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Abstract

We introduce a new theorem in social choice theory built on a path integral
approach which will show that, under some reasonable conditions, there is a
unique way to aggregate individual preferences based on fuzzy sets into a social
preference based on probabilities, and that this way is invariant under any per-
mutation of alternatives. We then apply this theorem to the case of democratic
decision making with data of the behaviour and voting preferences of voting
agents and show that there is a tradeoff between fairness and efficiency and that
no voting system can achieve both simultaneously.

1 Introduction

In this day and age, we often hear about how democracy is the best political system
because of its promises such that it will give equal representation to the individuals who
interact within its system. Even with all of these promises which appear to be good to
the eyes of many, democracy faces many challenges and criticisms, including majority
tyranny, electoral conflict, and the influence of finance and media on public opinion. It
is in social choice theory, the field which examines how individual choices or collective
decisions are made to produce decisions or outcomes, where we see some of the main
criticisms of democracy. Social choice theory proposes that many choices or pathways
of social selection are either going to turn out to be wrong or impossible under certain
circumstances. Just as an example, Arrow’s theorem states that no simultaneous voting
can reach consensus, regardless of other non-uniform, non-controlling, and unrestricted
alternatives. These are some of the necessary criteria for fair and effective political
elections, but they are from social choice theory we see that these become inconsistent
and one thence could question whether the framework of democracy is consistent. Here
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we propose a new theorem that questions the logical structure of democracy from a
quantum social scientist’s point of view through a fuzzy scope.

2 Quantum Framework

Theorem 1. Let X be a compact Hausdorff space and F be a fuzzy set on X. Suppose
that F is invariant under a quantum group action of G on X. Then there exists a
unique probability measure µ on X such that µ(F ) = 1 and µ is also invariant under
the action of G.

Proof of Theorem 1. We will start the proof by using the path integral approach to
supersymmetric quantummechanics and topology. Consider the supersymmetric quan-
tum mechanical model with target space X, Hilbert space L2 (X), and Hamiltonian
H = −∆ + V , where ∆ is the Laplace-Beltrami operator and V is a potential func-
tion. We assume that H commutes with the action of G, so that the Hilbert space
decomposes into irreducible representations of G. We also assume that there exists a
supersymmetry operator Q such that Q2 = H,Q† = Q, and [Q,H] = 0. Then the
partition function of the model is given by

Z =

∫
P

e−SDxDψ (1)

where P is the space of paths on X, DxDψ is the path integral measure, and S is the
action functional. We can rewrite the action as

S =

∫ 1

0

dt

(
Qψ† +

1

2
x− iQx

)2

+Q

∫ 1

0

dt
(
ψ†V (x)− iV (x)x

)
(2)

By using the invariance of the measure under supersymmetry transformations, we
are able to perform a mutation of variables in order to eliminate the quadratic term
in the action. This leads to:

Z = e−W

∫
P

e−QS0DxDψ (3)

whereW = − logZ0 is the Witten index of the model, and S0 is the topological action

S0 =

∫ 1

0

dt
(
ψ†V (x)− iV (x)x

)
(4)

By supersymmetric localisation, the path integral localises to the fixed points of Q,
which are precisely the critical points of V. Let {xi} be the set of critical points of V,
and let λi be their corresponding eigenvalues of H. Proceeding, we then acquire:

Z = e−W
∑
i

eλiIi (5)
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where Ii are one-loop determinants around the fixed points. By using the Atiyah-Bott
localisation formula, we can then express these determinants as the following:

Ii =
Pfaff

(
Q|TxiX

)
√

det′
(
H|Txi

X

) (6)

where Pfaff denotes the Pfaffian, and det′ denotes the determinate that lacks zero
modes. Since Q2 = H, we acquire Pfaff(Q|Txi

X) = (det′(H|TxtX
))

1
2 , and thus we get:

Ii = 1 (7)

Henceforth we will now use a fuzzy set function on X which will assign a degree
of membership within a fuzzy set F to each point x ∈ X. We are to first hold the
assumption that this function is invariant under the action of G, so that it defines
a class function on the irreducible representations of G. In this way, we are able to
subsequently define a twisted partition function with the insertion of this function into
the path integral as follows:

ZF = e−W

∫
P

F (x(1))e−QS0DxDψ (8)

With the same localisation argument that we have used prior, we can now write this
as:

ZF = e−W
∑
i

F (xi)e
−λi (9)

We should be interpreting this twisted partition function as a probability measure
on the set of the critical points of V , where the probability of xi is proportional to
F (xi)e

−λi. We can normalise this measure by dividing by Z, and thus we acquire the
quotient:

µF (xi) =
F (xi) e

−λi∑
j F (xj) e−λj

. (10)

We now have a well-defined probability measure on the set of the critical points of
V which also happens to satisfy µF (F ) = 1 by the construction. It is also good to
note that while under the action of G, it is invariant, for since on the irreducible
representations of G both F and e−λi are class functions. We should also extend this
probability measure to the whole space X and to do that we will have to use the fuzzy
integral which is the Lebesgue integral’s generalisation and this allows us to integrate
fuzzy sets with respect to fuzzy measures. The fuzzy set A with respect to a fuzzy
measure v will have a fuzzy integral that is defined as:∫

Adv = sup
x∈X

min(A(x), v(x)) (11)
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Now because of sup and min this means intuitively that the fuzzy integral is the largest
value that both A and v may attain on X. With the usage of this fuzzy integral, we
may define a probability measure µ on X by setting

µ(A) =

∫
AdµF ′ (12)

where A is any Borel subset of X. This is a well-defined probability measure, since it
satisfies the axioms of probability. It also agrees with µF on the set of critical points
of V , since for any xi, we have:

µ({xi}) =
∫

{xi} dµF = sup
x∈X

min(F (x), µF (X)) = 1 (13)

where the last equality follows from the fact that µF (F ) = 1. Finally, it is invariant
under the action of G, since both F and µF are invariant under the action of G. There-
fore, we have constructed a probability measure µ on X that satisfies the properties of
fuzzy integrals. To prove the uniqueness of µ, suppose that there exists another prob-
ability measure v on X that satisfies v(F ) = 1 and v under the action of G happens
to be invariant. Then we have

v(A) = v(A ∩ F ) + v(A ∩ F c) = v(A ∩ F ) (14)

where F c denotes the complement of F . This now implies that v(A) = 0 for another
Borel subset A of X that does not intersect F . Particularly, this means that v({xi})
for any critical point xi that does not belong to F . On the other hand however, for
any critical point xi that belongs to F , we have:

v ({xi}) =
v ({xi})
v(F )

=
v ({xi})∑

j F (xj)e
−λj

(15)

in which we have used the fact that v(F ) = Zf . When comparing this expression
for µ ({xi}), we are able to see that they must indeed be equal, for since they are
both normalised probabilities on the same finite set. Therefore, we acquire v({xi}) =
µ({xi}) for all critical points xi of V . Since we now see that v and µ are probability
measures on X, they must therefore agree on every single Borel subset of our whole
space X, as per the uniqueness of extension theorem. As such, we now finally hold
that v = µ and thus the theorem has been proven.

3 Voting System Integration

Now that we have proven the first theorem, we are ready to move on and integrate
a voting system which will have its foundations based on the first theorem. Firstly,
we should make some assumptions such as that the set of alternatives X represents
the possible outcomes of a democratic decision, such as electing a new leader, passing
laws, or choosing a national policy. Also, the voters would have fuzzy preferences over
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the alternatives, meaning that they do not necessarily have a strict ranking of the
alternatives rather assigning degrees of membership to each alternative that happens
to be within a fuzzy set F . As the degree of membership becomes higher, so too does
the alternative’s preferability. Since we are constructing this voting system on the
first theorem, the voting system in this context is now meant to be aggregating the
individual preferences based on F into a social preference based on m, in which we
recall that m is the probability measure which we constructed earlier in the theorem.

