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ABSTRACT LOGIC OF OPPOSITIONS

Abstract. A general theory of logical oppositions is proposed by abstract-
ing these from the Aristotelian background of quantified sentences. Opposi-
tion is a relation that goes beyond incompatibility (not being true together),
and a question-answer semantics is devised to investigate the features of
oppositions and opposites within a functional calculus. Finally, several the-
oretical problems about its applicability are considered.
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1. The philosophical background

Despite a special attention paid to dichotomy (a dialectical process of
contradiction) in Plato’s philosophy [20], the latter cannot be considered
as the primary development of a genuine theory of opposition. Rather,
the forerunner of opposition is clearly Aristotle. In a good number of
his works ([1, 2, 3, 4]), Aristotle used this theory as a crucial comple-
ment for his theory of demonstration or syllogistics. After assuming
that each sentence is characterized by its quality (affirmative, or neg-
ative) and quantity (universal, or particular), a combination of these
two parameters yields four sorts of sentences including both a subject
S and a predicate P: universal+affirmative (SaP), universal+negative
(SeP), particular+affirmative (SiP), particular+negative (SoP). Then
the distinction between affirmed premises and their denials resulted in
a variety of valid conclusions, and the theory of opposition helped to
deduce theorems (imperfect moods, e.g. Baroco) from axioms (perfect
moods, e.g. Barbara) by putting constraints on the set of logical con-
sequences for given premises. Opposition is closely related to negation,
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since each sentence occurs as the negation of another one within the set
{SaP, SeP, SiP, SoP}. There are different ways of negating a sentence,
however; hence several sorts of negation and resulting oppositions.

The nature of a logical opposition is far from being clear. According
to Aristotle ([4]: 63b21-30),

Verbally four kinds of opposition are possible, viz. universal affirmative
to universal negative, universal affirmative to particular negative, par-
ticular affirmative to universal negative, and particular affirmative to
particular negative; but really there are only three: for the particular
affirmative is only verbally opposed to the particular negative. Of the
genuine opposites I call those which are universal contraries, e.g. “every
science is good”, “no science is good”; the others I call contradictories.

Only one pair of sentences can express a relation of contrariety, whereas
two pairs express contradiction among the three “genuine” oppositions;
as for the fourth pair, it stands for a “verbal” relation of subcontrariety.
In symbols (where ≬ denotes the general relation of opposition), this
yields a subset of six genuine oppositions (1)–(6) augmented by two
verbal ones (7)–(8):

(i) Contrariety
(1) SaP ≬ SeP (2) SeP ≬ SaP

(ii) Contradiction
(3) SaP ≬ SoP (4) SoP ≬ SaP
(5) SeP ≬ SiP (6) SiP ≬ SeP

(iii) Subcontrariety
(7) SiP ≬ SoP (8) SoP ≬ SiP

A famous logical tool had been devised to display these relations inside
a visual object, namely: the logical square. Although it used to be called
the “Aristotelian” square, let us recall that Aristotle never made use of
it since he was only concerned with contrariety and contradiction. The
complete figure is obtained (see Figure 1) with the addition of a fourth
relation of subalternation.

(iv) Subalternation
(9) SaP ≬ SiP (10) SiP ≬ SaP
(11) SeP ≬ SoP (12) SoP ≬ SeP

It is worth noting that the theory of opposition has been undermined by
two main difficulties: the so-called “existential import” on the one hand;
and the lexicalization of opposite statements in natural language on the
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other. These troubles largely contributed to the decline of the theory,
but they can be overcome.

For one thing, the existential import is to the effect that the addi-
tional relation of subalternation between universals and particulars of
the same quality does not hold whenever the statements include empty
terms, i.e. terms that fail to refer to an existing thing. This difficulty has
been treated at length in the literature, but without any definite result;
now it has been recently shown [11] that the square of opposition can be
saved even when including empty terms.

