support and validity (and therefore equivalence too) are relative to an update system,
but I will not use subscripts for simplicity. The context will make clear which system
is under consideration.
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Denition 3. Validity. φ1, . . . ,φn  ψ i for every c, c[+φ1] . . . [
+φn]  ψ.

Finally, equivalence φ1 ⇔ φ2 is dened as entailment in both directions
(and so, sameness of update). The benchmark of a classical update semantics
is Stalnaker’s Rule of Assertion [19]: the result of updating a context c via the
assertion of a sentence φ is the intersection of c with the static meaning of φ.
Stalnaker’s Rule will be used to test for the adequacy of an update.

Denition 4. An update is adequate i for every sentence φ and context c,
c[+φ] = c ∩ φ.

As noted above, Stalnaker’s Rule holds for atoms. Consequently, atomic
updates are adequate. I now introduce an update system, U, that character-
izes the logic of natural language lexicon. In particular, U lacks the expressive
power to capture the non-lexicalizable connectives.

3 System U

Update functions are obtained by combining the force of an utterance (assertion
or rejection), and the contents of the arguments of the main operator in the
sentence. Assertion and rejection are dened over sets of formulas.

Denition 5. Acceptance and Rejection of sets of atomic sentences:
Let Γ+ = {+p1, . . . ,

+ pn} and Γ− = {−p1, . . . ,
− pn} be possibly empty sets of

atomic assertions and rejections.

c[Γ+] = c ∩
⋃

{pi : pi ∈ Γ+} c[Γ−] = c\
⋃

{pi : pi ∈ Γ−}

Single updates by atomic sentences, as seen above, is now derivable as a
special case if the Γ s are singletons. Positive and negative updates are then
extended to all formulas.

Denition 6. Positive and Negative Updates in U

c[Γ ] = c[Γ+] ∪ c[Γ−]
c[+¬φ,Γ ] = c[−φ,Γ ] c[−¬φ,Γ ] = c[+φ,Γ ]
c[+φ ∧ ψ,Γ ] = c[+φ][+ψ] ∪ c[Γ ] c[−φ ∧ ψ,Γ ] = c[−φ][−ψ] ∪ c[Γ ]
c[+φ ∨ ψ,Γ ] = c[+φ,+ ψ,Γ ] c[−φ ∨ ψ,Γ ] = c[−φ,− ψ,Γ ]

An update by a set formulas Γ , some of which are asserted and some rejected,
is the union of assertoric and rejective updates. Polar negation ¬ switches the
polarity of the update from assertion to rejection and vice versa. Conjunction is
a sequence of updates, rst with one conjunct, then with the other. Disjunction
simplies away inside the square brackets. Negative updates are obtained from
the positive ones by switching the speech act from assertion to rejection.

The distinction between assertion and rejection gives a natural denition
of polar negation, in line with bilateralism in philosophical logic [17,18]. The
denition of update by conjunction as sequence of updates is due to Irene Heim
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[11]. Update by disjunction reduces to Veltman’s update rule for disjunction for
the “negation-free” fragment of the language and in H [23] (see [14]).

Consider now the behaviour of two special atoms,  and ⊥, namely a tau-
tology and a contradiction. A simple remark in connection with the next lemma
is that c[+⊥] = ∅ while c[+] = c. (Proofs are omitted for lack of space.)

Lemma 1. For any c, c[+,Γ ] = c and c[+⊥,Γ ] = c[Γ ].

Conjunction and disjunctions in U, together with  and ⊥, have two impor-
tant properties of the meet and join of the underlying algebra.

Theorem 1. The following equivalences hold in U:

φ ∧ ⊥ ⇔ ⊥ φ ∧  ⇔ φ

φ ∨ ⊥ ⇔ φ φ ∨  ⇔ 

3.1 Negative Collapse

It is fairly straightforward to see that conjunction, disjunction, and negated
disjunction can be ‘encoded’ in U, with adequacy given by Denition 4.4

Denition 7. A binary truth-conditional connective $ is encoded in system U

just in case a sentence p$q, with p and q atomic, is adequate.

Lemma 2. U encodes ∧,∨, nor.

Proof. First, c[+p∧ q] = c[+p][+q] = (c∩{p})∩{q}, which is c∩ p∧ q.
Second, c[+p∨q] = c[+p,+ q] = c∩{p, q}, which is c∩p∨q since inter-
section distributes over union. Third, I assume that nor expresses negated
disjunction. If so, observe that c[+p nor q] = c[−p ∨ q] = c[−p,− q] =
c\{p, q}, which is c ∩ p nor q.

