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Abstract
For a period of several years the philosopher of science Hasok Chang has promoted vari-
ous inter-related views including pluralism, pragmatism, and an associated view of natural 
kinds. He has also argued for what he calls the persistence of everyday terms in the scien-
tific view. Chang claims that terms like phlogiston were never truly abandoned but became 
transformed into different concepts that remain useful. On the other hand, Chang argues 
that some scientific terms such as acidity have suffered a form of “rupture”, especially in 
the case of the modern Lewis definition of acids. Chang also complains that the degree of 
acidity of a Lewis acid cannot be measured using a pH meter and seems to regard this as a 
serious problem. The present paper examines some of these views, especially what Chang 
claims to be a rupture in the definition of acidity. It is suggested that there has been no such 
rupture but a genuine generalization, on moving from the Brønsted-Lowry theory to the 
Lewis theory of acidity. It will be shown how the quantification and measurement of Lewis 
acidity can easily be realized through the use of equilibrium theory and the use of stability 
constants.

Keywords Acidity · pH · G.N. Lewis · Chemical bonding · Thermodynamic activity

Introduction

Hasok Chang is without a doubt one of the finest historians and philosophers of science 
working today. He generally focuses on the scientific details rather than retreating into 
abstract metaphysics or analytical philosophy of science. He is also the author of several 
books including Inventing Temperature, for which he was awarded the prestigious Lakatos 
award as well as Is Water H2O? among others (Chang 2004, 2012).

Chang is also the initiator of a brand of the history and philosophy of science that seeks 
to expand scientific knowledge itself, which he calls ‘‘complementary science’’. This pro-
ject aims to give a novel function to history and philosophy of science, without denying its 
traditional role. Although a philosopher of physics by training, Chang has made a number 
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of ‘excursions’ into chemistry (Chang 2016). The present article will focus on one of these 
chemical studies, namely his writings on acidity.

Chang generally shows a remarkable attention to the scientific details of fields such as 
thermometry, the scientific revolution and electrochemistry. But I believe that he may be 
imposing his philosophical view onto the science in some cases, and that he is perhaps 
being selective of the parts of science that support his philosophical and historiographical 
approach.

Chang on acids

Chang believes that there is what he calls a “rupture” between the way in which acids were 
conceived according to the Arrhenius and the Brønsted-Lowry theories, on one hand, and 
the Lewis theory of acidity on the other hand. Chang also rather strenuously rejects the 
notion that Lewis’ theory of acidity represents a generalization of the Brønsted-Lowry 
definition.

Let me begin by reviewing the three elementary definitions of acidity. According to 
Arrhenius’ theory, an acid is any substance that forms  H+ ions in aqueous solution. HCl for 
example is regarded as an acid, because on reacting with water it forms  H+ ions,

Brønsted and Lowry, both of whom worked on the physical chemistry of solutions, gener-
alized this definition so that an acid is a substance that donates  H+ ions to any polar solvent 
and even in the absence of a solvent. The following are examples of each of these types of 
reactions.

In the first of these two reactions, HCl acts as an acid while  CH3COOH, whose common 
name is acetic acid, is actually acting as a base. The notions of acidity and basicity are 
therefore seen to be relational, in that no single substance may be said to be an acid or a 
base in all circumstances.

The second example contains no solvent whatsoever. According to the Arrhenius defi-
nition, this example would not therefore be classified as an acid–base reaction, whereas 
according to the Brønsted-Lowry definition HCl is acting as an acid since it can donate 
protons, or  H+ ions, to ammonia.

Thirdly, there is a definition by G.N. Lewis, who had a broader vision of chemical 
phenomena than Brønsted and Lowry, and whose initial concern was the application of 
Gibbs’ thermodynamics to non-ideal solutions. According to the Lewis’ theory, an acid is 
an electron pair acceptor whereas a base is an electron pair donor as shown in the following 
example,

HCl(g)
H2O

⇔ H+
(aq)

+ Cl−
(aq)

CH3COOH(aq) + HCl(aq) ⇔ Cl−
(aq)

+ CH3COOH
+
2(aq)

HCl(g) + NH3(g) ⇔ NH4Cl(g)
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This reaction clearly does not fall within the earlier definitions of acidity since no trans-
fer of  H+ ions takes place. Another example of a reaction that falls under the Lewis defini-
tion of an acid–base reaction, but not the two earlier definitions is,

Neither the  BF3 molecule in the first example, or the  Cr3+ ion in the second, are donating 
protons and yet are considered as acids in Lewis’ definition since they each accept a pair of 
electrons.