Furthermore, the lexicalization of the square is closely related to the
previous problem. A crucial precondition to the validity of the square
is to avoid any existential commitment with the particular statements.
This means that none of the statements SiP and SoP should be lexical-
ized as “Some S is P” and “Some S is not P” but, rather, as “Not every
S is not P” and “Not every S is P”. The logical difference between “Not
every . . . is . . .” and ”Some . . . is not . . .” is justified in [11], thus saving
the square.

Two questions result from this primary presentation: why a square,
instead of any other geometrical polygon for the logical relations? An
answer to this depends upon another one, namely: when can a relation
be considered as a relation of opposition? Subcontrariety has been said
to be a “verbal” (not genuine) opposition by Aristotle, whereas subalter-
nation has not even been mentioned as a verbal opposition in his work.
Moreover, the square can be devised by introducing subalternation on
the strength of a “technical” definition of opposition. Thus Keynes stated
that

Two propositions are technically said to be opposed to each other when
they have the same subject and predicate respectively, but differ in
quantity and quality or both. [14: 109]
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This technical definition includes subcontraries as differing in qual-
ity, whereas subalterns and superalterns differ in quantity. Now a main
feature that is missing in subcontraries makes these differ from genuine
opposites, namely: incompatibility. For two sentences are said to be
genuinely opposed to each other if and only if they cannot be true to-
gether. Then the various oppositions seem to proceed as combinations of
compossible relations between the truth-values of sentences, so that we
obtain four sorts of opposition including (I) genuine ones, (II) a verbal
one and (III) a merely technical one:

(I) Two “genuine” or incompatible relations of opposition between
sentences

(i) contraries cannot be true together and can be false together
(ii) contradictories cannot be true together and cannot be false

together
(II) A “verbal” relation between weakly compatible sentences

(iii) subcontraries can be true together and cannot be false to-
gether

(III) A “technical” relation between strongly compatible sentences
(iv) subalterns and superalterns can be true together and can be

false together.

A difficulty arises with this purely combinatorial approach. It is
misleading, in the sense that it cannot account for the asymmetry of the
fourth relation of subalternation: the superaltern can be false whenever
the subaltern is so, but the subaltern cannot be false whenever the super-
altern is true. Hence it cannot be said that a relation of subalternation
safely admits its relata to be true or false together, and it cannot be said
in turn that these cannot be true or false together irrespective of their
place in the relation. Something is missing for an exhaustive definition
of logical oppositions, therefore. Can we provide a general view of oppo-
sition that includes the asymmetric relation of subalternation along with
the other three plainly symmetric relations? To answer this, we propose
in what follows a logical background for the theory of opposition while
abstracting it from its historical roots.
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2. The logical background

2.1. The logical status of opposition

Let α1, α2, . . . be finitely many elements of a sentential language L, and
v a valuation function from L to the domain of values V2 = {F, T} with
F for “false” and T for “true”. Opposition can be viewed as a sentential t-
ary relation Op(α1, . . ., αt) between the truth-values of t sentences (with
t ≥ 2), where Op is one arbitrary element from the set of oppositions
{CT, CD, SCT, SB} (CT for contrariety, CD for contradiction, SCT for
subcontrariety, and SB for subalternation). These single oppositions can
be defined as follows, with t = 2 and α2 = ψ:

CT(α, ψ) ≡df v(α) = T ⇒ v(ψ) = F
CD(α, ψ) ≡df v(α) = T ⇔ v(ψ) = F

SCT(α, ψ) ≡df v(α) = F ⇒ v(ψ) = T
SB(α, ψ) ≡df v(α) = T ⇒ v(ψ) = T

Two things are to be noted about the “technical” oppositions.
First, subcontrariety. It is a complex relation between sentences, in

contrast with the two simple relations of contrariety and contradiction.
This complexity is stated by Jean-Yves Béziau in functional terms:

Let us recall that Aristotle does not introduce explicitly the notion of
“subcontraries”, but refers to them only indirectly as “contradictories
of contraries”. [6: 224]

While contraries correspond to the relation CT(α, ψ), what contradic-
tories of contraries amount to is unclear. Is their logical form some-
thing like CD(CT(α, ψ)), CT(CD(α, ψ), CD(α, ψ)), or even CT(CD(α),
CD(ψ))? None of these, given that each element Op is a binary relation
and not a function. An alternative definition of subcontrariety is in order
to account for Béziau’s functional expression, accordingly.

