Skip to main content

Advertisement

Log in

Strong Constraints on Models that Explain the Violation of Bell Inequalities with Hidden Superluminal Influences

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We discuss models that attempt to provide an explanation for the violation of Bell inequalities at a distance in terms of hidden influences. These models reproduce the quantum correlations in most situations, but are restricted to produce local correlations in some configurations. The argument presented in (Bancal et al. Nat Phys 8:867, 2012) applies to all of these models, which can thus be proved to allow for faster-than-light communication. In other words, the signalling character of these models cannot remain hidden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bell, J.S.: La nouvelle cuisine. Speakable and unspeakable in quantum mechanics. Cambridge University Press, Cambridge (2004)

    Chapter  Google Scholar 

  2. Eberhard, P.H.: The EPR paradox. Roots and ramifications. In: Schommers, W. (ed.) Quantum theory and pictures of reality. Springer, Berlin (1989)

    Google Scholar 

  3. Bancal, J.-D., Pironio, S., Acin, A., Liang, Y.-C., Scarani, V., Gisin, N.: Quantum non-locality based on finite-speed causal influences leads to superluminal signalling. Nat. Phys. 8, 867–870 (2012)

    Article  Google Scholar 

  4. N. Gisin, Quantum correlations in Newtonian space and time: arbitrarily fast communication or nonlocality, arXiv:1210.7308.

  5. Suarez, A., Scarani, V.: Does entanglement depend on the timing of the impacts at the beam-splitters? Phys. Lett. A 232, 9–14 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  6. Colbeck, R., Renner, R.: No extension of quantum theory can have improved predictive power. Nat. Comm. 2, 411 (2011)

    Article  ADS  Google Scholar 

  7. Suarez, A.: Relativistic nonlocality (RNL) in experiments with moving polarizers and 2 non-before impacts. Phys. Lett. A 236, 383–390 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Scarani, V., Gisin, N.: Superluminal influences, hidden variables, and signaling. Phys. Lett. A 295, 167–174 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Scarani, V., Gisin, N.: Superluminal hidden communication as the underlying mechanism for quantum correlations: constraining models. Brazilian J. Phys. 35, 328–332 (2005)

    Article  ADS  Google Scholar 

  10. Zbinden, H., Brendel, J., Tittel, W., Gisin, N.: Experimental test of relativistic quantum state collapse with moving reference frames. J. Phys. A 34, 7103–7109 (2001)

    Article  ADS  MATH  Google Scholar 

  11. Zbinden, H., Brendel, J., Gisin, N., Tittel, W.: Experimental test of nonlocal quantum correlation in relativistic configurations. Phys. Rev. A 63, 022111 (2001)

    Article  ADS  Google Scholar 

  12. Stefanov, A., Zbinden, H., Gisin, N., Suarez, A.: Quantum correlations with spacelike separated beam splitters in motion: experimental test of multisimultaneity. Phys. Rev. Lett. 88, 120404 (2002)

    Article  ADS  Google Scholar 

  13. Stefanov, A., Zbinden, H., Gisin, N., Suarez, A.: Quantum entanglement with acousto-optic modulators: two-photon beats and bell experiments with moving beam splitters. Phys. Rev. A 67, 042115 (2003)

    Article  ADS  Google Scholar 

  14. Rideout, D., Jennewein, T., Amelino-Camelia, G., Demarie, T.F., Higgins, B.L., Kempf, A., Kent, A., Laflamme, R., Ma, X., Mann, R.B., Martin-Martinez, E., Menicucci, N.C., Moffat, J., Simon, C., Sorkin, R., Smolin, L., Terno, D.R.: Fundamental quantum optics experiments conceivable with satellites—reaching relativistic distances and velocities. Class. Quantum Grav. 29, 224011 (2012)

    Article  ADS  Google Scholar 

  15. Barnea, J.T., Bancal, J.-D.: Y-C. Liang and N. Gisin, Tripartite quantum state violating the hidden-influence constraints. Phys. Rev. A 88, 022123 (2013)

    Article  ADS  Google Scholar 

  16. A. Suarez, Decision at the beam-splitter, or decision at detection, that is the question, arXiv:1204.5848.

  17. Guerreiro, T., Sanguinetti, B., Zbinden, H., Gisin, N., Suarez, A.: Single-photon space-like antibunching. Phys. Lett. A 376, 2174–2177 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to Yeong-Cherng Liang and Stefano Pironio for helpful comments and stimulating discussions. This work is supported by the Ministry of Education, the National Research Foundation of Singapore and the Swiss NCCR-QSIT. A.S. acknowledges support from the Social Trends Institute (Barcelona and New York).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Scarani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarani, V., Bancal, JD., Suarez, A. et al. Strong Constraints on Models that Explain the Violation of Bell Inequalities with Hidden Superluminal Influences. Found Phys 44, 523–531 (2014). https://doi.org/10.1007/s10701-014-9785-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9785-1

Keywords

Navigation