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It seems like we care about at least two features of our credence function: gradational-accuracy
(high credences in truths, low credences in falsehoods) and verisimilitude (investing higher
credence in worlds that are more similar to the actual world). Accuracy-first epistemology re-
quires that we care about one feature of our credence function: gradational-accuracy. So if you
want to be a verisimilitude-valuing accuracy-firster, you must be able to think of the value of
verisimilitude as somehow built into the value of gradational-accuracy. Can this be done? In a
recent article, Oddie has argued that it cannot, at least if we want the accuracy measure to be
proper. I argue that it can.
1. Introduction

Consider the credences of Aggie and Vera with respect to the number of planets in

our solar system.
Which of these two characters is getting things more right? You might think that it’s

hard to say. After all, Aggie invests more credence in the actual world thanVera does.

On the other hand, Aggie invests a large chunk of credence in aworld that is extremely

dissimilar to the way things are, whereas all of Vera’s credence is invested in a world

that is quite similar to the actual world. These contemplations might lead you to think

that Aggie and Vera are doing well on different epistemically important dimensions:

Aggie, one might say, is doing well with respect to gradational-accuracy (a matter,

roughly, of investing high credence in truth and low credence in falsehood), whereas

Vera is doing well with respect to verisimilitude (a matter, roughly, of investing more

credence in worlds that are more similar to the actual world).
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You might think that getting things right is a matter of doing well on both dimen-

sions and that we need to be epistemic-value-pluralists to explain the sense in which

Aggie is doing better thanVera and the sense in whichVera is doing better thanAggie.

But epistemic utility theory (EUT), as practiced by most contemporary epistemol-

ogists, is not a pluralist endeavor. The EUT programme assumes that the only thing

that’s of fundamental epistemic value is gradational-accuracy. Indeed, the idea that

gradational-accuracy is all that matters runs so deep that most people in the discipline

call gradational-accuracy just plain old ‘accuracy’. I’m going to follow this (perhaps

unfortunate) convention and use ‘accuracy’ to refer to gradational-accuracy.1

As it turns out, many very attractive norms (like probabilism and conditionaliza-

tion) can be derived from the assumption that accuracy is the only thing that is (fun-

damentally) epistemically valuable in a credence function.2 And these arguments

simply don’t work if there are other dimensions of value. For if other values are im-

portant, then the fact that, for instance, every non-probabilistic credence function is

accuracy-dominated by a probabilistic one won’t necessarily imply that we should

be probabilistic. After all, the non-probabilistic ones might be doing well in other re-

spects. So thinking that not only accuracy, but also verisimilitude is epistemically

valuable has the potential to wreak havoc to ‘accuracy-first’ epistemology.

It’s not just a programme that some formal epistemologists are interested in that is

threatened by thinking that verisimilitude, in addition to accuracy, is valuable. It

would be strange if it turned out that agents need to be trading off these values when

forming their opinions. Suppose S’s evidence supports a credence of 0.9 that there are

eight planets and a credence of 0.1 that there is one planet. Her evidence decisively

rules out every other number of planets. It would be odd if she should think: ‘It’s highly

likely that there are eight planets. If there are eight planets, I’m better off investing

whatever credence I don’t invest the eight-planet world in the seven-planet world than

I am investing it in the one-planet world (for verisimilitude reasons). So perhaps I

should move some of my credence from the one-planet world to the seven-planet

world’. Somehow, whatever norms we derive from the fact that we value accuracy

and verisimilitude should rule out reasoning in this way.

One way to be a verisimilitude-valuing accuracy-firster, and to assure that reason-

ing in the way described above is unwarranted is to show that, in fact, valuing veri-

similitude just amounts to valuing accuracy in a particular way. According to this

picture, all we need to do in our inquiry is keep caring about accuracy, and verisimil-

itude will take care of itself. (Exactly how this works will be explained below.) But

this hope appears to have been dashed by Oddie ([2019]). Oddie argues that given a

plausible constraint on accuracy measures called ‘propriety’ (proper measures are

those according to which every probability function maximizes expected accuracy
1 This is just terminology—I don’t mean to be taking a stand (yet!) on anything substantive about what’s
epistemically valuable.

2 For a comprehensive presentation of the programme, see (Pettigrew [2016]).
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relative to itself )3 there simply is no way of valuing accuracy that can capture the

value of verisimilitude. The accuracy-first epistemology programme requires that the

accuracy measures we use are proper, so if the value of verisimilitude can only be cap-

tured by improper measures, accuracy-first is in trouble.

The first goal of this article is to argue, contra Oddie, that the value of verisimilar

credences can indeed be captured by proper accuracy measures. So the intuition that

verisimilitude is important doesn’t threaten accuracy-first epistemology. We can

maintain epistemic-value-monism and still capture the sense in which Vera is doing

better than Aggie. However, as we’ll see, given propriety, the way verisimilitude fits

into the picture is a bit complicated. The second goal of this article is to present some

results aimed at mapping out some of the contours of the complex relationship be-

tween accuracy and verisimilitude.

One upshot of the results that follow is this: both proper and improper measures

can capture the value of verisimilitude. The difference between them is that there

are improper measures that care only about howmuch credence is invested in the ac-

tual world, and how verisimilar the credence function is. Proper measures care about

at least one additional feature: how evenly credence is distributed amongst certain

false propositions. In fact, as we’ll see, a version of the Brier score (a much-loved

proper accuracy measure in accuracy-first circles) cares about exactly three things:

the amount of credence invested in the actual world, verisimilitude, and evenness

of distribution amongst (a certain class of ) falsehoods. At the end, I’ll appeal to re-

sults by Schervish ([1989]) and Levinstein ([2017]) to argue that these three features

are exactly the ones that are important from a practical perspective when we don’t

know what sorts of decisions we’ll face in the future.
2. Some Nuts and Bolts

Before delving in, I want to present the basics of the accuracy framework. (Familiar

readers may wish to skip this section.)

Let Q be a finite set of possible worlds (mutually exclusive possibilities) and let

P Qð Þ be the power set of Q—the set of sets of worlds in Q. We’ll be thinking of prop-

ositions as sets of worlds. Credence functions defined on Q will be assignments of

numbers in [0, 1] (credences) to the propositions in P Qð Þ.4 We can measure how ac-

curate someone’s credences are at a world using an accuracy measure. There are two

types of accuracy measures we’ll be looking at: local and global.

A local accuracymeasure takes as input some credence c and a truth value (one for

true, zero for false), and outputs a number (also in [0, 1]) that represents how accurate

someone is who has credence c in a proposition, given the proposition’s truth value.
3 For discussion of propriety and its motivations, see, for instance, (Greaves and Wallace [2006]; Joyce
[2009]; Pettigrew [2016]).

4 For simplicity, I’ll usually be assuming that the credence functions in questions are probabilistic.
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It’s easier for certain purposes to use measures of inaccuracy rather than accuracy. So

we’ll say that 0.9 in a truth is less inaccurate than 0.5 in a truth. We’ll use ‘Ilocal’ to

represent a local inaccuracy measure:

Ilocal : 0, 1½ �
credenceð Þ

� 0, 1f g
truth valueð Þ

→ 0, 1½ �:
inaccuracy scoreð Þ

Global inaccuracy measures take as input an entire credence function and a world,

and output a number representing how inaccurate the credence function is in that

world. We’ll use ‘Iglobal’ to represent a global inaccuracy measure. If c is the set of

credence functions defined over a set over worlds Q:

Iglobal : c � Q→ 0, 1½ �:

We’ll think of the global inaccuracy of a credence function at world w as a sum of the

local inaccuracy scores that the credence function gets in w for each proposition it

assigns credence to.5
3. First Attempts

At first glance it seems like accuracy and verisimilitude are two completely different

beasts. Accuracy is based on similarity relations between credence functions: in par-

ticular, accuracy at world w is concerned with the similarity between any particular

credence function, and the omniscient one at w (the one that assigns one to truths and

zero to falsehoods). Verisimilitude, in contrast, is based on similarity relations be-

tween worlds. The person who thinks that there are seven planets in our solar system

is doing better than the person who thinks that there is one planet, because the world

in which there are seven planets is more similar to the actual world than is the world in

which there is just one.

But at second glance it seems that the seven-planeter is also, in certain respects, more

accurate—not merely more versimilar—than the one-planeter. The seven-planeter, for

example, is accurate with respect to the following propositions: There are at least seven

planets, there are at least six planets, there are between four and nine planets, and so on.

The one-planeter iswrong about all of those things. So, youmight think, we can explain

what’s better about the seven-planeter in terms of accuracy alone.

Sadly, things are not so simple. For the one-planeter is right about many things that

the seven-planeter is wrong about: that there are either one or eight planets, that there

are seven planets if and only if there are two, that the number of planets is greater than

seven or less than five, and so forth. In fact, the one-planeter and the seven-planeter

are right about exactly the same number of propositions (Oddie [2019]).
5 Note that the sum can be weighted; more on this later.
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Still, you might think, the propositions that the seven-planeter is right about are in

some sense ‘better’ than the propositions that the one-planeter is right about. That there

are at least six planets is a very respectable proposition. That there are two planets if

and only if there are seven is a weird ugly one. Greaves andWallace ([2006]) propose

that we can incorporate the value of verisimilitude into the value of accuracy by assign-

ing different weights to different propositions. Here’s the thought: recall that how

accurate a person is overall is a function of how accurate they are with respect to in-

dividual propositions. Instead of just adding up a person’s accuracy score for each

proposition, we can weight those scores to reflect the fact that we think that there

are certain propositions it’s more important to be right about than others. If we weight

more heavily propositions like ‘there are at least six planets’ than propositions like

‘there are two or seven planets’, perhaps we can get the result that the seven-planeter

is more (globally) accurate than the one-planeter.6

The Greaves and Wallace proposal seems promising. But Oddie argues that if one

meets a constraint that he takes to be an extremely minimal requirement on being a

verisimilitude valuer, there is no way of assigning weights to propositions that is con-

sistent with the inaccuracy measure being proper. So Oddie thinks we have a choice:

give up on the inaccuracy measure being proper (and so give up on accuracy-first

epistemology), or give up valuing verisimilitude. Both options are unattractive.