But Chang strongly disagrees with the generally held view that the Lewis definition 
subsumes the earlier ones, or that it represents a true generalization of them. In addition, 
Chang sees a rupture between the Brønsted-Lowry and Lewis definitions. Here is what he 
has written,

I am almost inclined to say that the two concepts are incommensurable. It might be 
sufficient, for present purposes, to say that the Lewis and the Brønsted-Lowry defini-
tions refer to two different sets of chemical substances; there is an overlap between 
the two sets, but one is not a subset of the other (Chang 2012, 694).
Perhaps the most popular story told by good chemists is that the Lewis definition 
encompasses the Brønsted-Lowry definition, that it is a generalization of the latter, 
because a proton donor is also capable of accepting an electron pair. But I have my 
doubts about this. Consider the reaction of hydrochloric acid and sodium hydrox-
ide…

But how would the same reaction be understood from the Lewis point of view? Does 
HCl accept a pair of electrons from NaOH? That is not obvious since the HCl mol-
ecule does not have an empty orbital into which to accept an electron pair (Chang 
2012, 693–694)

I believe there are two errors in the second quotation. First of all, HCl accepts a pair of 
electrons from the  OH−ion, not simply from NaOH as Chang writes. Secondly, the author 
fails to mention that the  H+ ion contains an empty 1 s orbital which does allow it to readily 
accommodate a pair of electrons.

In the following passage Chang seems to partly acknowledge his earlier oversight when 
he says,

At any rate, nearly all of the HCl in an aqueous solution will be dissociated into  H+ 
and  Cl- ions, so what must happen is that the  H+ ion accepts the electron pair from 

Cr3++ 6CN−
⇔

[

Cr(CN)6
]3+

acid base acid-base complex

HCl + NaOH → NaCl + H2O
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the  OH- ion. But then what is acidic is the  H+ ion, not HCl as a substance or a mol-
ecule, which is contrary to the Brønsted-Lowry concept (and to common parlance) 
(Chang 2012, 694).

As a matter of fact, according to Brønsted-Lowry, HCl (g) or “HCl as a molecule”, is 
not acidic. It is only acidic when it reacts with water. Matters would have been clearer if 
Chang had perhaps written,

whereas the over-simplified equation that appears in the second of the quotations above 
may give the impression that HCl is incapable of acting as an acid, the more correct ver-
sion, that includes the aqueous solvent, emphasizes that it is only HCl in water that is 
acidic. Chang may perhaps be unaware of the fact that HCl in gas form is not acidic. As 
every high school student learns, HCl the gas is neutral whereas aqueous HCl is acidic, as 
can be demonstrated in the classic fountain experiment (Fig. 1).

One cannot help wondering why Chang appears to show such nostalgia for acids that 
only form  H+? Chang also appears to hold a parallel nostalgic view regarding such entities 
as phlogiston in his book on water (Chang 2012). If the motivation is an urge to highlight 
the continuity in scientific development, then I am in full agreement and in fact would 
wish to go a good deal further in emphasizing continuity and incremental steps in scientific 
development rather than any forms of Kuhnian revolutions or ruptures (Scerri 2016).

However, it would appear that Chang may also be siding with Kuhn in the case of acid-
ity, in choosing to focus on rupture, whereas he has also frequently written about the virtue 
of retaining scientific terms (Chang 2011).

HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)

Fig. 1  The fountain experiment 
in which water containing litmus 
indicator is made to enter the 
glass bulb filled with HCl gas
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The pH meter

One of the main reasons that Chang cites for his reluctance to accept that Lewis achieved a 
true generalization would appear to be that Lewis acidity cannot be quantified by means of 
a pH meter. In the same article he writes,

At this point there may be a strong temptation to get back to something more certain 
and sensible like measurement to anchor the meaning of acidity, rather than seeking 
security in ever-changing theories… We do have a widely used measure of acidity in 
the form of pH, but I will argue that it is not a measure entirely fit for grounding the 
concept of acidity in its theoretical or empirical aspect. (Chang 2012, 695).