However, negated conjunction nand is not encoded in U. The most striking prop-
erty of system U is indeed a collapse of negated conjunction, or disjunction of
negations, on the conjunction of negations. The latter retains its classical mean-
ing, namely the meaning of nor : ‘φ nor ψ’ is true just in case both arguments
are false.

Lemma 3. Negative Collapse: ¬φ ∨ ¬ψ ⇔ ¬φ ∧ ¬ψ and ¬(φ ∧ ψ) ⇔ ¬φ ∧ ¬ψ.

In both equivalences, the left-to-right direction is classically valid, but the
right-to-left directions are classically repugnant. Both directions are valid in U.
The two classically repugnant entailments are fc and ic.

¬φ ∨ ¬ψ  ¬φ ∧ ¬ψ (fc)

¬(φ ∧ ψ)  ¬φ ∧ ¬ψ (ic)

4 The denition of ‘Encoding’ requires that the arguments of a connective be atomic.
This is necessary, for failures of a formula to encode its classical interpretation (as
it is the case with negated conjunction) obviously percolates upwards.
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The former is a form of “Free Choice” inference, in which a disjunction implies
a conjunction [1]. The latter is a typical pattern of Informational Conjunction
⊗, an operator denable on distributive bilattices [2,8,10]. As a result of fc and
ic, the concept nand is not encoded in U.

Rejecting p and then q (that is, (c[−p])[−q])) is equivalent to rejecting p and
q together (that is, c[−p,− q]). This is because the complement of a context with
a set of propositions is equivalent to taking iterated complements of the initial
context for each proposition. Hence rejected conjunction is equivalent to rejected
disjunction. It follows that fc and ic are valid.

Lemma 4. Validity of fc and ic.

Proof (sketch). By induction on complexity. Consider c[+¬φ ∨ ¬ψ]. Thus
c[+¬φ,+ ¬ψ] = c[−φ,− ψ]. Moreover, c[+¬φ ∧ ¬ψ] = c[+¬φ][+¬ψ] =
c[−φ][−ψ]. As noted above, c[−p,− q] = c[−p][−q], and so fc holds. Con-
sider c[+¬(φ∧ψ)]. Thus c[−φ∧ψ] = c[−φ][−ψ], and so we reason as above.
Thus ic holds.

Despite the collapse, U is not trivial: conjunction and disjunction are distinct,
for in general φ∨ψ  φ∧ψ. For a countermodel, it suces to consider a context
c that contains two worlds, one in which p is true but q false, and the other in
which p is false but q true. Such context supports p ∨ q but does not support
p ∧ q, hence there is no entailment from the former to the latter. Conversely, of
course, conjunction does entail disjunction. It may also be checked (but proofs
are omitted) that none of the remaining truth-functions is encoded in U.5

3.2 Further Results

It is apparent based on Lemma 3 thatU is not classical. However, several classical
equivalences hold in U. All of the following can be proved by induction.

Double Neg ¬¬φ ⇔ φ

Idem ∧ φ ∧ φ ⇔ φ Assoc ∨ φ1 ∧ (φ2 ∧ φ3) ⇔ (φ1 ∧ φ2) ∧ φ3

Idem ∨ φ ∨ φ ⇔ φ Assoc ∧ φ1 ∨ (φ2 ∨ φ3) ⇔ (φ1 ∨ φ2) ∨ φ3

Symm ∧ φ ∧ ψ ⇔ ψ ∧ φ Distr ∧ ∨ φ1 ∧ (φ2 ∨ φ3) ⇔ (φ1 ∧ φ2) ∨ (φ1 ∧ φ3)

Symm ∨ φ ∨ ψ ⇔ ψ ∨ φ Distr ∨ ∧ φ1 ∨ (φ2 ∧ φ3) ⇔ (φ1 ∨ φ2) ∧ (φ1 ∨ φ3)

DeM 1 ¬(φ ∨ ψ) ⇔ ¬φ ∧ ¬ψ DeM 2 ¬(φ ∧ ψ) ⇔ ¬φ ∨ ¬ψ

One of the equalities above says that conjunction is symmetric: φ ∧ ψ ⇔ ψ ∧ φ.
This is shown by establishing that, for any c, c[+φ][+ψ] = c[+ψ][+φ]. We can
exploit this observation to show that the validity relation in U is monotonic.6

5 It can also be shown that the monotonicity properties for ∧,∨, and nor follow from
the properties of the update system [14]. Thus the important observation that natural
language lexical operators are monotone follows from the logic of speech acts [3].