Here’s my plan for bringing accuracy and verisimilitude back into harmony: first,

I’ll argue that Oddie’s constraint is too strong. There are plenty of ways one can

value verisimilitude without meeting Oddie’s constraint (here I’ll be echoing some

considerations raised by Dunn ([2018])). Second, I’ll offer some alternative con-

straints for what it takes to value verisimilitude and show that proper inaccuracy

measures can satisfy them.
4. Oddie’s Constraint

Oddie thinks that if an inaccuracy measure cares about verisimilitude, then it must

satisfy the following constraint, which he calls ‘weak proximity’ (I’m going to argue

that it’s too strong, so I’ll take the liberty of renaming it ‘Oddie’s proximity’):
6 I’m go
depen
gume
betwe
Oddie’s Proximity: Consider a proposition P, thought of as a set of worlds in Q. For any
set of worlds, P, we can consider the members of that set that are closest to the actual
world.We’ll call each such world ‘a most accurate P-world’. Let @ be the actual world
and let w be a most accurate P-world (see Figure 4). Let b be a credence function that
assigns a credence of one to w. Let c be a credence function that assigns non-zero cre-
dence to all and only themembers of P. For any such b and c, b is at least as accurate as c
at @.
ing to be understanding this proposal as one on which the weighting of the propositions does not
d on which world is actual. Both Oddie ([2019]) and Levinstein ([2019]) provide compelling ar-
nts for the claim that reconciling accuracy and verisimilitude on the assumption that the distance
en worlds depends on which world is actual is hopeless.
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Oddie’s constraint is too strong. To see why, let’s look at an example: Suppose that

there are five possible worlds w1 ::: w5 where wi is a world containing exactly i

planets, and suppose that the actual world is a world with three planets. We’ll let

the distance between any two worlds be the difference in number of planets between

those worlds. Now consider two credence functions, o for ‘opinionated’ and a for

‘ambivalent’ (see Table 1):
(i) o assigns a credence of one to w4;

(ii) a assigns a credence of 0.5 to w4 and 0.5 to w2.
Oddie’s proximity constraint entails that a can’t be doing better than o accuracy-wise.

But why does caring about verisimilitude mean that we can’t think of a as doing

better than o accuracy-wise?Oddie’s thought, I take it, is this: o and a are doing equally

well with respect to verisimilitude—they both invest all of their credence inworlds that

are one unit away from the actual world. They also each invest the same amount of

credence in the actual world (zero). So there are simply no grounds for thinking that

a is doing better than o. But this line of thought requires more than thinking that

verisimilitude is important. It essentially requires thinking that the accuracy of a cre-

dence function can’t depend on any features of the credence function other than:
(i) how much credence is invested in the actual world;

(ii) how well it fares with respect to verisimilitude.
Table 1. The space of worlds where the distance between worlds is given by the differ-
ence in the number of planets in those worlds. a and o represent two credence functions
defined over this space of worlds.
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But one might think that verisimilitude is valuable even if one thinks that additional

features of the credence function are relevant to its accuracy. In particular, you might

think that another relevant feature is:
The evenness with which the credence function distributes its credence amongst non-
actual worlds.
o and a differ with respect to this feature: a distributes her non-actual-worldly cre-

dence more evenly than o.

Whether it’s plausible that evenness of distribution is relevant to accuracy is a

question we’ll come back to (I’ll argue that it is; Dunn ([2018]) does so as well).

But the thing to note for now is that many popular inaccuracy measures prefer cre-

dence functions that distribute credence more evenly amongst non-actual worlds.

Valuing verisimilitude is compatible with also valuing evenness of distribution.
5. The Good

Oddie argues for the claim that verisimilitude can’t be captured by proper inaccuracy

measures by choosing a particular space of worlds and showing that there is no global

inaccuracy measure that is proper and that satisfies his proximity principle for that

space. Since Oddie’s proof makes use of a particular space of worlds, Oddie hasn’t

shown that there are no spaces of worlds for which there are verisimilitude-valuing

proper inaccuracymeasures. However, Oddie chose a very natural space for his proof,

which suffices to illustrate his point that there is a tension between propriety and his

proximity constraint. To keep things tractable, I’m going to follow Oddie in this re-

spect. I too will be looking at particular spaces of worlds (the same ones as Oddie)

and I’ll show that there are proper inaccuracy measures that value verisimilitude over

those spaces. Since, like Oddie, my proofs will make use of particular spaces of

worlds, I will not have shown that for every space of worlds, there is a proper inac-

curacy measure that values verisimilitude. But my hope is that the results that follows

will suffice to show that there is no reason to expect otherwise: there is no inherent

tension between proper accuracy and verisimilitude.
5.1. Proximity over the disagreement metric (Result 1)

A minimal constraint on what’s involved in valuing verisimilitude doesn’t say that

whenever one credence function is more verisimilar, it’s more accurate. A minimal

constraint says that, all else equal, the more verisimilar credence function is more ac-

curate. This is the first sort of constraint we’ll be looking for. As we proceed, we will

generalize, and by the end we’ll see exactly what needs to be held fixed to guarantee

that the more verisimilar credence function is more accurate. (Roughly, the answer

will be: we need to hold fixed how much credence is invested in the actual world

and how evenly credence is distributed amongst certain falsehoods).
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In this section I’ll present a proximity constraint over spaces of worlds where the

distance between worlds is given by what I’ll call ‘the disagreement metric’.

To get a sense of the metric, let’s start with Oddie’s example: We’re wondering

about the weather tomorrow. In particular, we’re wondering whether it will be hot

(H) and whether it will be rainy (R). The set of worlds we’re considering consists of

the four possible answers to these questions: H&R,H& ∼ R, ∼ H&R, ∼ H& ∼ R,

and the distance between any two worlds is given by the number of disagreements

between those worlds concerning the propositions H and R.7 If the actual world (@)

is H&R, and we let D stand for the distance from @, we can represent the space as

shown in Table 2.

The first replacement for Oddie’s proximity that I will offer, which I’ll call ‘Prox-

imity 1’, will apply to any space of worlds for which there is some set of propositions

(which we’ll call ‘the atomic propositions’) such that the distance between any two

worlds is given by the number of disagreements between those worlds with respect

to the atomic propositions.

Proximity 1 says roughly this: Suppose we have a finite set of worlds Q that b and c

distribute their credence over, where the distance between worlds is given by the dis-

agreement metric. Now let’s hold everything fixed between b and c, except for veri-

similitude. In particular, we’ll suppose that b and c are identical distributions over Q

except for the fact that there’s at least one pair of worlds such that b and c’s credences

are swapped between these worlds, with b investing the larger credence in the closer

world, and c investing the larger credence in the further world. Also, in the interest of

holding everything except for the increased distance of c’s world fixed, we’ll assume

that the further world that c invests the larger credence in disagrees with the actual

world about all the atomic propositions that the closer world does, in addition to at

least one other atomic proposition (hence making it further).8 Then, what our con-

straint will require is that b is more accurate than c.

Before the official formulation, an example: suppose b distributes its credence as in

Table 3. Now, consider c, which is just like b except that the credences in w2 and w4

are swapped, so that c is investing the larger credence (0.5) in the more distant world

(w4), and the smaller credence (0.1) in the closerworld (w2) (see Table 4). Proximity 1

requires that b is more accurate than c at @.
7 Two w
many
examp
any tw
ositio
there c
thinki

8 The n
Proximity 1: Let b and c be credence functions defined over a finite set of worlds Q,
where the distance between worlds in Q is given by the disagreement metric. Let wa
orlds disagree about a proposition if one is a member of that proposition and the other is not. In
cases, multiple sets of propositions will yield essentially the same metric. In the case above, for
le, we can use {H, R}, { ∼ H , ∼ R}, or {H, ∼ H , R, ∼ R} (in which case, the distance between
o worlds will be doubled). There is no need, for our purposes, to choose ‘the’ set of atomic prop-
ns corresponding to a metric. The fact that multiple sets will yield the same metric just shows that
an be multiple ways of assigning importance to propositions that all correspond to the same way of
ng about the distance between worlds.
ecessity of and motivation for this condition will be discussed further in Sections 6 and 7.
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be any world in Q and suppose that the multiset {b wð Þjw ∈ Q} can be mapped one-to-
one onto the multiset {c wð Þjw ∈ Q} by the function F as follows:
(i) If b wð Þ 5 c wð Þ, then F b wð Þð Þ 5 c wð Þ
(ii) If b wð Þ ≠ c wð Þ, then for some world w*, F b wð Þð Þ 5 c w*ð Þ and

F b w*ð Þð Þ 5 c wð Þ and the following conditions are satisfied:

(a) The distance between w* and wa differs from the distance between w
and wa.

(b) b and c’s credences are swapped between w and w*, with b investing
the larger credence in the closer world (to wa) and the smaller cre-
dence in the further world.

(c) The further of the two worlds (w and w*) from wa disagrees with wa

about all the atomic propositions that the closer of the two worlds dis-
agrees with wa about, in addition to disagreeing with wa about at least
one other atomic proposition (hence making it further).
Then b is at least as accurate as c at wa, and if (ii) holds for at least one w ∈ Q,
b is more accurate than c at wa.
A strictly proper inaccuracy measure based on the much-loved ‘Brier score’ satisfies

Proximity 1.