I believe this may be an example of putting one’s philosophical views ahead of the sci-
ence. Chang has a long-standing and well-known penchant for pragmatism, operationalism 
and experiments in general, and what would appear to be a certain disdain for theories in 
science.

Returning to his views of acids we also read,

…pH only measures Brønsted-Lowry acidity and has no clear connection to Lewis 
acidity. This is of course understandable, given that the definition and measurement 
of pH by Sørensen … dates back to 1909, more than a decade before Lewis articu-
lated his theory of acids.” (Chang 2012, 696).

However, this is not why pH does not apply to Lewis acids. The measure of pH obvi-
ously measures  H+ concentration and is consistent with how Brønsted and Lowry define 
acids in terms of the formation of  H+ ions. Since Lewis’ definition does not involve 
 H+ ions, one would not expect his concept of acidity to be quantifiable through pH 
measurement.

Chang, presses on by saying,

History aside, this situation raises a scientific and philosophical difficulty: even 
if we assume that all Brønsted-Lowry acids are Lewis acids, it is certainly not 
the case that all Lewis acids are Brønsted-Lowry acids; therefore, there are Lewis 
acids that lack any precise quantitative measure empirically (Chang 2012, 696).

I believe this to be a non-sequitur. The fact that “not all Lewis acids are Brønsted-
Lowry acids” does not immediately imply that Lewis acids “lack any precise quantita-
tive measure”.  The fact that the acidity in the  Cr3+ reaction, mentioned earlier, cannot 
be quantified by means of the pH meter does not imply that it’s acidity cannot be quanti-
fied tout court. This feature does not refute or threaten the Lewis definition of acidity in 
any way.

Equilibrium theory

There is a perfectly good approach to the quantification of Lewis acidity which Chang 
appears not to be aware of. Lewis acidity can be quantified through the well-known use 
of a stability constant for any reaction, which is given by the expression below, in which 
square brackets denote the concentration of each chemical species.
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The greater the value of the equilibrium constant K, the greater the acidity of the  Cr3+ 
ion in this case. Said otherwise, the greater the magnitude of the equilibrium constant, the 
more the position of equilibrium is said to lie towards the right side. The individual values 
that contribute to this constant can very readily be measured, but as far as I am aware, 
Chang has never so much as ever mentioned stability constants in all of his writings on 
Lewis acids.

Moreover, the same general approach, of chemical equilibrium theory, can be applied to 
the earlier definitions of Arrhenius and Brønsted-Lowry. There are no Kuhn losses there-
fore on moving to quantifying acidity by appeal to the concept of equilibrium.1

In the case of a strong acid such as aqueous HCl for example, one could quantify the 
degree of acidity or ionization in an analogous fashion to the way that the  Cr3+ case was 
handled above. Consider the reaction below,

The equilibrium constant is given by the expression,

However, reactions of this kind involving strong acids proceed towards the right to such as 
extent that the equilibrium constant can be said to be effectively infinite. Equilibrium con-
stants for strong acids are not therefore cited in the literature. Strong acids are simply fully 
ionized such that the denominator approaches zero and consequently the right-hand side of 
the above expression, and hence the equilibrium constant, approach infinity.

Matters are different for weak acids, such as Chang’s favorite example of acetic acid, 
for which the reaction with water and the equilibrium constant are given by the following 
expressions,

Unlike aqueous HCl in the previous example, acetic acid is only weakly ionized and has a 
Ka value of approximately  10–5 at room temperature and pressure. In order to calculate the 
pH of a molar or 1.00 M solution of acetic acid one needs to perform a simple equilibrium 
calculation as shown below,

Cr3+ + 6CN−
⇔

[

Cr(CN)6
]3+

Kstability =

[

[

Cr (CN)6
]3+

]

[

Cr3+
]

[CN−]6

HCl(g)
H2O

⇔ H+
(aq)

+ Cl−
(aq)

K =

[

H+
(aq)

][

Cl−
(aq)

]

[

HCl(g)
]

CH3COOH + H2O ⇔ CH3COO
− + H3O

+

K =
[CH3COO

−][H3O
+]

[

CH3COOH
][

H2O
]

1 The term Kuhn loss was first introduced by the late, Heinz Post, to mean something that was explained 
in the previous paradigm but that the successor paradigm fails to explain. Post believed that there were no 
such examples of Kuhn losses.
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One can obtain the value of x by solving a quadratic equation. The pH can then be obtained 
by taking the negative logarithm to base 10 of the value of x. There is no need to use a pH 
meter in cases such as these, provided that the concentrations of the relative chemical spe-
cies can be measured.2 Sometimes a little theory can go a long way.