We will say that a democratic decision is fair if it is true that it respects the voters’
preferences, that is, if the social preference agrees with the majority of the indivdiual
preferences. We will also say that such a democratic decision is to be deemed efficient
if it is also true that the expected utility of the society turns out to be maximised by
that democratic decision, that is, if the social preference, with the highest probability
according to µ, chooses the alternative. We can now begin our attempt which will show
that democracy is flawed by its nature in due of which a trade-off does indeed exist
between efficiency and fairness, and that there would be no possible voting system
which is able to overcome this tradeoff.
Theorem 2. Let X be a finite set of policy positions that exist within a left-right scale,
and F be a fuzzy set function on X. Suppose that there is some voting system that
exists in which anonymity, neutrality, unanimity, and the decision theory axom IIA,
and that maps any profile of individual preferences based on F to a social preference
based on µ, in which µ is the probability measure from Theorem 1. Then µ is also
invariant under the action of Sn and it is also unique up to a multiplicative constant.

Proof of Theorem 2. Let us first assume that the set of options X is finite and that
it also consists of n alternatives, which would be denoted by x1, x2, ...xn. Assume also
that the quantum group G is the symmetric group Sn which, by the permutation of
n alternatives, acts on X.

Definition 1. A voting system is a function which maps a profile of individual pref-
erences over X to a social preference over X. A profile of individual preferences is
a list of preference oders over X, one for each voter. A preference order over X is
a complete, transitive, and antisymmetric binary relation on X. A social preference
over X is also a preference order of X.

Definition 2. A voting system satisfies anonymity if all voters have been treated
equally, that is, the voters are permuted within a profile in which the social preference
does not change.

Definition 3. A voting system satisfies neutrality if all alternatives are equally treated,
so applying any permutation in Sn to both the profile and the social preference does
not result in the social preference being changed

Now note that anonymity implies that the fuzzy set function F is invariant under
any permutation of the voters and also that neutrality implies that it is invariant
under any permutation of the alternatives. By one of the assumptions we made, we
then conclude that F is invariant under the action of Sn. In order for us to see this, let
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σ be any permutation of the voters, and let τ be any permutation of the alternatives.
Then for any voter v and any alternative x, we hold have the equation:

F (σ)(v), τ(x)) = F (v, x) (16)

since applying σ to v does not change their preference order over X, and applying τ
to x does not change its position on the left-right scale. Secondly, note that unanimity
implies that µ(F ) = 1, since if all voters have a preference for xi to all the other
alternatives, then µ({xi}). Let’s look at this a bit closer by first supposing that for
some i, we have

F (v, xi) = 1 (17)

for all voters v. This would then mean that all voters assign full membership to xi in
their fuzzy set of preferred policies. By the definition of µ, we have:

µ({xi}) =
∑

v F (v, xi)e
−λi∑

j

∑
v F (v, xj)e

−λj
=

e−λj∑
j e

−λj
(18)

in which we used the fact that
∑

v F (v, xi) = 1 and also that
∑

v F (v, xj) = 0 for all
j ̸= i. Now since

∑
j e

−λj > 0, we have µ({xi}) = 1. Thus by the definition of µ(F ),
we now have:

µ(F ) = sup
x∈X

(
∑
v

(F (v, x)− F c(v, x))) (19)

in which the complement of F , that being F c, assigns to each element its degree of
non-membership in F . Since F (v, xi) = 1 amd F c(v, xi) = 0 for all voters v, we then
have:

µ(F ) ≥
∑
v

(F (v, xi)− F c(v, xi)) = 1 (20)

On the contrary, because µ(F ) is a probability measure, then we also have:

µ(F ) ≤ 1 (21)

We therefore now conclude with the fact that µ(F ) = 1.