To measure the local Brier inaccuracy of a credence c in a proposition P, we take

the difference between c and the truth value of P and square it.
Table 2. A space of worlds given by the disagreement
metric. In this case, the distance between two worlds is
given by the number of disagreements between those
worlds with respect to propositions H and R.
Table 3. A distribution, b, over four worlds where
distance is given by the disagreement metric.
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Il2brier c, 1ð Þ 5 1 2 cð Þ2,
Il2brier c, 0ð Þ 5 0 2 cð Þ2 5 c2:

Recall that the global inaccuracy of a credence function c is a weighted sum of the

local inaccuracy scores that c receives for each proposition that c assigns credence

to. Let’s call the weights li. Where w Pið Þ is the truth value of a proposition Pi at

world w, the global Brier inaccuracy of a credence function c at a world w is:

Ig2brier c, wð Þ 5 o
i

liIl2brier c Pið Þ, w Pið Þð Þ:
For a space of worlds where the distance between worlds is given by the disagree-

ment metric, what I’ll call the ‘atomic Brier score’ is the global Brier score that gives

equal weight to all the atomic propositions and no weight to any other propositions.

Lemma
The atomic Brier score satisfies Proximity 1. The proof is in the appendix.

The more general result applies not just to the atomic Brier but to any atomic inaccu-

racy measure (an inaccuracy measure that gives equal weight to all the atomic prop-

ositions and no weight to any other propositions) derived from a local inaccuracy

measure which satisfies the following constraints:
Truth-Directedness: For all r ∈ 0, 1½ �, Ilocal r, 0ð Þ is a strictly increasing function of r.

Symmetry: For all r ∈ 0, 1½ �, Ilocal r, 0ð Þ 5 Ilocal 1 2 r, 1ð Þ and Ilocal r, 1ð Þ 5
Ilocal 1 2 r, 0ð Þ:
Result 1
Every global atomic inaccuracy measure derived from a local inaccuracy measure
that satisfies truth-directedness and symmetry satisfies Proximity 1. The proof is in
the appendix.

At this point, what we have is a verisimilitude-valuing constraint across spaces of

worlds where distance betweenworlds is given by the disagreement metric that proper
Table 4. b and c swap credences between w2 and w4

with b investing the larger credence in the closer world
and c investing the larger credence in the further world.
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inaccuracy measures can satisfy. We get this result by letting our inaccuracy measure

privilege exactly those propositions that are distance-determining: the atomic ones.

The atomic Brier score assigns all of its weight to the distance-determining propo-

sitions. In the real world, though, we presumably care at least a bit about accuracy with

respect to every proposition.9 So the more general thought I’m advocating for is this:

the more weight we give to the distance-determining propositions, the more important

it will be to be verisimilar. The results in this article support this thought by showing

that, in the extreme case, when the privileged propositions get all the weight (and var-

ious other things are held fixed), the more verisimilar credence function is guaranteed

to be more accurate. As the weights of other propositions get closer to the weights of

the distance-determining ones, verisimilitude will still be a factor in determining accu-

racy, but it will be competing with another factor: the importance of being right with

respect to other matters we think are important.10 For simplicity, for the remainder of

the article I’ll continue to focus on accuracy measures which assign all their weight to

the distance-determining propositions. But this should be thought of as an idealization.
5.2. Proximity over the magnitude metric (Result 2)

Let’s now consider a different sort of metric, what we’ll call the ‘magnitude metric’.

On the magnitude metric, the distance between two worlds is given by the difference

in the magnitude of some quantity between those worlds. For example, the quantity

might be the number of planets. Pretending that the actual world is one in which there

are three planets, and letting d represent distance to the actual world, our space of

worlds might look like Table 5.

We can apply Proximity 1 to the magnitude metric by noting that the magnitude

metric is also a disagreement metric. Let wi be the world where the value of the quan-

tity in question is i. The distance between wi and wj on the magnitude metric is equal

to the number of disagreements between wi and wj with respect to a certain class of

propositions. Which propositions? We can use what I’ll call the ‘at-most’ proposi-

tions, what I’ll call the ‘at-least’ propositions, or both. The at-most propositions are

propositions of the form ‘there are at-mostm of quantityQ’ and the at-least propositions
9 Another reason it’s important to assign positive weight to all propositions is that, as Dunn ([2018], Foot-
note 27) points out, we won’t be able to apply the accuracy arguments for probabilism if certain propo-
sitions are given zeroweight. The good news is that because the arguments for probabilism are dominance
arguments, all that’s needed for them to work is that each proposition gets some positive weight: the
amount doesn’t matter.

10 My suspicion is that as the weight of various ‘non-privileged’ propositions increases, the strength of our
intuitions about which worlds are more similar to which will start to diminish (we’ll say things like, ‘well
sure, these two worlds are similar in these important respects, but they’re quite different in these other
important respects’). If the increase is extreme enough, wemight start favouring anothermetric altogether.
So the strength of our intuitive judgements concerning the importance of verisimilitude with respect to
some particular metric will go hand in hand with how important we think it is to be right with respect
to the propositions that are distance-determining with respect to that metric.



384 Miriam Schoenfield
are propositions of the form ‘there are at leastm of quantityQ’.11 By using these as our

privileged propositions, the magnitude metric will satisfy a constraint very similar to

Proximity 1. Once again, the idea is to offer a constraint that says, holding all else fixed,

themore verisimilar credence function is more accurate. In this case our constraint says

roughly that if the only difference between b and c is that there’s a credal swap between

twoworlds,with b investing the larger credence in the closerworld, and bothworlds are

‘on the same side’ of the actual world (the importance of ‘same-sidedness’will be dis-

cussed later) bwill bemore accurate. So, for example, suppose b and c are as in Table 6.

Our constraint will require that b is more accurate than c.
11 Here
jy 2
and o
such
betw
most
types
the d
varia
Proximity 2: Let b and c be credence functions defined over a finite set ofworldsQ, where
the distance betweenworlds inQ is given by themagnitudemetric. Let wa be anyworld in
Q and suppose that the multiset {b wið Þjwi ∈ Q} can be mapped one-to-one onto the
multiset {c wið Þjwi ∈ Q} by the function F as follows:
(i) If b wið Þ 5 c wið Þ, then F(b(wi)) 5 c(wi).
(ii) If b wið Þ ≠ c wið Þ then for some world wj, F b wið Þð Þ 5 c wjð Þ and

F b wjð Þð Þ 5 c wið Þ and the following conditions are satisfied:

(a) The distance between wj and wa differs from the distance between wi

and wa.

(b) b and c’s credences are swapped between the two worlds (wi and wj),
with b investing the larger credence in the closer world (to wa) and the
smaller credence in the further world (from wa).

(c) i and j are both greater than a, or i and j are both less than a.
Then b is at least as accurate as c at wa, and if (ii) holds for at least one wi ∈ Q, b
is more accurate than c at wa.
Result 2
Every global inaccuracy measure which assigns equal weight to all the at-most propo-
sitions and no other propositions, all the at-least propositions and no other propositions
Table 5. A space of worlds in which distance between worlds is given by the difference
in the number of planets between them. D represents distance from the actual world.
’s why this works: On the magnitude metric, for any x and y, the distance between wx and wy is
xj. The propositions amongst the at-most propositions that wx and wy will disagree about are all
nly propositions of the form ‘there are at most i of quantity Q’ with x ≤ i < y. There are jy 2 xj
propositions. So the distance between any two worlds on the magnitude metric is just the distance
een any two of those worlds on the disagreement metric, where the atomic propositions are the at-
propositions. A similar argument can be made for at least propositions. If we wanted to use both
of propositions, that would work as well, so long as we’re happy with a variant according to which
istance between wx and wy is 2(jy 2 xj). I think we should regard the magnitude metric and this
nt as equivalent for the purposes at hand.
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or both the at-most and at-least propositions and no other propositions, and which is
derived from a local inaccuracy measure that satisfies truth-directness and symmetry
satisfies Proximity 2. The proof is in the appendix.

6. The Bad and the Ugly (Result 3)

So far we’ve established that for at least certain metrics (the ones Oddie considers),

we can construct proper inaccuracy measures with the feature that, holding all else

fixed, the more verisimilar credence function will be more accurate. But you might

have wanted more. Consider once again the space of worlds given by the magnitude

metric, with b and c distributed as in Table 7. Notice that the only difference between

b and c is that b and c swap credences between w2 and w5, with b investing the larger

credence in the closer world. It seems like we’re holding an awful lot fixed, and just

varying verisimilitude, and so it seems like a verisimilitude-valuing accuracy mea-

sure should rate b as more accurate than c. However, on the weighted Brier score

which assigns equal weight to the at-most and at-least propositions and no weight

to any other propositions, c is actually more accurate than b. (Note that this isn’t a

counterexample to Proximity 1 or Proximity 2 because condition (ii) (c) of both con-

straints is not satisfied for w2 or w5).

Why is this happening? This is where things get a bit ugly. Even though b invests

more credence in closer worlds, what c has going for it is that c has clumped the larg-

est and the smallest credences together on one side of the actualworld (0.91 and 0.01),

and the remaining two medium credences (0.03, 0.05) on the other.

Why on earth should this difference in clumping be relevant? The real answer

comes later, but here’s the quick answer: If you care about certain propositions more

than others, then you should expect clumping to matter: If being wrong about some
Table 6. b and c are identical except for the fact that they swap credences between w4

and w5 with b investing the larger credence in the closer world and c investing the larger
credence in the further world. This makes b a more verisimilar credence function than c.
Table 7. This time b and c swap credences between w2 and w4 with b investing the larger
credence in the closer world and c investing the larger credence in the further world.
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proposition A is worse than being wrong about some proposition B, then credence

functions that clump a bunch of credence in wrong-about-A worlds, are going to

do worse than credence functions that divide up that same amount of credence be-

tweenwrong-about-Aworlds andwrong-about-Bworlds. So privileging certain prop-

ositions means caring about clumping.

That being said, a feature of certain improper scoring rules (scoring rules that aren’t

proper) is that, holding fixed the amount of credence invested in the actual world, the

more verisimilar credence function is always more accurate. In other words: if b and c

invest equal credence in the actual world and b is more verisimilar, there is no other

feature of the credal clumping that could make c as accurate or more accurate than b.