To summarize, the use of equilibrium theory allows one to quantify acidity in Arrhe-
nius, Brønsted-Lowry and even Lewis acids, whereas the use of pH meters only applies to 
Arrhenius and Brønsted-Lowry acids. This feature supports the notion that Lewis acidity is 
indeed a generalization of the earlier definitions and certainly not a case of “rupture”.

In textbook presentations of this topic a Venn diagram is often produced to make pre-
cisely this point, and to illustrate the gain in generality on moving from the Arrhenius, to 
the Brønsted-Lowry theory and on to the Lewis theory. In fact, the increasing generality 
of definitions of acidity has now extended even further than Lewis’ definition such as is 
shown in the Venn diagram in Fig. 2.

For example, Hall, clearly asserts clearly asserts that Lewis’ theory is a genuine gener-
alization of that of Brønsted,

CH3COOH + H2O ⇔ CH3COO
−+ H3O

+

Initial concentrations 1.00 M 0 0

Equilibrium concentrations. 1.00− x x x

Since Ka =

[

CH3COO
−
][

H3O
+
]

[

CH3COOH
] =

x2

(1.00 − x)
= 1.8 × 10−5

Fig. 2  Venn diagram showing the relationship between various definitions of acidity. N.F. Hall, Systems of 
Acids and Bases, J. Chem. Ed. 1940, 124–128

2 This point will be discussed more rigorously in a later section of this article.
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Readers will observe that this system [Lewis] includes all the acids and bases of the 
Brønsted system and no other bases, while it points out a host of new acids (includ-
ing most cations) which the Brønsted system does not recognize as such (Hall 1940, 
127).

There is a striking analogy here with the changing definitions of oxidation and reduction 
that have arisen through the history of chemistry, a fact that was even recognized by Brøn-
sted, about 100 years ago (Brønsted 1923).

Initially oxidation meant the combination of oxygen with any particular element. The 
same term was later applied to mean the reaction of any given element with any highly 
electro-negative element, of which oxygen is just one particular example. Even later the 
modern definition of oxidation became expressed in terms of electrons, or the lingua franca 
of chemistry. Whereas oxidation is any process which results in a loss of electrons, reduc-
tion represents the opposite trend, namely the gain in electrons. As in the case of Lewis 
acidity, nobody doubts that this development represents a gain in generality, rather than 
any form of rupture. In the words of Lewis,

To restrict the group of acids to those substances which contain hydrogen interferes 
as seriously with the systematic understanding of chemistry as would the restriction 
of the term oxidizing agent to substances containing oxygen (Lewis 1938).

Non‑ideality in solutions

Philosophers of science may well be familiar with the concept of an ideal gas and the 
accompanying ideal gas equation whereby PV = nRT. Such ideal gases have often featured 
in discussions of scientific models as have discussions of non-ideal gases and the use of the 
Van der Waals equation (Mizrahi 2012; Woody 2013).

However, philosophers of science are generally not aware of an equally well-devel-
oped subject of non-ideal solutions. Consider for example a solution of an ionic sub-
stance such as sodium chloride in water. Let us also assume that this solution is of 
concentration 0.10 molar. Solutions of ionic substances invariably behave non-ideally 
because their ions are not hard spheres that merely collide with each other. The fact 
that they have electrical charges immediately introduces forces of attraction, which are 
ignored in the case of ideal solutions just as they are for ideal gases. In the case of 
non-ideal solutions, the departure from ideality is actually more complicated. In addi-
tion to the forces of attraction between oppositely charged ions, some ions are also sur-
rounded by those of the opposite charge, which tends to reduce the attraction between 
the original positive and negative ions. Furthermore, not all ions behave similarly since 
the attraction depends on the charges on the ions which typically have values of ± 1, ± 2 
or ± 3.