6 This also implies that U is not “genuinely” dynamic [16]. This should come as no
surprise, given that L does not make provision for anaphora, modals, conditionals,
or other expressions with dynamic potential. It would be possible to extended U to
a theory of presupposition projection, but this is left for another occasion.
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Theorem 2. If Γ  φ then Γ,ψ  φ.

From this it can be shown that Ex Falso (Γ,φ ∧ ¬φ  ⊥) and Explosion
(Γ,⊥  φ) hold in U. I conclude by noting that both of the reductio rules fail
in U, constructive and classical. Consider a context in which Γ, p ∧ q  ⊥ but
Γ  ¬(p ∧ q). Let c consist of three worlds such that v(p,w1) = v(q, w2) = 1,
and v assigns 0 to all other combinations of atoms and worlds. Then p ∧ q  ⊥,
for c[+p][+q] = ∅. However,  ¬(p ∧ q). For the latter would require that c =
c[−p][−q], but c[−p][−q] = {w3}, whereas c = {w1, w2, w3}. Thus, constructive
reductio fails. Classical reductio fails by a similar argument.

4 Classicality Strikes Back

A negative update in U is not always the complement of the corresponding
positive update, whence the failure of classicality. In particular, positive and
negative update by disjunction are complements, since c[−φ ∨ ψ] = c\c[+φ ∨ ψ],
but this is not the case for conjunction. This fact is key for Negative Collapse.

Yet natural language does express negated conjunction. It does so not lexi-
cally but compositionally, and so I’ll proceed here. In order to recover classical
logic from U, I now introduce a stronger negation operator besides the polarity-
inverting device introduced above (and which is available “for free” so to speak,
as soon as we distinguish assertion and rejection): complement negation ‘∼’. The
static semantics of ∼φ is the same as that of ¬φ: ∼φ = W\φ. It’s only the
dynamic eect that changes: the assertion of ∼φ has an eect on context that is
complementary to the eect of asserting φ.

Denition 8. Complement Negation. c[+∼φ] = c\c[+φ].

Complement negation is the update rule for negation of classical update sys-
tems [11,23]. Following [11], ∼ captures the update potential of natural language
not. In the resulting system H (from ‘Heim’) assertion and rejection of atoms
are given by Denition 5 as above, but negative updates may be set aside for
semantics, because they are no longer needed.

Denition 9. Positive Updates in H.

c[+∼φ,Γ ] = c\c[+φ] ∪ c[Γ ]

c[+φ ∧ ψ,Γ ] = c[+φ][+ψ] ∪ c[Γ ] c[+φ ∨ ψ,Γ ] = c[+φ,+ ψ,Γ ]

It may be checked that H is fully classical: Stalnaker’s Rule hold unrestrict-
edly (Denition 4), and validity (as in Denition 3) is equivalent to classical
consequence (the subset operation in the background model). It follows that all
Boolean connectives can be encoded in H. Just like in natural language, all clas-
sical distinction are now expressible, but only by compositional combinations of
∼ (not) and other available lexical items as dened in U.
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5 Conclusion

The logic of U captures the expressive power of the lexicon of natural languages,
with respect to the connectives. All Boolean distinctions may be recovered by
adding a “genuine” negation ∼ that takes complements and that, following [11],
may well be regarded as the meaning of not .

I presented and described in some details the logic of an update system, U.
Justication for this logic comes from a bilateral account of update semantics,
in which sentences can be asserted and rejected, and from a generalization of
classical updates to sets of propositions. Assuming that languages tend to lexi-
calize simpler operators [4,20,21], the lexicon of natural language only includes
the connectives encoded in U.
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6. Enguehard, É., Spector, B.: Explaining gaps in the logical lexicon of natural lan-

guages: a decision-theoretic perspective on the square of Aristotle. Seman. Prag-
mat. 14, 5 (2021)

7. von Fintel, K., Matthewson, L.: Universals in semantics. Linguist. Rev. 25, 139–201
(2008)

8. Fitting, M.: Kleene’s logic, generalized. J. Logic Comput. 1, 797–810 (1990)
9. Gillies, A.S.: Epistemic conditionals and conditional epistemics. Noûs 38, 585–616
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