The following constraint formalizes this idea:
12 Than
13 In an

weig
weig
Prox
Unlik
distri
other
inves
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distri
Proximity 3: Suppose that b and c are credence functions defined over a finite set of
worlds Q, that wa ∈ Q, and that b and c invest equal amount of credence in wa. For dis-
tance d, let Xd be the proposition (set of worlds) consisting of all and only worlds that are
at least d units away from wa: Xd 5 w ∈ QjD w, wað Þ ≥ df g. If for all propositions Xd,
b Xdð Þ ≤ c Xdð Þ, but for some Xd, b Xdð Þ < c Xdð Þ, then b is more accurate than c at wa.

12
No version of the weighted Brier score satisfies Proximity 3.13 But there are improper

measures that satisfy Proximity 3. One is based on what’s sometimes called the ‘ab-

solute value’ score: The local absolute-value-inaccuracy of credence c in proposi-

tion P is the absolute value of the difference between c and the truth value of P:

Il2abv c, 1ð Þ 5 j1 2 cj 5 1 2 c,

Il2abv c, 0ð Þ 5 j0 2 cj 5 c:

The weighted absolute value score over a space of worlds Q is a global inaccuracy

measure that is a weighted sum of the local absolute-value-inaccuracy scores that a

credence function gets for each proposition.

Result 3
When distance betweenworlds inQ is given by the disagreementmetric, theweighted
absolute value score that assigns equal weight to all the atomic propositions and no
other propositions satisfies Proximity 3. The proof is in the appendix.

Corollary
When distance between worlds in Q is given by the magnitude metric, the weighted
absolute value score that assigns equal weight to all the at-most propositions and no
ks to Kevin Dorst and Jack Spencer for help formulating this constraint.
unpublished version of his article (Oddie [2019]), Oddie’s proof of Theorem 1 establishes that no
hted Brier score can satisfy his proximity principle, but the proof can also be used to show that no
hted Brier score can satisfy Proximity 3. I have not established that no proper score will satisfy
imity 3, but I’m not optimistic that we’ll find a Proximity-3-satisfying proper inaccuracy measure.
e Oddie’s constraint, Proximity 3 does allow the inaccuracy measure to care about features of a
bution other than verisimilitude and the amount of credence invested in the actual world, but these
features will only get to play a role as a tie-breaker: when the two credence functions in question
t equal credence in the actual world and are doing equally well with respect to verisimilitude, then
other feature might make a difference. Proper measures, however, tend to care about features of a
bution (like its evenness) in a stronger-than-tie-breaking fashion.
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other propositions, all the at-least propositions and no other propositions, or both the
at-most and at-least propositions and no other propositions satisfies Proximity 3.

Proof of Corollary
Wenoted earlier that themagnitudemetric is just an instance of the disagreementmet-
ric with the atomic propositions being the at-least propositions, the at-most proposi-
tions, or both. Thus, the corollary follows immediately from Result 3.14
7. Some More Good: The Role of Evenness
of Distribution (Result 4)

We saw above that the weighted Brier score doesn’t satisfy Proximity 3. Worse than

that—as illustrated by the example in the previous section—on the weighted Brier

score we’ve been working with, there are cases in which two credence functions dis-

tribute the very same multiset of credences amongst a set of non-actual worlds, b in-

vests more credence in closer worlds, yet c is more accurate. This can happen because

the weighted Brier score is sensitive to how these credences are clumped amongst the

propositions that we care about. And unlike the absolute value score, verisimilitude is

not the only clumping feature that’s important. The good news is that we can articu-

late exactly what other clumping feature our Brier score cares about, and show that,

holding that feature fixed, the more verisimilar credence function is more accurate.

What is this special feature? I hinted at it in an earlier section: in general, proper

scoring rules care about how evenly credence is distributed amongst falsehoods. Even

before we get into the business of privileging certain propositions over others, we can

note that on a proper inaccuracy measure, a credence function that assigns 0.5 to non-

actual-world-1, and 0.5 to non-actual-world-2, will be more accurate than a credence

function that assigns a credence of one to a single non-actual world. According to

proper inaccuracy measures, it’s better to hedge.

But notice that we can’t explain why c is more accurate in the example above by

appealing to the claim that c distributes its credence in (non-actual) worlds more evenly

than b does. The distributions over non-actual worlds for both b and c contain exactly

the same credences! However, once we privilege certain propositions, what matters is
14 Recall that one motivation for an account in which the value of verisimilitude is built into (rather than
distinct from) the value of accuracy is that we don’t want agents to be manipulating their credences in an
attempt to trade these values off one another. For example, we don’t want someone with

Pr1 eight planetsð Þ 5 0:9,  Pr1 one planetð Þ 5 0:1

to move to

Pr2 eight planetsð Þ 5 0:9,  Pr2 seven planetsð Þ 5 0:1

in an attempt to be more verisimilar. Using an improper measure like the absolute value score, however,
does not help with this problem. Someone with Pr1 will, in fact, regard Pr2 as having higher expected
accuracy using the weighted absolute-value score. So we only get around this problem by using a proper
measure. Although it’s true that on verisimilitude-valuing proper measures (like the weighted Brier), Pr2
is in fact more accurate than Pr1, from the perspective of Pr1, Pr2 is less expectedly accurate.
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how evenly credence is distributed in the falsehoods concerning the privileged prop-

ositions. And, in fact, c does distribute its credence more evenly than b in the false-

hoods concerning the privileged propositions. But to convince you of this, and of the

fact that evenness of distribution explains why c does better, we need to formalize the

notion of ‘evenness of distribution’.

We can follow information-theorists here and think of the evenness of a credal dis-

tribution as the entropy of that distribution, where entropy is a measurement of how

much information the distribution contains. Intuitively, the more evenly credence is

distributed over a set of worlds, the less informative that distribution is (you have no

idea how things will turn out) whereas if one world gets assigned maximal credence,

that distribution is maximally informative.

The most common measure of entropy in information theory is Shannon entropy.

Here’s how it works: consider some credence function c and consider the most fine-

grained propositions (the worlds) that c is distributed over: {w1 ::: wn}. Let c wið Þ 5ci.

The Shannon entropy of c is given by the following formula:

Eshannon cð Þ 5 2o
n

i51

cilog cið Þ:

There are some interesting connections between entropy and accuracy that will be

important for our purposes. Let c f be c restricted to the most fine-grained proposi-

tions that c is defined over. (So while c might assign some credence to the proposi-

tion {w1, w2}, c
f would only assign credence to {w1} and {w2} individually). The

first thing to note is that Eshannon cð Þ also represents how inaccurate c f expects itself to

be using the log inaccuracy measure: an inaccuracy measure that assigns the score

log(c) to a credence of c in a falsehood (Grunwald and Dawid [2004]). So we can

think of the Shannon entropy of c as c f’s expected inaccuracy relative to itself (where

the global inaccuracy of c f is the average of the local inaccuracy scores of c f ). In-

tuitively, this notion corresponds with ‘evenness’ because the more opinionated a

credence function is (the more uneven), the more accurate it will expect itself to

be. (In the extreme case, the maximally opinionated distribution is certain that it will

get the maximal accuracy score.)

We can define different entropy (‘evenness’) measures using different inaccuracy

measures. So, for example, we can define the Brier entropy of c as the expected

inaccuracy of c f relative to itself, according to the (evenly weighted) Brier score.

This equals:

Ebrier cð Þ 5 o
n

i51

ciIg2brier cf , wi

� �
5 1 2 on

i51c
2
i

on
i51ci

� �2
" #

:15
15 Thanks to Richard Pettigrew for pointing this out to me. Here’s the proof he provided:

ociIg2brier(c
f , wi) 5 oci(c

2
1 1 c22 1 :::c2i21 1 (1 2 ci)

2 1 c2i11 1 :::c2n�
5 oci(1 2 2ci 1oc2i ) 5 oci 2 2oc2i 1ocioc2i :
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Here’s a neat fact about Brier-entropy: using Brier-entropy to measure evenness is

equivalent to using Jain’s fairness index, a measure used in the distributive justice

literature to measure the fairness of a distribution of goods (Jain et al. [1984]).

So far this has all concerned evenness of a distribution amongst worlds. But once

we start regarding certain propositions as more important than others, what’s relevant

is how evenly credence is distributed amongst the propositions that contribute to a

credence function’s inaccuracy. Suppose we have a weighted-Brier score that assigns

equal weight to the set of propositions Pi and no weight to any other propositions.

Then we’ll let:

Eweighted2brier cð Þ 5 1 2 oc Pið Þ2

oc Pið Þ� �2
" #

:

Call the propositions Pi and their negations the ‘privileged propositions’. Let F
w be

the subset of the privileged propositions that are false at w. Call these the ‘inaccuracy-

determining propositions at w’. We can now state another proximity constraint that a

weighted Brier score can satisfy. It will say that holding fixed evenness of distribution

(as defined by Brier-entropy) amongst the inaccuracy-determining propositions at w,

the more verisimilar credence function is more accurate at w.16
16 Note
ositio
crede
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Proximity 4: Suppose that b and c are credence functions defined over a finite set of
worlds Q, that wa ∈ Q, and that b and c invest equal amount of credence in wa. Suppose
also that b distributes its credence amongst the inaccuracy-determining propositions at
wa at least as evenly as c as defined by Brier-entropy. For distance d, let Xd be the prop-
osition (set of worlds) consisting of all and onlyworlds that are at least d units away from
wa:Xd5 {w ∈ QjD w, wað Þ ≥ d}. If for all propositionsXd, b Xdð Þ ≤ c Xdð Þ, but for some
Xd, b Xdð Þ < c Xdð Þ then b is more accurate than c at wa.
Suppose that b and c are credence functions defined over a finite set of worlds Q, that

wa ∈ Q, and that b and c invest equal amount of credence in wa. Suppose also that b

distributes its credence amongst the inaccuracy-determining propositions at wa at

least as evenly as c as defined by Brier-entropy. For distance d, let Xd be the propo-

sition (set of worlds) consisting of all and only worlds that are at least d units away
that thinking of the evenness of a multiset of credences invested in the inaccuracy-determining prop-
ns as the Brier entropy with respect to those propositions can’t be motivated directly by appeal to the
nce function’s expected inaccuracy. Since the privileged propositions need not be exclusive, the ex-
d inaccuracy of a credence function with respect to these propositions will not equal the Brier-entropy
is set of credences. That’s okay. The idea is that one way to motivate thinking of the evenness of a
set of credences as the Brier-entropy of those credences is to note that we’d expect evenness and ex-
d inaccuracy to go together when the set of possibilities is exclusive. But oncewe have our measure of
nesswe can apply it to credences in propositions that aren’t exclusive aswell. (And indeed, as Jain et al.
e can use it to measure the evenness of a distribution of goods which aren’t credences at all).

oci 5 1, this equals 1 2 2oc2i 1 oc2i 5 1 2 oc2i . Since (oci)2 5 1, this equals 1 2 ½oc2i =(oci)2�.
quality also holds for credences distributed over a proper subset of Q and so not summing to one.
ly let K 5 oci. Then we can define c1wi

as ci=K to get a normalized version of c and calculate the
entropy of c1. This will also yield 1 2 ½oc2i =(oci)2�.
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from wa : Xd 5 w ∈ QjD w, wað Þ ≥ df g : If for all propositions Xd, b Xdð Þ ≤ c Xdð Þ,
but for some Xd, b Xdð Þ < c Xdð Þ then b is more accurate than c at wa.