Consider for example a situation in which 100 ions of  Na+ are present, of which 25 are 
hydrated, meaning they are surrounded or shielded by water molecules. As a result, not 
all  Na+ ions are said to be “active” and the nominal concentration of  Na+ ions becomes 
somewhat irrelevant. One must appeal to the effective concentration or, to use the technical 
term, to the activity of the solution instead of its concentration. The definitive treatment 
of this subject was published as long ago as 1907 by none other than G.N. Lewis. The 
topic is invariably treated in advanced courses in thermodynamics, physical chemistry and 
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analytical chemistry (Atkins et al. 2018; Harris 2020). Applications of the concept of activ-
ity range from electrochemistry to the behavior of biological cells in biophysics.

Returning to the subject of pH, this is of course very much an ionic process since it 
concerns  H+ ions that are produced by acids according to both the Arrhenius and the 
Brønsted-Lowry definitions. The more general expression for pH which is expressed in 
terms of activities is,

rather than the more elementary expression of,

In the case of very dilute solutions the two expressions lead to approximately the same 
numerical value for pH, but this is not so in cases of more concentrated solutions. Table 1 
shows a comparison between experimentally measured pH values, which depend on activ-
ity values, as opposed to values calculated on the basis of the concentration of various 
solutions of the typical strong acid HCl.

The authors McCarty et al. make the further important point regarding pH measure-
ments, in an article entitled, “pH Paradoxes: Demonstrating That It Is Not True That 
pH = −log

[

H+
]

”,

This reaffirms our point that pH cannot be defined as = -  log[H+], because these 
operational definitions are based on cell potentials, which in turn are dependent on 
activities, not concentrations (McCarty et al. 2006).

Similarly, a recent website on the analytical chemistry of water states that,

The definition of pH first introduced by Sørensen (the concept that pH is deter-
mined by hydrogen concentration) was therefore partly amended as science 
advanced. However, his definition confers advantages in terms of practical usage, 
and the corresponding amendment does not downgrade its biological and chemi-
cal significance. Advances in thermodynamics and practical methods of pH meas-
urement have played an important role in the process of this redefinition. For this 
reason, from the point of view of the engineers who use pH, it can still be said that 
“the Father of pH” is a title that Sørensen deserves. Sørensen’s first definition is 
still used in basic general chemistry courses, in order to make the concept easier 
to understand. Note that the theoretical definition of pH uses the extremely diffi-
cult concept of activity, as shown here (Horiba website).

The authors then proceed to give the rigorous version of what pH actually measures, in 
terms of activity rather than concentration.

Thermodynamic activity

Chang quotes Bates, an expert of pH measurement as saying,

With the perfection of chemical thermodynamics, it became evident that Sørensen’s 
experimental method did not, in fact, yield hydrogen ion concentration....[The num-
bers obtained] were not an exact measure of the hydrogen ion activity …” (Bates 
1930) [My italics].

pH = −log
(

�H+

[

H+
])

pH = −log
[

H+
]

where the square brackets denote concentration.
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to which he adds the further remark,

All in all, the correspondence between the theoretical notions of acidity and the 
methods of its measurement has been, and continue to be, less than tight (Chang 
2012, 697).

Thermodynamic activity, as mentioned in the previous section, is a technical term that 
Chang does not seem to be familiar with. This quantity is expressed in the following for-
mula and is expressed in the following formula in which the term in square brackets is the 
concentration of any substance C and γ is its associated activity coefficient.

Thermodynamic activity does not just mean ‘acting as an acid’ as Chang seems to believe. 
It is a term that was introduced, by Lewis in 1907, in order to account for the rather specific 
phenomenon of the hydration of ions and their resulting ionic strengths.

In elementary treatments of chemical equilibrium such as in a typical reaction,

The equilibrium constant K is expressed by the formula,

A more general approach consists of replacing each of these concentrations by their ther-
modynamic activities to give,

The various activity coefficients, or γ’s are calculated according to the Debye-Hückel equa-
tion of,

A + B ↔ C + D

Keq =
[C][D]

[A][B]

Keq =
[C]�C[D]�D

[A]�A[B]�B

log �i =
−0.51z2

i

√

�

1 +
�

�

�

√

�∕305
�� at 25◦C
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where α is the size of the hydrated ion in picometers, μ is the ionic strength, z is the charge 
of the ion.