Next, subalternation. Just as the former case of subcontrariety, sub-
alternation is a relation to be defined by means of a complex (but this
time singular and double) function. For if ψ is the subaltern of α, then
ψ is the “contradictory of the contrary of” α.

A way to introduce functions into the theory of opposition is to sup-
plement it with opposites as opposition-forming operators. Thus, for any
opposition we have the general equation

Op(α, ψ) = Op(α, O(α))
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between the mutual opposites α and ψ, where O stands for an opposition-
forming operator such that its application to the first relatum α yields
the second one O(α) = ψ. Op proceeds like the unary connectives of
classical affirmation and negation, as a homomorphism from V to V; but
a difficulty arises for the suggested theory of opposites: only contradic-
tion is an effective mapping of classical logic, since it maps from V2 to
V2. Letting O be one arbitrary element from the set of opposites {ct,
cd, sct, sb}, it is well known that

if cd(α) = ψ, then v(α) = T ⇔ v(ψ) = F.

Apart from this unambiguous valuation for contradictoriness, it is
equally well known that the other opposites are intensional operators
that don’t proceed truth-functionally.

α ct(α) cd(α) sct(α) sb(α)

T F F ? F

F ? T T ?

A solution to this second difficulty requires another semantics for the
operators O(α). For this purpose, an alternative logic for oppositions of
opposites is proposed including alternative logical values.

2.2. A calculus of oppositions

Three ways have been proposed thus far to extend the Aristotelian theory
of opposition.

Firstly let us look at a syntactic extension. The Aristotelian ini-
tial quantified sentences can be superseded by other sorts of sentences.
Blanché’s modalities [7], Bocheński’s connectives [8] and Béziau’s non-
classical negations [6] resulted in a group of sentences establishing that
the theory of opposition is a pure theory of logical structures abstracted
from the historical framework of Aristotle’s syllogistics.

Secondly let us consider a geometrical extension. As a corollary of the
preceding, the new sorts of sentences augment the square with a greater
number of relations Op(α, ψ) and new logical polygons. Thus Blanché
and Czeżowski’s hexagons ([7], [12]), Buridan’s octagon of alethic modal-
ities [13] or Pellissier’s tetraicosahedron [19] are different sets of related
sentences with more than the 6 basic relations of the square: 15 for
hexagons, 28 for octagons, and 120 for tetraicosahedrons. This greater
number of instances does not imply that there are more than four kinds
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of opposition in the end, however, but the fourth case of subalternation is
to be replaced by a larger category of non-contradictoriness that includes
the former (see [28], and section 2.3). The geometry of oppositions has
been investigated at length by Moretti [18], and the present paper will
focus on the properties of any related terms of the polygons. The result
is an algebraic theory in two senses of the word, namely: an algebraic,
many-valued semantics based on Boolean algebra.

Finally there is a categorial extension. The set of oppositions might
be supplemented with further elements, i.e. further sorts of opposition.
A case in point is Sion [26], who completed the four usual oppositions
with two additional sorts: implicance, and unconnectedness. Although
the last two instances have been questioned elsewhere [23], it can be
seen that such a categorial extension challenges the traditional theory of
opposition by altering the “transcendental” number of elements in {CT,
CD, SCT, SB}.

This leads one to another problem to solve. How many sorts of
opposition can there be? A semantic analysis is used for this purpose, i.e.
a logical framework where the sentential values are not Fregean values.