Result 4
When distance between worlds in Q is given by the disagreement metric, the weighted
Brier score that assigns equal weight to all the atomic propositions and no weight to
any other propositions satisfies Proximity 4. When distance between worlds in Q is
given by the magnitude metric, the weighted Brier score that assigns equal weight to
all the at most propositions and no other propositions, all the at least propositions and
no other propositions, or both the at-most and at-least propositions and no other prop-
ositions satisfies Proximity 4. The proof is in the appendix.

Here’s wherewe are so far: we’ve seen that on two naturalmetrics, theweightedBrier

score can satisfy the following constraint: holding fixed evenness of distribution

across the privileged propositions, and the amount of credence invested in the actual

world, themore verisimilar credence function ismore accurate.17 Is this good enough?

I address a potential worry in the next section.
8. Some More Bad: Which Propositions to Privilege? (Result 5)

At this point you might think the following: it’s obvious to me that I care about veri-

similitude, and it’s obvious to me that I care about accuracy. But I doubt any amount

of soul-searching will reveal in me a special fondness for at-most propositions. So

even if technically we can squish the value of verisimilitude into the value of accu-

racy, this maneuver misrepresents the phenomenon. The phenomenon is that I care

about two things: being accurate and being verisimilar. The phenomenon is not that

I care about one thing: being accurate about at-most propositions.

In fact, you might think, a much more natural class of propositions to privilege on

the magnitude metric would be the set of convex propositions: sets of worlds with no

‘gaps’ like, for example, ‘there are between five and eight planets’. So one question to

ask is:what sort of proximity constraints are satisfied if the privileged propositions are

the convex propositions rather than the at-least or at-most propositions? There is at

least one such constraint:
17 The
than
log s
case
and t
than
with
log s
to fo
more
(Tha
Proximity 5: LetQ be a finite space of worldswhere distance betweenworlds is given by
themagnitudemetric. Let wa be aworld inQ and let wa1d andwa2d be twoworlds that are
reader may be wondering whether an analogue of Result 4 will hold for accuracy measures other
Brier by substituting corresponding measures of entropy (for example, would Result 4 hold for the
core if we use Shannon entropy?). No. What’s special about the Brier score is that in the simplest
(where all propositions get equal weight), the Brier score cares about only two things: Brier entropy
he amount of credence invested in the actual world. The log score, in contrast, cares about more
Shannon entropy and the amount of credence invested in the actual world (two credence functions
the same Shannon entropy, and the same credence invested in the actual world can have different
cores). It’s difficult to articulate exactly what other features the log score cares about and so it’s hard
rmulate a constraint that says, ‘holding X, Y, and Z fixed, the more verisimilar credence function is
accurate’. For as far as I know, nobody has articulated what X, Y, and Z for the log score are.

nks to Richard Pettigrew for helpful discussion on this point.)
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d units away from wa. Suppose that b and c are credence functions that invest equal
amounts of credence in wa and which are such that b distributes its credence at least
as evenly among non-wa worlds as c does. If b invests all of its non-wa credence in
worlds that are d units away from wa, c invests all of its non-wa credence in worlds that
are at least d units from wa, and there is some world in which c invests credence that is
more than d units away from wa, b is less inaccurate than c at wa.
Result 5
The global Brier score that assigns equal weight to all convex propositions and no
weight to any other propositions satisfies Proximity 5. The proof is in the appendix.

This is a nice result about convex propositions. But it’s a bit misleading. There are

some examples that illustrate that the convex-proposition-lover positively defies veri-

similitude. Take the case in Table 8. If all the convex propositions are weighted equally,

b and c are equally accurate on the convexly weighted Brier score, even though b is

clearly doing better with respect to verisimilitude. Furthermore, it’s hard to see what

other difference between the two credence functions could explain why c’s weakness

on the verisimilitude front doesn’t make it less accurate. But note that this (for once!) is

not propriety’s fault! The convexly weighted absolute-value score also yields the result

that b and c are equally accurate. The problem is not the type of inaccuracy measure we

use, but the choice to privilege the convex propositions.

Here’s the problem with convex propositions: worlds near the middle of the space

show up in more convex propositions than worlds near the edges. In the example

above, w1 and w4 are each members of four convex propositions, whereas w2 and

w3 are each members of six convex propositions. This means that if the actual world

is near one edge, and you care about convex propositions, then you want to invest

your non-actual-worldly credence in worlds that are either close to the actual world

(for verisimilitude reasons) or near the opposite edge—very far from the actual world

(because those worlds won’t show up in many propositions). In this particular case,

the fact that w3 is more verisimilar perfectly balances the fact that w4 shows up in fewer

propositions and this explains why b and c are equally accurate.18

If you still find yourself attached to convex propositions, let me make two further

potentially assuaging remarks. First, if you like convex propositions, you can take some

comfort in the fact that every convex proposition is a conjunction of an at-least and

at-most proposition. It’s just that taking the at-least and at-most propositions instead of

the convex ones as privileged doesn’t have the unfortunate consequence that worlds

near themiddle get counted more than worlds near the edge. At-least and at-most prop-

ositions are egalitarian: each world shows up in the same number of propositions.

Second, I imagine that the temptation to think that convex propositions are espe-

cially important comes from the natural thought that propositions of the form ‘there

are about x planets’ are important. And you might think that the convex propositions
ieve that the reason Proximity 5 gets around this problem is that the conditions under which the
traint applies have the feature the closer the actual world is to one edge, the further from the middle
e worlds in which b invests its credence.
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are simply propositions expressing different ‘there are about x planets’ propositions.

But that’s not right. For it’s natural to think of ‘there are about x planets’ propositions

as propositions of the form ‘there are x, plus or minus y planets’. This is not the set of

convex propositions: the convex proposition {w2, w3}, for example, is not a member

of this set. And b is, in fact, more accurate than cwith respect to the ‘there are x, plus

or minus y planets’ propositions on the weighted Brier, as we’d expect.

Here’s the more general methodological point: The project is to see whether we

can find some propositions, which intuitively are important, and some distance rela-

tion between worlds, which intuitively seems right, and show that privileging those

propositions will amount to caring about verisimilitude as defined by that distance

relation. It may turn out that we need to do a bit of massaging to get this to work.

So insofar as soul-searching revealed in you a preference for convex propositions,

my proposal is that your soul-searching ever so slightly missed the mark in terms

of what features of credence functions you value. You don’t presumably think it’s

great to invest your non-actual-worldly credence in a very distant world just because

that world is near an edge, so, it turns out, it’s not actually being right about convex

propositions that you care about.

One final note: Which propositions we care about will plausibly vary from context

to context. If you’re hosting a party and trying to figure out how many chairs you

need, you may care a lot about propositions like ‘at most fifteen people will come’

or ‘about fifteen people will come’. If, however, you’re trying to figure out whether

to play a game at your party that will require people to be paired up, you may care

more about propositions like ‘an even number of people will come’. Relative to your

game-planning goal, the metric shouldn’t be the magnitude metric: the world in

which fifteen people come should be regarded as more similar to the world in which

thirteen people come, than to the world in which fourteen people come. We can still

use a disagreement metric for these purposes (let the atomic proposition be ‘an even

number of people will come) and so the results in this article will still apply. So there’s

no problem incorporating the thought that different propositions matter to different

degrees in different contexts—the relevant metric will change as the importance of

propositions changes. So long aswe can capture the resultingmetric as a disagreement

or magnitude metric, everything I’ve said so far will apply. If the metric is more com-

plicated, which in many real-world cases it likely is, I have not proven that propriety
Table 8. Two distributions over a space of world given by the magnitude metric. b and c
swap credences between w3 and w4 with b investing the larger credence in the closer
world and c investing the larger credence in the further world.
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and verisimilitude valuing are compatible (nor has Oddie shown them to be incompat-

ible). But as I said earlier, my hope is to have convinced you that there’s no reason to

expect otherwise. There’s no inherent tension between propriety and verisimilitude.
9. Concluding Thoughts: Accuracy and Practical Value

I’ve argued that proper measures can capture the value of verisimilitude by privileg-

ing certain propositions over others. The key difference between proper and improper

measures on the verisimilitude front is that proper measures care about features of the

way credence is distributed amongst non-actual worlds that aren’t just verisimilitude

related. They also care about evenness of distribution and, in particular, they care

about how evenly credence is distributed amongst the inaccuracy-determining prop-

ositions. Indeed, holding fixed the amount of credence invested in the actual world,

the weighted Brier score cares about only two things: verisimilitude and evenness

across the inaccuracy-determining propositions (this follows fromResult 4), whereas,

holding fixed the amount of credence invested in the actual world, the weighted ab-

solute value score cares only about verisimilitude.