Meanwhile, when Chang cites the term “activity” as used by Bates, he seems to assume 
its everyday meaning, in the sense of the way that acids act, rather than the technical ther-
modynamic sense that Bates is referring to. What Bates is discussing is that the more accu-
rate definition of pH, that takes account of activities rather than concentrations, assumes 
the form of,

rather than the more familiar version of

as mentioned in the previous section of the present article.
The more accurate treatment recognizes the difference between concentration of chemi-

cal species as compared with their activities. In the case of dilute solutions the difference is 
of little significance. For example, a 0.025 molar solution of HCl has a pH of 1.60 without 
any correction for activity coefficients, whereas it has a value of 1.66 if activity it taken 
into account. As mentioned in the previous section, this is not the case for concentrated 
solutions for which it is essential to utilize activities instead of values of concentration.

Chemical bonding and electron pairs

Let me return to Lewis’ definition in order to explain why this is not only a genuine gener-
alization of the previous definitions of acidity, but also part of a much greater development 
in the history of chemistry and a major unification that was initiated by Lewis. This too is 
an area that Chang does not broach, while taking Lewis acidity out of context, as I see it.

Lewis is responsible for introducing the view that chemical bonding, and chemical reac-
tivity in general, are primarily concerned with pairs of electrons. His definition of acidity, 
which Chang objects to, should be seen in this wider context of the development of the 
central concepts of structure and bonding and not in isolation. (Lewis 1923).

Lewis is famously remembered for having proposed the idea that a covalent bond con-
sists of a shared pair of electrons. This has little to do with the very limited insight that the 
Arrhenius and Brønsted-Lowry theories of acidity have to offer and everything to do with 
Lewis’ theory of acidity. Moreover, Lewis is equally remembered for having stressed that 
covalent and ionic bonding lie at opposite ends of a continuum of bonding types. Ionic 
bonding represents a case of very unequal sharing of electron pairs rather than a categori-
cally different species of bonding.

pH = −log
(

�H+

[

H+
])

pH = log
[

H+
]

Table 1  Calculated and 
experimental values for various 
concentrations of HCL at 25 °C. 
The increasing disparity that 
occurs between values calculated 
from concentrations and 
experimental values, that depend 
on activities, can clearly be seen, 
as concentration increases.

Experimental values were obtained from McCarty et al. (2006)

Molar con-
centration

pH calculated from 
concentration

Experimentally measured pH

0.00050 3.30 3.31
0.0100 2.00 2.04
0.100 1.00 1.10
0.400 0.40 0.52
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Furthermore, all the quantum theories of chemical bonding that were subsequently 
developed, including valence bond theory and molecular orbital theory, have maintained 
the notion of electron pairs as being central to an understanding of chemical bonding. Here 
is how Robert Kohler expressed the importance of Lewis’ work in his classic article on the 
history of Lewis’ account of the chemical bond,

The first satisfactory picture of the chemical bond was proposed early in 1916 by Gil-
bert N. Lewis (1875–1946), the American physical chemist better known to some for his 
work on thermodynamics. His book, Valence and the Structure of Atoms and Molecules 
(1923), which elaborated the picture of the bond as a shared pair of electrons, was the 
textbook of the new generation of mechanistic chemists. Without Lewis’s conception 
of the shared pair bond, the interpretation of reaction mechanisms already begun by the 
English school of A. Lapworth (1872–1941), T. M. Lowry (1874–1936), C. K. Ingold 
(b. 1893), and R. Robinson (b. 1886) would not have gotten very far. Likewise, without 
the idea of the shared pair bond, then being used with increasing confidence and success 
by organic chemists, the application of quantum mechanics to the chemical bond in the 
late 1920’s by H. London, E. Schrödinger, and L. Pauling would have begun on far less 
certain ground (Kohler 1971).

Now a pair of electrons should lead to the mutual repulsion of two particles of like charge. 
Lewis grappled with this notion from the beginning of his work. First, he proposed that per-
haps Coulomb’s law might break down in the microscopic realm.