Let us introduce an alternative theory of meaning: Question-Answer
Semantics (hereafter: QAS). It is a non-classical model that emphasizes
the role of dialogue and its dialectical process upon our daily-life rea-
sonings. By a dialectical process is meant the basic game of oppositions
between at least two speakers in a given sequence of arguments. Assum-
ing that the Principle of Bivalence is too strong a constraint upon the
normal rules of communication, we prefer a set of questions-answers to
determine the meaning of sentences and rule what can be accepted or
not in a given dialogue. Unlike the Fregean tradition, the reference of
a given sentence α in QAS is not a single truth-value v(α) but a set
of ordered answers A(α) = 〈a1(α), . . . , an(α)〉 to corresponding closed
questions 〈q1(α), . . . ,qn(α)〉 about it. By doing so, the meaning of a
sentence is not given any more by ontological values like the True, v(α)
= T, or the False, v(α) = F. Rather, it is pragmatically defined by
its use in a given context, and this use is rendered by a finite ordered
set of questions. It results in a finite many-valued logic which extends
the classical (bivalent) framework into a combination of basic answers. A
philosophical motivation of this algebraic semantics has to do with alter-
native rationalities and their various conditions for truth-ascription. For
example, this general framework helps to model various types of infor-
mation expressed by speech acts ([23], [25]) and to account for allegedly
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“irrational” reasonings from the ancient skeptic (the Greek ou mallon,
the Indian tetralemma) and relativist tradition (the Jain non-one-sided
theory of predication)([24]).

Moreover, such a semantics echoes with what Moretti [18] called an
“Aristotelian PQ-Semantics” (P for the number of answers, Q for the
number of questions). Moretti’s question-answer game for logical oppo-
sitions consists of 2 questions about the compossible truth-values of the
opposed sentences α and ψ. Let Φ = Op(α, ψ), with the two ensuing
questions “Can α and ψ be true together?” and “Can α and ψ be false
together?”. In symbols, where 3 stands for possibility:

q1(Φ): “3(v(α) = v(ψ) = T)?”

q2(Φ): “3(v(α) = v(ψ) = F)?”

Following the Fregean view that the meaning of a sentence relies upon
both its sense and reference, the sense of Φ is conveyed by n = 2 basic
questions about it: Q(Φ) = 〈q1(Φ), q2(Φ)〉. The reference of Φ is the
corresponding pair of answers A(Φ) = 〈a1(Φ), a2(Φ)〉, every yes-answer
being symbolized by 1 and each no-answer by 0. We obtain a PQ =
22-semantics, with a set of 22 = 4 complex values that obey Boolean
algebra (0 and 1 are the basic values) but clearly differ from the Fregean
simple truth-values T and F. That is:

CT(α, ψ) = T iff A(CT(α, ψ)) = A(Φ1) = 〈0, 1〉
CD(α, ψ) = T iff A(CD(α, ψ)) = A(Φ2) = 〈0, 0〉

SCT(α, ψ) = T iff A(SCT(α, ψ)) = A(Φ3) = 〈1, 0〉
SB(α, ψ) = T iff A(SB(α, ψ)) = A(Φ4) = 〈1, 1〉

Recalling the preceding first difficulty, it appears clear that this se-
mantics accounts for the cardinality of four oppositions but cannot ac-
count for the asymmetry of subalternation: the value 〈1, 1〉 does not
bring out that ψ cannot be false whenever α is true in SB(α, ψ).

A solution to this problem is to go through a more accurate question-
answer game for t-ary sentences (connected by a logical constant of arity
t), in the vein of Piaget’s theory of binary connectives [20]. Considering
any complex sentence Θ = α • ψ as the connection of two arbitrary
sentences α and ψ by a binary connective •, each instantiation of Θ
characterizes both the meaning of • and a Disjunctive Normal Form.
The sense of Θ is given by the 4 following questions:

q1(Θ): “v(α) = v(ψ) = T ?”

q2(Θ): “v(α) = T and v(ψ) = F ?”
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q3(Θ): “v(α) = F and v(ψ) = T ?”

q4(Θ): “v(α) = v(ψ) = F ?”