We must thirdly note that IIA implies that µ is only dependent on the eigenvalues
λi of the Hamiltonian H because changing the relative ranking of two alternatives
that are not xi or xj does not affect their eigenvalues. Suppose that for some voters
v1 and v2 and some alternatives xk and xl, we have the following:

F (v1, xk) > F (v1, xl) (22)

and
F (v2, xk) < F (v2, xl) (23)

What this tells us it that the voter v1 would prefer xk to xl while voter v2 would instead
prefer xl to xk. Suppose that their preferences are changed by us through swapping
their degrees of membership for these two alternatives, that is in which we set:

F ′(v1, xk) = F (v2, xk) (24)
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and
F ′(v1, xl) = F (v2, xl) (25)

and also vice versa. So now this means that voter v1 would prefer xl to xk and voter v2
now holds the preference of xk to xl. We keep their preferences for all other alternatives
unchanges by setting:

F ′(v1, xm) = F (v1, xm) (26)

and
F ′(v2, xm) = F (v2, xm) (27)

for all m ̸= k, l. This is a change in the relative ranking of two alternatives that are
not xi or xj , where i, j ̸= k, l. By IIA, this change should not be able to affect the
relative ranking of xi and xj in the social preference. Therefore, the equation that we
will have should be:

µ′({xi}) = µ({xi}) (28)

and
µ′({xj}) = µ({xj}) (29)

in which µ′ is the probability measure that is constructed from F ′. Although by the
definition of µ we then have:

µ′({xi}) =
∑

v F
′(v, xi)e

−λi∑
m

∑
v F

′(v, xm)e−λi
(30)

and

µ′({xj}) =
∑

v F
′(v, xj)e

−λi∑
m

∑
v F

′(v, xm)e−λj
(31)

Due to the fact that we only changed the preferences of two voters for two alternatives,
we are thus able to write these expressions as:

µ′ ({xi}) =
∑

v ̸=v1,v2
F (v, xi)e

−λi + F ′(v1, xi)e
−λi + F ′(v2, xi)e

−λi∑
m

∑
v ̸=v1,v2

F (v, xm)e−λm + F ′(v1, xm)e−λm + F ′(v2, xm)e−λm
(32)

along with

µ′ ({xj}) =
∑

v ̸=v1,v2
F (v, xj)e

−λj + F ′(v1, xj)e
−λj + F ′(v2, xj)e

−λj∑
m

∑
v ̸=v1,v2

F (v, xm)e−λm + F ′(v1, xm)e−λm + F ′(v2, xm)e−λm
(33)

Indeed because we have F ′(v1, xk) = F (v2, xk) and F ′(v2, xk) = F (v1, xk) for all k,
we may proceed by simplifying those expressions to become the following:

µ′ ({xi}) =
∑

v F (v, xi)e
−λi∑

m

∑
v F (v, xm)e−λm

(34)

and

µ′ ({xj}) =
∑

v F (v, xj)e
−λj∑

m

∑
v F (v, xm)e−λm

(35)
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Let us now suppose that five policy positions within a left and right scale exist. These
will be denoted by the variables x1, x2, x3, x4, x5, in which x1 is the most left-wing
while x5 indicates the most right-wing. Suppose then that three voting agents exist:
v1, v2, v3. Their fuzzy preferences are given by the table:

These voters will hold different fuzzy preferences over the five different policy posi-
tions. The table that we have constructed represents the degree of membership for
every policy position in the fuzzy set of preferred policies that corresponds to each
voter. For an example, we see that voter v1 holds a greater preference to policies
considered left-wing rather than those considered right-wing, and thus assigns a high
degree of membership to x1 while assigning a low degree to x5. Voter v2 holds prefer-
ences that are considered moderate and so he assigns similar degrees of membership
for all of the policy positions. Voter v3 is more in preference of policies that are right-
wing than left, so he assigns a high degree of membership to x5 but a low degree of
membership to x1. We have the advantage that uncertainty and ambiguity within the
voter preferences can be analysed more easily than by preferences that are ordinal or
cardinal.