Secondly, Lewis began to suggest that the opposite magnetic properties of a pair of elec-
trons might be responsible for overcoming the mutual repulsion between them. Many of these 
ideas have been retained in some form or other, following the advent of quantum theories of 
bonding. Electrons were found to be characterized by two possible spin quantum numbers. 
Moreover, the notion of pairs of electrons is retained in the quantum notion of an atomic 
orbital containing just two electrons with opposite spin quantum numbers, as dictated by the 
Pauli principle.

Needless to say, the quantum theoretical approach provides a quantitative account of chem-
ical bonding through the mechanism of electron exchange energy, which serves to stabilize a 
molecule. Nevertheless, the iconic idea of pairs of electrons at the heart of chemistry retains 
its validity. Nor was Lewis’ idea confined just to inorganic chemistry, since it also had a pro-
found influence on the development of physical organic chemistry at the hands of Robinson, 
Ingold and a host of other chemists up to and including Roberts, Woodward and Hoffmann in 
more recent times (Laidler 1993; Brock 1993).

Lewis also developed a simple ‘back of the envelope’ method of discovering the number 
and nature of the bonds as well as lone pair electrons in any given molecule. These Lewis 
structures remain useful to the present day, and continue to form part of the general chemistry 
teaching curriculum and for good reason. Although there are cases in which this approach 
breaks down or gives incorrect predictions, it remains as part of the staple diet of working 
chemists as an immensely practical way of thinking about chemical bonding that requires 
absolutely no quantum mechanics or computation.

On the basis of the Lewis structure of any molecule and using the equally classical and 
non-quantum mechanical approach known as valence shell electron pair repulsion (VSEPR) 
method, chemists can also predict the 3-D shape of most molecules to a considerable degree 
of accuracy. From the shape of the molecule one can go on to predict whether any particular 
molecule might have a net dipole or not, a fact that can serve to explain all manner of other 
properties of molecules. For example, the bent shape of the water molecule explains why it 
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has a net dipole which in turn explains why it is capable of dissolving ionic salts, why it has an 
anomalous boiling point and so on.

Of course, these classical approaches to bonding which are the direct outcome of Lewis’ 
notion of identifying bonding with electron pairs can sometimes fail, but they remain as very 
useful methods that can yield rationalizations and even predictions about any given molecule.

Returning to Lewis’ definition of acidity, it is not only a genuine generalization of the 
previous definitions of acidity, but also part of a much greater unification between various 
central ideas in chemistry including structure and bonding as well as chemical reactivity in 
general that was initiated by Lewis.

Some genuine philosophical issues concerning Lewis acidity

One genuine concern with the Lewis definition, which has been known since the inception 
of his definition, is that acids have different relative strengths depending on the base with 
which they react, an issue that is not discussed by Chang incidentally.

As a result of this apparent disadvantage, no unique order of acid strengths can be for-
mulated within the Lewis definition. This feature is due to the fact that acidity becomes 
a response function for Lewis. That is to say a substance is acidic or basic depending on 
what substance it is chemically related to.3

Nevertheless, many approaches have been devised including the use of the  SbCl5 affin-
ity scale, the  BF3 affinity scale, various thermodynamic and spectroscopic scales and gas 
phase affinity scales (Laurence et al. 2011). Indeed, the existence of all of these additional 
approaches to quantifying acidity serve to further refute Chang’s claim that Lewis acidity 
is not capable of being quantified.

Conclusions

I claim there is no rupture between the Brønsted-Lowry and Lewis conceptions of acidity 
contrary to what Chang believes. The fact that a pH meter cannot be used to measure the 
degree of acidity in the case of some Lewis acids does not imply an absence of possible 
means of measuring acidity. A simple appeal to the principles of chemical equilibrium pro-
vides us with the well-known concept of stability constants for the formation of acid–base 
complexes such as in the reactions of transition metal ions with a set of ligands.

Lewis’ theory of acidity has the advantage of being centered on the concept of pairs of 
electrons which are also essential to the discussion of all chemical reactions and the forma-
tion of chemical bonds. Only by ignoring these other uses of the concept of electron pairs 
can Chang create the illusion that Lewis’ definition of acidity is somehow inferior to the 
earlier more classical definitions in terms of the transfer of  H+ ions.