The result is a set of 24 = 16 logical values, thereby characterizing the
16 binary connectives from the bivalent classical logic:

A(⊥) = A(Θ1) = 〈0000〉 A(p↔q) = A(Θ9) = 〈1001〉
A(p∧q) = A(Θ2) = 〈1000〉 A(q) = A(Θ10) = 〈1010〉
A(∼(p→q)) = A(Θ3) = 〈0100〉 A(∼q) = A(Θ11) = 〈0101〉
A(∼(p←q)) = A(Θ4) = 〈0010〉 A(p∨q) = A(Θ12) = 〈1110〉
A(∼(p∨q)) = A(Θ5) = 〈0001〉 A(∼(p∧q)) = A(Θ13) = 〈0111〉
A(p) = A(Θ6) = 〈1100〉 A(p→q) = A(Θ14) = 〈1011〉
A(∼(p↔q)) = A(Θ7) = 〈0110〉 A(p←q) = A(Θ15) = 〈1101〉
A(∼p) = A(Θ8) = 〈0011〉 A(⊤) = A(Θ16) = 〈1111〉

Albeit restricted by Piaget to the binary sentences of classical logic,
QAS can be equally applied to afford the meaning of other sentences
including quantifiers, modalities, or even non-classical constants. As an
example, Smessaert has shown with his Quantified Modal Algebra [11]
that a special question-answer game is in position to restate the theory
of generalized quantifiers and turn modalities into scalar degrees of truth
or falsity.

By now, two things are to be noted about Piaget’s theory.
For one thing, each single answer ai(Θ) of a logical value A(Θ) cor-

responds to a row of a classical truth-table, so that ai(Θ) = 1 (or 0) iff
v(α • ψ) = T (or F) in the ith row.

α ψ Θi = α • ψ A(Θi)

v(α) v(ψ) v(α • ψ) v(α) = v(ψ) = T?

v(α) v(ψ) v(α • ψ) v(α) = T & v(ψ) = F?

v(α) v(ψ) v(α • ψ) v(α) = F & v(ψ) = T?

v(α) v(ψ) v(α • ψ) v(α) = v(ψ) = F?

A case in point is conjunction, with the logical value A(α∧ψ) = 〈1000〉.

α ψ Θ2 = α ∧ ψ A(Θ2)

T T T a1(Θ2) = 1

T F F a2(Θ2) = 0

F T F a3(Θ2) = 0

F F F a4(Θ2) = 0
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Furthermore, equating the Disjunctive Normal Form of a sentence with
its logical value helps to introduce a functional calculus of oppositions
through Piaget’s theory of reversibility. Let denial be a function ′ of a
Boolean algebra, such that α′ = 0 iff α = 1; then Piaget’s Group {I, N,
R, C} is a set of transformations ⊗ upon an arbitrary logical value.

Identity: I(α) A(I(α)) = 〈a1(α), . . ., an(α)〉
Inversion: N(α) A(N(x)) = 〈a1(α)′, . . ., an(α)′〉
Reciprocity: R(α) A(R(α)) = 〈an(α), . . ., a1(α)〉
Correlation: C(α) A(C(α)) = 〈an(α)′, . . ., a1(α)′〉

These are applied to conjunction as follows, with n = 4 and x = α ∧ ψ
= Θ2.

Identity: I(Θ2) A(I(Θ2)) = 〈1000〉
Inversion: N(Θ2) A(N(Θ2)) = 〈1′0′0′0′〉 = 〈0111〉

= A(∼(α ∧ ψ)) = A(Θ13)
Reciprocity: R(Θ2) A(R(Θ2)) = 〈0001〉 = A(∼(α ∨ ψ)) = A(Θ5)
Correlation: C(Θ2) A(C(Θ2)) = 〈0′0′0′1′〉 = 〈1110〉

= A(α ∨ ψ) = A(Θ12)

This means that the 4 functions ⊗ are applied to a binary sentence (α•ψ)
= Θi and lead to another one Θj , so that ⊗(Θi) = Θj . The result is a
matrix of such transformations, and the relation between each of these
paired sentences corresponds to a relation of opposition Op(Θi, ⊗(Θi))
= Op(Θi,Θj).

Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 Θ7 Θ8

I Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 Θ7 Θ8

N Θ16 Θ13 Θ14 Θ15 Θ12 Θ8 Θ9 Θ6

R Θ1 Θ5 Θ4 Θ3 Θ2 Θ8 Θ7 Θ6

C Θ16 Θ12 Θ15 Θ14 Θ13 Θ6 Θ9 Θ8

Θ9 Θ10 Θ11 Θ12 Θ13 Θ14 Θ15 Θ16

I Θ9 Θ10 Θ11 Θ12 Θ13 Θ14 Θ15 Θ16

N Θ7 Θ11 Θ10 Θ5 Θ2 Θ3 Θ4 Θ1

R Θ9 Θ11 Θ10 Θ13 Θ12 Θ15 Θ14 Θ16

C Θ7 Θ10 Θ11 Θ2 Θ5 Θ4 Θ3 Θ1

Just like the classical function of affirmation, I is a redundant opera-
tor that leaves its operand unchanged. And just like the classical function
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of negation, N is an operator that turns its operand αi into another one
αj by denying each of its basic answers a(αi) in the order. More gener-
ally, the 3 nontrivial operators N, R and C are opposite-forming opera-
tors that behave like sentential negations turning any value into another
one. One of these is a purely extensional operator, namely: the inversion
operator N, which turns any sentence into its contradictory so that

CD(α, ψ) = CD(α, cd(α)) = CD(α, N(α))

At the same time, the remaining two operators R and C are intensional
operators that don’t proceed as bijective functions: there can be more
than one opposition formed by a sentence α and its opposite R(α) or
C(α), because the value of O(α) relies upon the value of α.

Turning again to the functional characterization of subcontrariety, it
is worthwhile to note some striking properties of the opposite-forming
operators O. For any natural integers i, j, k:

Oi(Oi(α)) = Oj(Oj(α)) = Ok(Ok(α)) = I(α) (O.1)

Oi(Oj(α)) = Oj(Oi(α)) = Ok(α) (O.2)

N(α) = ∼α (O.3)

This helps to explain why subcontraries are contradictories of contraries.
Indeed, such a functional definition can be parsed into the following
statement:

SCT(α, ψ) = CT(cd(α), cd(ψ)).

Proof: by induction upon the set of subcontrary relations.
Taking SCT(Θ12,Θ13) as an instance, we obtain

CT(cd(Θ12), cd(Θ13) = CT(N(Θ12), N(Θ13)) = CT(Θ5, Θ2).

(The remaining instances are left to the reader.)

As for the relation of subalternation, it can be similarly established
that every subaltern (of a given sentence α) is the contradictory of a
contrary (of α). That is: sb(Θ) = cd(ct(Θ)) = ct(cd(Θ)) (by O.2). For
instance, it is the case that sb(Θ2) = cd(ct(Θ2) = cd(Θ5) = Θ12.

Moreover, subalternation is usually taken to be a counterpart of en-
tailment. Assuming that entailment has to do with the basic relation
of logical consequence, let us see now if logical consequence can be seen
as a single case of opposition within a general theory of oppositions and
opposites.
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2.3. Consequence in opposition

A cornerstone of modern logic is the semantic concept of truth, insofar as
it helps to define the basic relation of consequence. Can one construct
logics without assuming what Tarski came to characterize as a truth-
preserving relation? The answer is affirmative, given that Tarski began
to define consequence as a syntactic operator; moreover, an inferentialist
would claim that the logical constants needn’t be interpreted by truth-
conditions to make sense. Whether it be about truth or not, consequence
means in the following that any logical conclusion preserves affirmative
answers from the premises to the conclusion. The independence of con-
sequence with respect to truth is endorsed by QAS and its non-Fregean
logical values, where truth is only one possible semantic predicate in
question-answer games.

That SB(α, ψ) is asymmetric can be taken for granted by depicting
subalternation as an inclusive relation between the supaltern α and its
subaltern ψ. Following the older view of logical consequence as a relation
of entailment or, better, containment between premises and a conclusion,
Blanché reworded this point as an inclusion of “truth-cases”. Indeed,

The indeterminates are implied by the determinates whose truth-case
they contain: since each has three truth-cases, the latter is thus implied
by three determinates [. . . ]. [8, p. 137]

This means in QAS that, for any sentences X and Y, a similar view of
the Tarskian relation of logical consequence can be found without using
the semantic predicate of truth in the basic questions:

X entails Y iff v(Y) = T whenever v(X) = T
X entails Y iff ai(Y) = 1 whenever ai(X) = 1.