Suppose that the eigenvalues of the Hamiltonian H are given by λ1 = 0.1 , λ2 = 0.2
, λ3 = 0.3, λ4 = 0.4, and λ5 = 0.5. By using the formula for µ, we obtain:

µ ({x1}) =
0.9e−0.1 + 0.6e−0.1 + 0.2e−0.1

Z
≈ 0.28 (36)

µ ({x2}) =
0.8e−0.2 + 0.7e−0.2 + 0.4e−0.2

Z
≈ 0.25 (37)

µ ({x3}) =
0.6e−0.3 + 0.8e−0.3 + 0.6e−0.3

Z
≈ 0.22 (38)

µ ({x4}) =
0.4e−0.4 + 0.7e−0.4 + 0.8e−0.4

Z
≈ 0.15 (39)

µ ({x5}) =
0.2e−0.5 + 0.6e−0.5 + 0.9e−0.5

Z
≈ 0.10 (40)

where Z is the normalisation constant.
Suppose now that this voting system chooses the alternative with the highest

probability according to µ. Then because of that, it will choose x1 since . It is indeed
the case that this decision is efficient for it maximises the expected utility of the
society, but the problem with this case is that there is no fairness since µ = ({x1}) >
µ = ({x2}) > µ = ({x3}) > µ = ({x4}) > µ = ({x5}) . The preferences of the
voters is not respected. In fact, only one voter (v1) holds a preference for x1 to all
other alternatives, while two voters (v2, v3) would rather prefer x3 to x1, and there

Table 1 Voter-Policy Preference

Voter x1 x2 x3 x4 x5

v1 0.9 0.8 0.6 0.4 0.2
v2 0.6 0.7 0.8 0.7 0.6
v3 0.2 0.4 0.9 0.8 0.9
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is just one voter (v3) who prefers x5 to x1. Therefore, the majority rule is violated
by this decision. By contrast, suppose that the alternative with the highest degree
of membership in F is chosen by the voting system. Then it will choose x2, since
F (x2) = 0.8 > F (x1) = F (x3) = 0.6 > F (x4) >= F (x5) = 0.4. The decision made
by the voting system here is indeed fair because the voters’ preferences are respected,
but efficiency has not been satisfied. That is because the society’s expected utility has
not been maximised. Since also µ = ({x2}) < µ = ({x1}), choosing x2 would then
mean that its probability of being optimal than choosing x1 would be lower. Thus,
the welfare of the society for the sake of the satisfaction of the preferences of voters
has been sacrificed. We see indeed that the trade-off occurs and both fairness and
efficiency cannot be guaranteed as both desirable properties for a social choice by the
democratic framework.

4 Reconceptualisation

It is possible that we may consider fuzzy preferences that do not hold invariancy under
the action of G, but rather having a dependence on some variables or parameters that
G happens to act upon. We could consider, for example, fuzzy preferences that depend
on the location, social status, or the time of the voting agents, and assume that G is a
group of transformations that has the ability to mutate these parameters or variables.
What could be done then is finding a probability measure m that is invariant under
the action of G and that which also satisfies further conditions, such as µ(F ) = 1 or
µ(A) =

∫
AdµF . This would be a more realistic and also flexible way for the modelling

of preferences that vary with different circumstances and factors. In regards to both
of our theorems, it might be better to consider various types of fuzzy sets and fuzzy
measures, like intuitionistic fuzzy sets, hesistant fuzzy sets, type-2 fuzzy sets, and so
forth. Such extensions of the classical fuzzy sets make it more easy for ambiguity
and uncertainty to occur within the degrees of membership and the fuzzy measures.
Intuitionistic fuzzy sets assign, not just a degree of membership, but a degree non-
membership as well to each element and those may not add up to 1. Type-2 fuzzy
sets assign fuzzy sets of degrees of memberships rather than a singular value to each
element. Hesitant fuzzy sets, on the other hand, assign a set of possible degrees of
membership, instead of a single value. Such variations of fuzzy sets and measures have
the ability to make observations about even more complex or nuanced preferences and
judgements about objects. Let us now see what we may do with these variations in
regards to both of the theorems that we have proven. First of all, we would have to
modify the definitions and assumptions that both of the original theorems adhere to.
In Theorem 1, the classical fuzzy set F should be replaced by the intuistionic fuzzy
set F ∗, in which two membership functions µF and vF define it, such that for each
x ∈ X, we have:

0 ≤ µF (x) ≤ 1 (41)