At this point the question naturally becomes: are there good reasons to care about

evenness of distribution?Dunn ([2018]) has argued that there are. I agree, andwant to

add one more reason to the list of reasons we might care about evenness: from a prac-

tical perspective, you’re better off having your credences in falsehoods more evenly

distributed.More precisely: suppose S has a certain amount of credence that she’s go-

ing to invest in the false propositionsP andQ that shemay have to bet on. Supposewe

(who know that P andQ are both false) don’t know what sorts of bets Swill face: we

have a uniform distribution over the possible odds. A result from (Schervish [1989])

(which has been explicated in extremely helpful ways by Levinstein ([2017])) implies

that S is better off dividing whatever sum of credence she is investing in these false-

hoods as evenly as possible. Why? Because (given our ignorance of which bet she’ll

face) the expected amount of money shewill lose from having credence x inP (a false

proposition) is x2=2 (see Levinstein [2017]) and the expected amount of money she

will lose from having credence y in P is y2=2. Thus, holding x 1 y fixed, the quantity

that S will want to minimize is x2 1 y2. x2 1 y2 is minimized when x and y are max-

imally evenly distributed, as defined by Brier entropy.19 So it’s no coincidence that

we care about evenness: we’ll expect agents that distribute more evenly to do better

practically.

But agents who are more verisimilar will also do better practically so long as we

assume that the privileged propositions are the ones that agents are going to bet on

(in the broadest sense of ‘betting’). Take the weather example we started with: if

you go to stores that sells umbrellas (which are useful when it rains) but you don’t
19 For recall, Brier entropy in this case would equal 1 2 ½(x2 1 y2)=(x 1 y)2�, so holding fixed the value of
x 1 y, maximizing evenness amounts to the same thing as minimizing x2 1 y2.
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go to stores that sell objects that are useful in circumstances in which ‘it rains if and

only if it’s not hot’, then, all else equal, we’ll expect the more verisimilar agent to do

better practically.

The weighted Brier score (amongst its many other virtues!) does a good job at

capturing the features that will matter to us practically. For holding fixed the amount

of credence invested in the actual world, the weighted Brier score cares about only

two other things: verisimilitude, and evenness with respect to the privileged propo-

sitions (as defined by Brier entropy). Evenness and verisimilitude are also exactly

the features of a distribution in non-actual worlds that are important practically,

when we’re completely ignorant about which sorts of decisions we’ll face.20
Appendix

Note that the Proximity constraints referred to in the results get stated in the course

of the proofs.

Lemma
The atomic Brier score satisfies Proximity 1.

Proof of Lemma
Let b and c be credence functions defined over a finite set of worlds Q, where the
distance between worlds in Q is given by the disagreement metric. Let wa be any
world in Q and suppose that the multiset {b wð Þjw ∈ Q} can be mapped one-to-
one onto the multiset {c wð Þjw ∈ Q} by the function F as follows:
(a) T

an

(b) b

la

fu

(c) T

ab

ag

on

20 This assumes
on non-privil
need to say s
credence fun
alternative pr
Þ 5 c wð Þ, then F b wð Þð Þ 5 c wð Þ.
wÞ ≠ c wð Þ, then for some world w*, F b wð Þð Þ 5 c w*ð Þ and
*ÞÞ 5 c wð Þ and the following conditions are satisfied:

he distance between w* and wa differs from the distance between w

d wa.

and c’s credences are swapped between w and w*, with b investing the

rger credence in the closer world (to wa) and the smaller credence in the

rther world.

he further of the two worlds (w and w*) from wa disagrees with wa

out all the atomic propositions that the closer of the two worlds dis-

rees with wa about, in addition to disagreeing with wa about at least

e other atomic proposition (hence making it further).
(i) If b wð
(ii) If bð

F b wðð
that we
eged pro
omethin
ction, bu
opositio
’re sure to only be betting on the privileged propositions. Insofar as you might bet
positions like, ‘it’s hot if and only if it doesn’t rain’, but are less likely to do so, we
g more complicated: that being verisimilar will be a pro-tanto practical benefit of a
t one that could, potentially, be outweighed by being sufficiently accurate about
ns (see also the last paragraph of Section 4.1).
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We’ll show that on the weighted Brier score that assigns equal weight to all the

atomic propositions and no weight to any other propositions, b is at least as accurate

as c at wa, and if (ii) holds for at least one w ∈ Q, b is more accurate than c at wa.

Let the falsehoods concerning the atomic propositions at wa be {P1 ::: Pm}. (In

other words, if the atomic propositions are {A1 ::: Am}, then if wa ∈ Ai, Pi 5∼ Ai,

and if wa ∉ Ai then Pi 5 Ai.) The inaccuracy of b at wa on the weighted Brier score

is just the sum of the inaccuracy of b with respect to the Pi.
21

Now, for any such proposition Pi, consider those worlds w in Pi such that b in-

vests a larger credence in w than c does. Call these worlds wi1 ::: wim (the i is just

a reminder that we’re listing worlds that are members of Pi).

So we have that for j ∈ f1 ::: mg, b(wij) > c(wij). We know that for any such wij,

there exists a partner world, which we’ll call w*
ij , such that w*

ij is further from w than

wij is, and which is such that b(wij) 5 c(w*
ij ), and c(wij) 5 b(w*

ij ). Now note that w*
ij

is also a member of Pi. Why? Because w*
ij is the further of the two partners from wa,

and we’ve stipulated that the further world disagrees with wa about all the atomic

propositions that the closer world disagrees with wa about. Since wij ∈ Pi but

wa ∉ Pi, w*
ij must be a member of Pi as well.

Now we’ll order the worlds that are members of Pi as follows: First will come the

pairs of worlds, wij, w*
ij , where b(wij) > c(wij), and then will come all the remaining

worlds which will be such that b(wij) ≤ c(wij).

So,

Il2brier b Pið Þ, wa Pið Þð Þ 5 ½b wi1ð Þ 1 b w*
i1

� �
1 ::: b wimð Þ 1 b w*

im

� �
1 b wi m11ð Þð Þ 1 ::: b wi m1nð Þð Þ�2

:

For j ∈ 1 ::: mf g we can swap b wijð Þ with c w*
ij

� �
and b w*

ij

� �
with c wijð Þ. So b’s in-

accuracy with respect to Pi:

5 c w*
i1

� �
1 c wi1ð Þ 1 ::: c w*

im

� �
1 c wimð Þ 1 b wi m11ð Þð Þ 1 ::: b wi m1nð Þð Þ� �2

:

And recalling that by construction of our ordering, for all j ∈ m 1 1 ::: m 1 nf g,
b wijð Þ ≤ c wijð Þ, we have that the inaccuracy of b Pið Þ at wa is

≤ c w*
i1

� �
1 c wi1ð Þ 1 ::: c w*

im

� �
1 c wimð Þ 1 c wi m11ð Þð Þ 1 ::: c wi m1nð Þð Þ� �2

5 I c Pið Þ, wa Pið Þð Þ:
So, for all Pi, the inaccuracy of b is less than or equal to the inaccuracy of c on the

weighted Brier.

Suppose now that for some world w ∈ Q condition (ii) obtains and b wð Þ ≠ c wð Þ.
Then there exists a partner world for w, w*, such that b and c swap credences between

these worlds with b investing the larger credence in the closer world. Without loss of
21 Note that I’m relying here on the fact that the Brier score is symmetric.
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generality, suppose w* is the further world. Then w* disagrees with wa about all the

atomic propositions that w disagrees with wa about in addition to at least one other

atomic proposition. So let Pz be a falsehood concerning an atomic proposition such

that w* ∈ Pz but w ∉ Pz.

Let’s now think about b’s inaccuracy with respect to Pz. As before we can express

b’s Pz-inaccuracy as:

Il2brierðb Pzð Þ, wa Pzð Þ 5 bðwz1½ Þ 1 b w*
z1

� �
1 ::: b wzmð Þ 1 b w*

zm

� �
1 b wz m11ð Þð Þ 1 ::: b wz m1nð Þð Þ�2:

Since w* ∈ Pz,

w* ∈ wz1, w*
z1 ::: wzm, w*

zm, wz m11ð Þ ::: wz m1nð Þ
� �

:

Note that w* ∉ wz1, wz2 ::: wzmf g. This is because, for all wzj where j ∈ 1 ::: mf g,
b wzjð Þ > c wzjð Þ. However, since w* is the further world of w, w*, and b invests

the smaller credence in the further world b w*ð Þ < c w*ð Þ.
Note also that w* ∉ w*

z1, w*
z2 ::: w*

zm

� �
. For the w*

zj are all partners of the wzj

worlds. This means that if w* 5 w*
zj for some j ∈ 1 ::: mf g, then w*s partner would

be wzj for some j ∈ 1 ::: mf }. But w*’s partner is w, and since w (by assumption) is

not a member of Pz, w can’t equal any such wzj.

It follows that w* ∈ wz m11ð Þ ::: wz m1mð Þ
� �

.

Since we know that b w*ð Þ < c w*ð Þ (w* is the further world), it follows that for

some wzj ∈ wz m11ð Þ ::: wz m1mð Þ
� �

, b wzjð Þ < c wzjð Þ.
Since for all j ∈ m 1 1 ::: m 1 nf g, b wzjð Þ ≤ c wzjð Þ and for some j ∈

m 1 1 ::: m 1 nf g, b wzjð Þ < c wzjð Þ, it follows that

b wz m11ð Þð Þ 1 b wz m12ð Þð Þ 1 ::: b wz m1nð Þð Þ < c wz m11ð Þð Þ 1 c wz m12ð Þð Þ 1 ::: c wz m1nð Þð Þ :

Returning to b’s inaccuracy with respect to Pz, we have:

I b Pzð Þ, wa Pzð Þð 5 ½b wz1ð Þ 1 b w*
z1

� �
1 ::: b wzmð Þ 1 b w*

zm

� �
1 b wz m11ð Þð Þ

1 ::: bðwz m1nð ÞÞ�2 5 ½c w*
z1

� �
1 cðw z1ð Þ 1 ::: c w*

zm

� �
1 c wzmð Þ

1 b wz m11ð Þð Þ 1 ::: b wz m1mð Þð Þ�2 < ½c w*
z1

� �
1 c wz1ð Þ 1 ::: c w*

zm

� �
1 c wzmð Þ 1 c wz m11ð Þð Þ 1 ::: c wz m1mð Þð Þ�2 5 I c Pzð Þ, wa Pzð Þð Þ:

Since for all Pi, b’s inaccuracy with respect to Pi is less than or equal to c’s, but for

some Pi, b’s inaccuracy is less than c’s, it follows that b is less inaccurate than c at wa

on the weighted-Brier.