Blanché confined his approach to Piaget’s theory of binary connectives
including the case of “indeterminates”, i.e. those binary sentences Y
with 3 yes-answers such that ai(Y) = 1. But the definition of entail-
ment equally holds with any other sort of sentences and irrespective of
their logical values. An instance of entailment is the relation between
conjunction and disjunction, namely: SB(Θ2, Θ12). For A(Θ2) = 〈1000〉
and A(Θ12) = 〈1110〉, so that it is the case that a1(Θ12) = 1 whenever
a1(Θ2) = 1. By contrast, the relation of contradiction is to be defined in
QAS by never preserving the same value from one relatum to another
one. Thus
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as to the fourth determinate, i.e. the one whose unique truth-case co-
incides with the unique falsity-case of the indeterminate, it forms the
alternative with it by standing for the exact negation of the other one.

([8, p. 137]

That is:

ψ = cd(α) iff, for every ai, ai(α) = 1 ⇔ ai(ψ) = 0

Taking disjunction as a case of indeterminacy, it means that its
contradictory is the binary sentence with only one truth-case. Taking
A(Θ12) = 〈1110〉, we obtain CD(Θ12,Θ5) = CD(〈1110〉, 〈0001〉) where
the opposite term can be formed by the Piagetian operator of inversion N.

More generally, each relation of opposition can be defined in Boolean
algebra without ever talking about truth and falsity. Following the clas-
sical matrices of the binary sentences α •ψ, Op is a set of relations with
various constraints upon its relata.

All of this can be summarized by means of Boolean algebra and its
basic operations of meet ∩ and join ∪. It is a bivalent calculus that
maps each sentence onto the two-valued set of answers {0, 1}, where 0 is
the minimal value and 1 is the maximal value. Moreover, every answer
which is not positive is negative (and conversely): a(α) 6= 1 ⇔ a(α) =
0. One value is assigned from {0, 1} to every componing answer ai(Φ),
such that ai(α) ∩ ai(ψ) = min(α, ψ) and ai(α) ∪ ai(ψ) = max(α, ψ).
Hence the following set of clauses for the logical oppositions:

CT(α, ψ) ≡df ai(α) = 1 ⇒ ai(ψ) = 0 and ai(α) = 0 ; ai(ψ) = 1
A(α) ∩ A(ψ) = 〈0000〉 and A(α) ∪ A(ψ) 6= 〈1111〉
CD(α, ψ) ≡df ai(α) = 1 ⇒ ai(ψ) = 0 and ai(α) = 0 ⇒ ai(ψ) = 1.
A(α) ∩ A(ψ) = 〈0000〉 and A(α) ∪ A(ψ) = 〈1111〉
SCT(α, ψ) ≡df ai(α) = 1 ; ai(ψ) = 0 and ai(α) = 0 ⇒ ai(ψ) = 1
A(α) ∩ A(ψ) 6= 〈0000〉 and A(α) ∪ A(ψ) = 〈1111〉

NCD(α, ψ) ≡df ai(α) = 1 ; ai(α) = 0 and ai(α) = 0 ; ai(ψ) = 1
A(α) ∩ A(ψ) 6= 〈0000〉 and A(α) ∪A(ψ) 6= 〈1111〉

Note that the fourth relation NCD is not subalternation but a larger
relation of mere non-contradiction, stating that no special constraint is
imposed upon the values of its relata. While subalternation and non-
contradiction are wrongly merged into each other within the limited
case of the logical square, an extension of the square to further polygons
like the hexagon helps to show that two opposed relata may not be
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contradictory to each other without being in a relation of subcontrariety
or subalternation. Indeed, an exhaustive theory of technical oppositions
can be seen as a partition of two basic sets, i.e. incompatible (“genuine”)
and compatible (merely “technical”) sentences.