0 ≤ vf (X) ≤ 1, µF (X) + vF (X) ≤ 1 (42)

µF (X) + vF (X) ≤ 1 (43)

We see here that µF (x) represents the degree of membership associated to x in F ∗

whereas vF (X) represents the degree of non-membership associated to x in F ∗. We
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would now also need to assume that F ∗ holds invariancy under the Hopf algebra action
of H on X, meaning that for any h ∈ H and any x ∈ X, we have:

µF (h · x) = µF (x) (44)

vF (h · x) = vF (x) (45)

We would then need to find a probability measure µ on X that is able to satisfy some
conditions, such as µ(F ′) = 1, where µ(F ∗) is defined as

µ(F ∗) = sup
x∈X

(µF (x)− vF (x)) (46)

which generalises the classical definition of µ(F )
Now, regarding Theorem 2, we would in a similar way replace the classical fuzzy

set function F with an intuitionistic fuzzy set function F ∗, where the two membership
functions µF and vf define it, such that for each voter v and each alternative x, we
are now in acquisition of:

0 ≤ µF (v, x) ≤ 1 (47)

0 ≤ vF (v, x) ≤ 1 (48)

µF (v, x) + vF (v, x) ≤ 1 (49)

Where µF (v, x) represents the degree of membership of x in F ∗(v) while vF (v, x)
represents the degree of non-membership of x in F ∗(v). An assumption should be held
in which some criteria for a voting system, such as anonymity, neutrality, unanimity,
and IIA, are satisfied by F ∗. A probability measure µ on X that satisfies conditions
such as µ(F ∗) = 1 should be found, where µ(F ∗) is defined as:

µ(F ∗) = sup
x∈X

(∑
v

(µF (v, x)− vf (v, x)))

)
(50)

which generalises the classical definition of µ(F ).

5 Discussion

In this paper, we investigated whether there is a unique and invariant way to aggre-
gate individual preferences based on fuzzy sets into a social preference based on
probabilities. We found that, under some reasonable conditions, such a way exists.

Our results support the idea that fuzzy sets can provide a more realistic and flexible
representation of individual preferences than ordinal or cardinal utilities. They also
show that the path integral approach, which is inspired by techniques from topological
supersymmetric quantum mechanics, can be applied to social choice theory and yield
interesting insights. We have extended the results of Arrow (1951) and Sen (1970) by
relaxing some of their assumptions and allowing for more diversity and uncertainty in
the preferences.

The results that we have found also indicate that probabilistic social preferences
have the ability to analyse uncertainty and information much more easily than social
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preferences that are deterministic, but they may also be more difficult to elicit and
communicate. Furthermore, our findings raise some ethical questions about how to
respect individual preferences while ensuring social welfare.

The study, however, also has some limitations that need to be acknowledged. We
used a path integral approach that relies on some mathematical assumptions and
approximations that may not hold in all cases. We also did not consider the effects
of strategic behavior, manipulation or external influences on the preferences or the
voting outcomes.

6 Conclusion

We have presented a new theorem in social choice theory that has indeed shown that
there is a unique and invariant way to aggregate individual preferences based on fuzzy
sets into a social preference based on probabilities, and that this way is given by a path
integral approach. Thence we also observed the tradeoff within the democratic system
in action. Our study also has practical implications for designing and evaluating voting
systems that can account for more information and uncertainty in the preferences.

Based on what we have gathered through our results and an analysis on the limita-
tions that we approached, we recommend several directions for future research. First,
it would be interesting to test our theorem with a large amount of data from surveys
or experiments, and to compare the outcomes of different voting systems based on
fuzzy sets and probabilities. It would also be useful to explore other ways to construct
fuzzy sets from individual preferences, such by the utilisation of linguistic variables or
membership functions. It would be important to investigate how to elicit and commu-
nicate probabilistic social preferences in a clear and transparent way, and to examine
how they affect the behavior and satisfaction of voting agents.