Result 1
Every global atomic inaccuracy measure derived from a local inaccuracy measure that
satisfies truth-directedness and symmetry satisfies Proximity 1.
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Proof of Result 1
Let g be a strictly increasing function representing the local inaccuracy of a credence
in a falsehood and let this local inaccuracy measure satisfy symmetry.22 Then, in the
proof of the lemma above, simply substitute any expression of the form :::½ �2 with
g :::½ �. □
Result 2
Every global inaccuracy measure that assigns equal weight to all the at-most prop-
ositions and no other propositions, all the at-least propositions and no other propo-
sitions, or both the at-most and at-least propositions and no other propositions, and
that is derived from a local inaccuracy measure that satisfies truth-directedness and
symmetry satisfies Proximity 2.

Proof of Result 2
Let b and c be credence functions defined over a finite set of worlds Q, where the
distance between worlds in Q is given by the magnitude metric. Let wa be any world
in Q and suppose that the multiset {b wið Þjwi ∈ Q} can be mapped one-to-one onto
the multiset {c wið Þjwi ∈ Q} by the function F as follows:
(a

(b

(c

22 Footnote 19
b wið Þ 5 c wið Þ then F b wið Þð Þ 5 c wið Þ.
wið Þ ≠ c wið Þ and there is some world wj, such that the following condi-

ons are satisfied:

) The distance between wj and wa differs from the distance between wi

and wa.

) b and c’s credences are swapped between the twoworlds (wi andwj),

with b investing the larger credence in the closer world (to wa) and

the smaller credence in the further world (from wa).

) i and j are both greater than a, or i and j are both less than a.
(i) If

(ii) b

ti
explains
We’ll show that on a weighted global score that assigns equal weight to the at-most
propositions (propositions of the form ‘there are most m of quantity Q’) and no
others, the at-least propositions (propositions of the form ‘there are at least m of
quantity Q’) and no others, or both, and that is derived from a local score that satis-
fies truth-directness and symmetry, b is at least as accurate as c at wa. If condition (ii)
holds for some wi ∈ Q, b is more accurate than c at wa. This will follow fromResult 1,
and from the fact that we can think of the magnitude metric as a kind of disagreement
metric.
First, note that the distance between any two worlds on the magnitude metric is

equal to the distance between any two worlds on a disagreement metric on which
the atomic propositions are the at-most propositions (see Footnote 9 in the main
text).
Second, note is that if x and y are both greater than a or both less than a (graphi-

cally: wx and wy are both to the right or both to the left of wa), then the further of {wx,
wy} to wa disagrees with wa about all of the at-most propositions that the closer
world disagrees with wa about. Why? Suppose x and y are both greater than a
and, without loss of generality, let x < y. Then wx and wa disagree with one another
the role that symmetry plays in the proof.
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about all propositions of the form ‘there are at most i of quantity Q’when a ≤ i < x.
Similarly, wy and wa disagree with one another about all propositions of the form
‘there are at most i of quantity Q’ when a ≤ i < y. Because y > x, for every i such
that a ≤ i < x, it is also true that a ≤ i < y. Thus, if x and y are both greater than a,
every at-most proposition that wa and wx disagree about is a proposition that wa

and wy disagree about. Parallel reasoning shows that the same holds if wx and wy

are both less than a.
Because the magnitude metric is equivalent to the disagreement metric with the

atomic propositions being the at-most propositions, it follows from Result 1 that
any global inaccuracy measure that satisfies truth-directedness and symmetry, and
that takes as privileged the at-most propositions, satisfies Proximity 2. Similar reason-
ing applies to measures that take as privileged the at-least propositions, and measures
that take both the at-most and the at-least propositions as privileged. □

Result 3
When distance betweenworlds inQ is given by the disagreementmetric, theweighted
absolute value score that assigns equal weight to all the atomic propositions and no
other propositions satisfies Proximity 3.

Proof of Result 3
Suppose that b and c are credence functions defined over a finite set of worlds Q:
{w1 ::: wn} where distance between worlds is given by the disagreement metric
and suppose that b and c invest equal amounts of credence in wa (a world in Q).
For distance d, let Xd be the proposition consisting of all and only worlds that are
at least d units away from wa:

Xd 5 w ∈ QjD w, wað Þ ≥ df g:
We’ll show that on the weighted absolute value score, which assigns equal weight to
all the atomic propositions and no weight to any other propositions, the following
holds:

If for all propositions Xd, b Xdð Þ ≤ c Xdð Þ, but for some Xd, b Xdð Þ < c Xdð Þ then b is
more accurate than c at wa.

Let the falsehoods concerning the atomic propositions at wa be P1 ::: Pmf g. (In
other words, if the atomic propositions are A1 ::: Amf g, then if wa ∈ Ai, Pi 5 ∼ Ai,
and if wa ∉ Ai then Pi 5 Ai.) The inaccuracy of b at wa on the weighted absolute
value score is just the sum of the inaccuracy of b with respect to the Pi:

Iweighted2abv b, wað Þ 5 o
m

i51

b Pið Þ:

Since b(Pi) 5 ow∈Pi
b(w),

Iweighted2abv b, wað Þ 5 o
m

i51

b Pið Þ 5 o
m

i51
o
w∈Pi

b wð Þ:

Now take any world w ∈ Q. Let D w, wað Þ 5 dw Since w is dw units away from wa,
w disagrees with wa about dw atomic propositions. This means that b(w) will show
up dw times in

o
m

i51
o
w∈Pi

b wð Þ,
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once for each Pi that w is a member of. More generally, then, we can say that

Iweighted2abv b, wað Þ 5 o
w∈Q

b wð ÞD w, wað Þ:

Now recall that we’re assuming that for allXd (where Xd is the proposition consisting
of worlds d or more units away from wa) b Xdð Þ ≤ c Xdð Þ. So, where D is the furthest
distance any world is from wa, we know that

o
D

i51

b Xdð Þ ≤ o
D

i51

c Xdð Þ:

Now note that if a world is one unit away from wa, it will show up in exactly one Xd

proposition (where d ranges between 1 andD), namely, X1—the proposition consist-
ing of worlds one or more units away. A world two units away from wawill show up
in exactly two such Xd propositions, namely, the proposition consisting of worlds
that are at least one unit away (X1), and the proposition consisting of worlds that
are at least two units away (X2). In general, for any w, if D w, wað Þ 5 d, then b(w)
will show up in d of the Xd propositions, with d ranging between one and D.

So,

o
D

i51

b Xdð Þ 5 o
w∈Q

b wð ÞD w, wað Þ 5 Iweighted2abv b, wað Þ:

For the same reason,

o
D

i51

c Xdð Þ 5 o
w∈Q

c wð ÞD w, wað Þ 5 Iweighted2abv b, wað Þ:

Since

o
D

i51

b Xdð Þ ≤ o
D

i51

c Xdð Þ,

it follows that

Iweighted2abv b, wað Þ ≤ Iweighted2abv c, wað Þ:
If the inequality is strict, strict inequality follows. □

Result 4
When distance betweenworlds inQ is given by the disagreement metric, the weighted
Brier score that assigns equal weight to all the atomic propositions and no weight to
any other propositions satisfies Proximity 4. When distance between worlds in Q is
given by the magnitude metric, the weighted Brier score that assigns equal weight
to all the at most propositions and no other propositions, all the at least propositions
and no other propositions, or both the at-most and at-least propositions and no other
propositions satisfies Proximity 4.

Proof of Result 4
Suppose that b and c are probability distributions over a finite set of worlds Q, that
wa ∈ Q and that b and c invest equal amount of credence in wa. Suppose also that b
distributes its credence amongst the inaccuracy-determining propositions at wa at
least as evenly as c as defined by Brier-entropy.
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For, distance d, let Xd be the proposition (set of worlds) consisting of all and only
worlds that are at least d units away from wa : Xd 5 w ∈ Qjf D w, wað Þ ≥ dg. We’ll
show that if for all propositions Xd, b Xdð Þ ≤ c Xdð Þ, but for some Xd, b Xdð Þ < c Xdð Þ
then b is more accurate than c at wa.

Let the Fi be the inaccuracy-determining propositions at world wa. By Result 3
and its corollary, we know that b is more accurate than c on the weighted absolute
value score. Thus,

ob Fið Þ < oc Fið Þ:
And so

ob Fið Þ� �2
< oc Fið Þ� �2

:

If b is at least as evenly distributed as c amongst Fi, then

ob Fið Þ2

ob Fið Þ� �2
" #

≥ oc Fið Þ2

oc Fið Þ� �2
" #

:

Since we’ve established that the denominator on the left is less than the denominator
on the right, for b to be at least as evenly distributed as c, the numerator on the right
must be greater than the numerator on the left:

oc Fið Þ2 > ob Fið Þ2:
But the terms on either side of the inequality are just the inaccuracy scores of c and b,
respectively, according to the weighted Brier score at wa. So b is more accurate than
c at wa on the weighted Brier score. □

Result 5
The global Brier score that assigns equal weight to all convex propositions and no
weight to any other propositions satisfies Proximity 5.