Moreover, the concept of electron pairs retains its central importance in the quantum 
theories of bonding, namely molecular orbital theory and valence bond theory. To down-
grade Lewis’ definition of acidity because it deals with electron pairs rather than protons 
amounts to also downgrading huge swathes of modern chemistry, such as equilibrium ther-
modynamics as well as classical and quantum theories of chemical bonding.

3 I thank a review of this article for urging me to emphasize this point.
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Lewis unified our understanding of acids and bases, together with reactions that lead 
to covalent bond formation in general in that they all involve electron pairs. According to 
Lewis, an acid accepts both the electrons in a pair in the process of forming a dative bond. 
Meanwhile, a hydrogen atom reacting with a bromine atom, for example, do so by each 
providing one electron in the shared pair in a typical covalent bond. Dative bonds and typi-
cal covalent bonds are thereby regarded as variations on the same theme.

All these unifications achieved by Lewis, are indirectly undermined by Chang’s sus-
tained attack on Lewis acidity. Instead of looking at Lewis acids as ‘failed acids’, we 
should consider the situation the other way round. Lewis acids (dative covalent bonding 
formation) form a subset of covalent bonding in general. Like oxidation and reduction, the 
modern view of acids and bases transcends the layperson’s view and it is puzzling to read 
about Chang’s nostalgia for acids in the layperson’s sense of the term?

As was emphasized above, HCl is not intrinsically acidic. It only becomes acidic on 
reacting with water or another polar solvent. It is perfectly consistent to consider  H+ as a 
Lewis acid and Lewis’ definition is a genuine generalization of that of Brønsted & Lowry. 
As was argued earlier, and contrary to Chang’s claims, there is no “rupture” or incommen-
surability. Our inability to measure Lewis acidity with a pH meter is neither here nor there 
given that Lewis acidity can be quantified, as can Arrhenius and Brønsted-Lowry acidity, 
by appeal to equilibrium theory and stability constants.

Activity is a technical term used to characterize the non-ideal behavior of ions. This is 
a well-understood phenomenon and does not point to any aspect that is “less that tight”, 
to cite Chang’s words one again. Electron pairs, which lie at the heart of Lewis’ theory of 
bonding as well as his definition of acids, rather than protons, are the key to understanding 
bonding, both classically and quantum mechanically.

Acid–base behavior emerges as just one kind of chemical reaction among many other 
types that involve electron pairs and is thus placed into a wider context by means of Lewis’ 
definition. As was suggested earlier, Lewis achieved the unification between acid–base 
reactions and reactions involved in bonding in general. Perhaps Chang should consider the 
advantages of this profound unification rather than claiming that there is dis-unity and rup-
ture in our current knowledge of acids.

Finally, there is an important logical point. Any concept refers to a set of items and a 
definition of the concept intends to identify all the members of that set. In turn, general-
izing a concept implies enlarging the set of the items referred to by the concept. Further-
more, a concept can be generalized in two ways. One is by adding a new property to the 
property which originally identified the set. Another way is by changing the property that 
identifies the members of the set.

The case of acidity corresponds to the second way, in that the property that identifies 
acid substances in Lewis’ theory is different from the property that identifies acid sub-
stances in Brønsted-Lowry theory. Perhaps it is this fact that leads Chang to talk about 
“rupture.” However, this does not mean that the two definitions are incommensurable. 
Since the set of acid substances identified by Brønsted-Lowry definition is a subset of the 
set of acid substances identified by Lewis definition, as shown in Fig. 2, then Lewis’ defini-
tion is a generalization of the Brønsted-Lowry definition.

In logical language, one can say that, strictly speaking, there are two concepts whose 
intensions are different, but whose extensions are related by inclusion. In simpler words, all 
substances that are acid according to Brønsted-Lowry definition are also acid according to 
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Lewis definition, but not vice versa. But, if this is the case, Chang’s claim, as cited earlier, 
that.

… the Lewis and the Bronsted-Lowry definitions refer to two different sets of chemi-
cal substances; there is an overlap between the two sets, but one is not a subset of the 
other.

is simply incorrect. This comment does not depend on particular views about the real 
nature of acidity or about which of the two definitions is ‘better’, but is a logical point, 
which I believe serves to strengthen the present critique.4
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