References

[1] Richardson, G.: The structure of fuzzy preferences: Social choice implications.
Social Choice and Welfare 15(3), 359–369 (1998). Accessed 2023-07-09

[2] Jenke, L., Huettel, S.A.: Voter preferences reflect a competition between policy
and identity. Frontiers in Psychology 11 (2020) https://doi.org/10.3389/fpsyg.
2020.566020

[3] Mordeson, J., Malik, D., Clark, T.: Application of Fuzzy Logic to Social Choice
Theory, pp. 1–333 (2015). https://doi.org/10.1201/b18155

[4] Carqueville, N., Runkel, I.: Introductory lectures on topological quantum field
theory (2017) https://doi.org/10.4064/bc114-1 arXiv:1705.05734

[5] Wasay, M.A.: Supersymmetric quantum mechanics and topology (2016) https:
//doi.org/10.1155/2016/3906746 arXiv:1603.07691

[6] Pattanaik, P.K.: In: Kacprzyk, J., Nurmi, H., Fedrizzi, M. (eds.) Fuzziness

11

https://doi.org/10.3389/fpsyg.2020.566020
https://doi.org/10.3389/fpsyg.2020.566020
https://doi.org/10.1201/b18155
https://doi.org/10.4064/bc114-1
https://arxiv.org/abs/arXiv:1705.05734
https://doi.org/10.1155/2016/3906746
https://doi.org/10.1155/2016/3906746
https://arxiv.org/abs/arXiv:1603.07691


and the Normative Theory of Social Choice, pp. 17–27. Springer, Boston, MA
(1997). https://doi.org/10.1007/978-1-4615-6333-4 2 . https://doi.org/10.1007/
978-1-4615-6333-4 2

[7] Diss, M. European Journal of Operational Research 245(1), 341–342 (2015) https:
//doi.org/10.1016/j.ejor.2015.02.036

[8] List, C.: Social Choice Theory. In: Zalta, E.N., Nodelman, U. (eds.) The Stan-
ford Encyclopedia of Philosophy, Winter 2022 edn. Metaphysics Research Lab,
Stanford University, ??? (2022)

[9] Arrow, K.J.: Social Choice and Individual Values. Yale University Press, ???
(2012). http://www.jstor.org/stable/j.ctt1nqb90 Accessed 2023-07-09

[10] Tanino, T.: Fuzzy preference orderings in group decision making. Fuzzy Sets and
Systems 12(2), 117–131 (1984) https://doi.org/10.1016/0165-0114(84)90032-0

[11] Nurmi, H., Kacprzyk, J.: In: Fodor, J., De Baets, B., Perny, P. (eds.) Social
Choice under Fuzziness: A Perspective, pp. 107–130. Physica-Verlag HD, Heidel-
berg (2000). https://doi.org/10.1007/978-3-7908-1848-2 7 . https://doi.org/10.
1007/978-3-7908-1848-2 7

[12] Dasgupta, M., Deb, R.: Fuzzy choice functions. Social Choice and Welfare 8(2),
171–182 (1991). Accessed 2023-07-09

[13] Dutta, B., Panda, S.C., Pattanaik, P.K.: Exact choice and fuzzy preferences.
Mathematical Social Sciences 11(1), 53–68 (1986) https://doi.org/10.1016/
0165-4896(86)90004-1

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

12

https://doi.org/10.1007/978-1-4615-6333-4_2
https://doi.org/10.1007/978-1-4615-6333-4_2
https://doi.org/10.1007/978-1-4615-6333-4_2
https://doi.org/10.1016/j.ejor.2015.02.036
https://doi.org/10.1016/j.ejor.2015.02.036
http://www.jstor.org/stable/j.ctt1nqb90
https://doi.org/10.1016/0165-0114(84)90032-0
https://doi.org/10.1007/978-3-7908-1848-2_7
https://doi.org/10.1007/978-3-7908-1848-2_7
https://doi.org/10.1007/978-3-7908-1848-2_7
https://doi.org/10.1016/0165-4896(86)90004-1
https://doi.org/10.1016/0165-4896(86)90004-1

	Introduction
	Quantum Framework
	Voting System Integration
	Reconceptualisation
	Discussion
	Conclusion