Proof of Result 5
Let Q be a finite space of worlds where distance between worlds is given by the mag-
nitude metric. Let wa be a world in Q and let wa1d and wa2d be two worlds that are d
units away fromwa. Suppose b and c are credence functions that invest equal amounts of
credence in wa and that are such that b distributes its credence at least as evenly among
non-waworlds as c does. We’ll show that if b invests all of its non-wa credence in the
worlds that are d units away fromwa and c invests all of its non-wa credence inworlds
that are at least d units from wa, and there is some world in which c invests positive
credence that is more than d units away from wa, b is more accurate than c at wa. Let
b wið Þ 5 bi and c wið Þ 5 ci. Then Q looks like Table 9.
Table 9. Two credence functions, b and c, distributed over a space of worlds where dis-
tance is given by the magnitude metric. Note that b distributes all of its credence in
worlds that are d units away, whereas c distributes some of its credence in a further world.
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We’ll now consider all the convex propositions to which b assigns a non-extreme

credence (that is, the convex propositions to which b does not assign zero or one).

Each such proposition belongs to one of the following four categories:

Category 1: A true proposition to which b assigns ba2d .
Category 2: A false proposition to which b assigns ba2d .
Category 3: A true proposition to which b assigns ba1d .
Category 4: A false proposition to which b assigns ba1d .

We’ll first show that there is a one-to-one mapping between convex propositions in

Categories 1 and 2, as well as a one-to-one mapping between convex propositions

in Categories 3 and 4.

Take any proposition in Category 1. Such a proposition will be a set of worlds

[wa2d2j, wa1k] for some 0 ≤ j < a 2 d and for some 0 ≤ k < d. Each such proposi-

tion gets mapped to a convex proposition in Category 2.Which one? The proposition

with the same left-hand border as the Category 1 proposition, but to turn the propo-

sition from a true one into a false one, the right-hand border, instead of being k units to

the right of wa, is k units to the left of wa. For example, see Table 10. In other words,

the Category 1 proposition [wa2d2j, wa1k] gets mapped on to the Category 2 proposi-

tion: [wa2d2j, wa2k]. We’ll call these two propositions ‘partners’. The partners of the

propositions in Category 1 exhaust the propositions in Category 2.

Now take any proposition in Category 3: A true proposition to which b assigns

ba1d. Such a proposition will be a set of worlds [wa2j, wa1d1k] for some 0 ≤ j < d,

and for some 0 ≤ k ≤ n 2 a 1 dð Þ. Each such proposition gets mapped to a convex

proposition in Category 4. Which one? One with the same right-hand border as the

Category 3 proposition, but to turn the proposition from true to false, the left-hand

border, instead of being j units to the left of wa, will be j units to the right of wa (see

Table 11). In other words, the Category 3 proposition [wa2j, wa1d1k] gets mapped

on to the Category 4 proposition: [wa1j, wa1d1k]. We’ll call these two propositions

‘partners’. The partners of the propositions in Category 3 exhaust the propositions

in Category 4.

Now, if we take any Category 1 proposition, P (which, recall, is true), b’s inac-

curacy with respect to P is ba1d
2. Why? Because the only world that is not in the true

proposition P that b assigns positive credence to is wa1d.

If we take the partner proposition of P, which is the false proposition P0, b’s in-

accuracy with respect to P0 is ba2d
2. Why? Because the only world in the false prop-

osition P0 that b assigns positive credence to is wa2d .

Similarly, for Categories 3 and 4, b’s inaccuracy with respect to Category 3 prop-

osition, P, is ba2d
2. And b’s inaccuracy with respect to its partner in Category 4 is

ba1d
2.

So for all propositions P in Categories 1–4:

Il2brier b Pð Þ, wa Pð Þð Þ 1 Il2brier b P0ð Þ, wa P0ð Þð Þ 5 ba2d
2 1 ba1d

2:
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Because of all the n worlds in the space, b only invests positive credence in wa2d

and wa1d

b2
a2d 1 b2

a1d 5 o
n

i51

b2
i :

From the above two equations, it follows that

Il2brier b Pð Þ, wa Pð Þð Þ 1 Il2brier b P0ð Þ, wa P0ð Þð Þ 5 o
n

i51

b2
i :

Let’s now consider c’s inaccuracy score with respect to convex propositions.

Take a proposition P in Category 1: [wa2d2j, wa1k] for some 0 ≤ j < a 2 d, and

for some 0 ≤ k < d. Since this proposition is true at wa, the credences that contribute

to c’s inaccuracy with respect to this proposition are all the positive credences in-

vested in worlds that are not members of this set: worlds in [w1, wa2d2j21] as well

as in the worlds in [wa1k11, wn]. However, since we’re assuming that k < d and that

c invests no positive credence in worlds that are fewer than d units away from wa, it

follows that c invests no positive credence in [wa1k11, wa1d21]. Thus the worlds in

[wa1k11, wn] that contribute to c’s inaccuracy are all members of [wa1d, wn], and

so the worlds that contribute to c’s inaccuracy in Q are those in: [w1, wa2d2j21]

and [wa1d , wn].

Now consider this proposition’s partner P0 (in Category 2): [wa2d2j, wa2k]. Since

this proposition is false, the credences that contribute to c’s inaccuracy with respect

to that proposition are the positive credences invested in worlds that are members of

this set. Since c doesn’t invest any credence in worlds that are less than d units away

from w, it doesn’t invest any credence in worlds in [wa2d11, wa2k]. Thus, the cre-

dences that contribute to c’s inaccuracy with respect to this proposition will be

the worlds in [wa2d2j, wa2d]. So looking at the inaccuracy of P and P0 we have:

Il2brier c Pð Þ, w Pð Þð Þ 5 o
a2d2j21

i51

ci 1 o
n

i5a1d

ci

� 	2

> o
a2d2j21

i51

c2i 1 o
n

i5a1d

c2i

� 	

Il2brier c P0ð Þ, w P0ð Þð Þ 5 o
a2d

i5a2d2j

ci

 !2

:

It follows that

Il2brier c Pð Þ, w Pð Þð Þ 1 Il2brier c P0ð Þ, w P0ð Þð Þ > o
a2d2j21

i5a

c2i 1 o
n

i5a1d

c2i 1 o
a2d

i5a2d2j

c2i :

Reordering (and noting that for all i ∈ a 2 d, a 1 dð Þ, ci 5 0):

5 o
a2d2j21

i51

c2i 1 o
a2d

i5a2d2j

c2i 1 o
n

i5a1d

c2i 5 o
n

i51

c2i :
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Thus,

Il2brier c Pð Þ, w Pð Þð Þ 1 Il2brier c P0ð Þ, w P0ð Þð Þ > o
n

i21

c2i :

So here’s where we are: For each proposition P, in our first two categories, the sum

of the inaccuracy scores of bwith respect to P, and with respect to its partner P0 is the

sumof the b2
i , whereas the sum of the inaccuracy scores of cwith respect toP andwith

respect to its partner P0 is greater than the sum of the ci2. Since b is at least as evenly

distributed as c, we know that

1 2 on
i51b wið Þ2

on
i51b wið Þ� �2

" #
≥ 1 2 on

i51c wið Þ2

on
i51c wið Þ� �2

" #
:

Since ob wið Þ 5 oc wið Þ 5 1, it follows that ob2
i ≤ oc2i .

Since the inaccuracy of b with respect to P and P0 5 ob2
i , and the inaccuracy of c

with respect to P and P0 is greater than oc2i , it follows from the fact that ob2
i ≤ oc2i ,

that b’s inaccuracy with respect to these two propositions is greater than c’s inaccu-

racy with respect to these two propositions.

An analogous argument applies to propositions in the Categories 3 and 4. Thus, b’s

total inaccuracywith respect to all the propositions in these four categories is less than

c’s total inaccuracy with respect to all the propositions in these four categories.

It remains to consider convex propositions to which b assigns a credence of one or

zero. There are three categories:

Category 5: True convex propositions to which b assigns a credence of one.
Category 6: True convex propositions to which b assigns a credence of zero.
Category 7: False convex propositions to which b assigns a credence of zero.

Note that there are no false convex propositions to which b assigns a credence of

one.

Let’s compare b and c’s inaccuracy with respect to propositions in each of these

three categories. Every proposition in Category 5 is a true proposition to which b as-

signs a credence of one, and so b gets inaccuracy a score of zero with respect to these

propositions. Some of these propositions will be ones such that c assigns a credence

of one to them as well. But there will be at least one proposition to which b assigns a

credence of one and which is such that c assigns credence less than one. For example:

the proposition [wa2d, wa1d] is one to which b assigns a credence of one, but c assigns

credence less than one (since c invests at least some positive credence in worlds that

more than d units away from wa).

Every proposition in Category 6 is a true proposition to which b assigns a credence

of zero, and so b gets inaccuracy score one with respect to these propositions. Each

such proposition is one that c also assigns a credence of zero to (since c doesn’t invest

any credence in worlds that are less than d units away fromwa). Thus, b and c tie with

respect to each proposition in this category.
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Finally, let’s consider Category 7: false propositions to which b assigns a credence

of zero, and so gets inaccuracy a score of zero. Some of these propositions may be

ones to which c also assigns zero. But there will be at least one false proposition such

that b assigns a credence of zero to it, and to which c assigns positive credence. Con-

sider a world in which c assigns positive credence that is more than d units away from

wa, and call it ‘wa1d1m’. The proposition {wa1d1m} will be a false convex proposition

to which b assigns a credence of zero and c assigns positive credence.

Since across each of Categories 5 and 7, b is less inaccurate than c at wa and across

Category 6, b and c are equally accurate, if we consider b’s inaccuracy across prop-

ositions in Categories 5–7, b will be less inaccurate than c at wa. We already estab-

lished that b is less inaccurate than c across Categories 1–4. Since Categories 1–7

exhaust all the convex propositions, b is less inaccurate than c at wa on the weighted

Brier score that assigns equal weight to all the convex propositions and no weight to

any other propositions. □
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