As for the usual relation of subalternation, which does not ap-
pear in the above group of oppositions, it is a special case of non-
contradictoriness which puts one constraint upon its relata and cannot
be fully expressed in terms of compossible truth-values:

sb(α, ψ) ≡df ai(α) = 1 ⇒ ai(ψ) = 1

A(α) ∩ A(ψ) = A(α) and A(α) ∪ A(ψ) = A(ψ)

2.4. Abstract oppositions

A number of problems can be addressed about oppositions once the
theory is abstracted from its historical background, namely: what its
essential meaning is, how it proceeds, and how many oppositions there
can be.

2.4.1. What?

Borrowing from Plato’s method of definition by dichotomy ([21]), which
is nothing but a general form of contradiction, it appears that the four
traditional oppositions are not on a par: Aristotle’s genuine oppositions
are all the incompatible relations such that their relata cannot be ac-
cepted at once, whereas the technical oppositions are all the compatible
relata whose contents can be accepted together. As for subalternation,
its meaning in QAS requires a further question in addition to the ini-
tial two ones about the compossibility of truth-values: beyond Moretti’s
question-answer semantics about what can be true or false together, sub-
alternation requires the second relatum to be true whenever the first one
is. Actually, SB extends the questioning from Moretti’s PQ-semantics
(Q(Φ) = 〈q1(Φ),q2(Φ)〉) to Piaget’s theory of binary connectives (Q(Θ)
= 〈q1(Θ), q2(Θ), q3(Θ), q4(Θ)〉). Correspondingly, whoever accepts
such an extension should also introduce Sion’s implicance into the set of
oppositions Op. While Sion’s relation of unconnectedness cannot make
sense only with Moretti’s value 〈1, 1〉, our point is that not every such
alleged opposition stems from the same questioning but does result in a
muddled set of sentential relations with various constraints.
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Assuming a possible extension from Moretti’s questions to those of
Piaget, the following depicts how the arbitrary sentences α and ψ can
be related to each other insofar as Moretti’s questions Q(Φ) are just
fragments of Piaget’s ones Q(Θ): they talk about compossibilities only,
the denial of which amounts to various entailment relations between their
relata.

Extended questions Extended answers:
q1(Φ) : “3(v(α)=v(ψ) = T)?” a1(Φ) = 0 iff v(α) = T ⇒ v(ψ) = F
q2(Φ) : “3(v(α)=v(ψ) = F)?” a2(Φ) = 0 iff v(α) = F ⇒ v(ψ) = T

+ +
q3(Φ) : “3(v(α) = T & v(ψ) = F)?” a3(Φ) = 0 iff v(α) = T ⇒ v(ψ) = T
q4(Φ) : “3(v(α) = F & v(ψ) = T)?” a4(Φ) = 0 iff v(α) = F ⇒ v(ψ) = F

Correspondence between Moretti’s questions and Piaget’s questions:

q1(Φ) = q1(Θ); q2(Φ) = q4(Θ); q3(Φ) = q2(Θ); q4(Φ) = q3(Θ);

Q(Θ) = 〈q1(Θ),q2(Θ),q3(Θ),q4(Θ)〉 = 〈q1(Φ),q3(Φ),q4(Φ),q2(Φ)〉

According to the below partition between several kinds of constraints
upon the sentential relations, it appears that our general view of oppo-
sition largely extends the Aristotelian cases of contradiction and contra-
riety. It also turns out that subalternation is a more particular relation
encompassed in the class of non-contradiction, in the sense that being
non-contradictory means the possibility of the sentences being true or
false together.

Assuming that only Moretti’s questions q1(Φ) and q2(Φ) properly
characterize the relation of opposition, this should entail that any rela-
tion whose meaning essentially relies upon q3(Φ) or q4(Φ) should not
be considered as a relation of opposition. Compatible relations can be
added to the incompatible ones, for this reason; at the same time, sub-
alternation and implicance are specified by the last two questions and
should not characterize Op as such.

Related sentences

f(α, ψ)

Incompatibility Compatibility

a1(Φ) = 0 a1(Φ) = 1
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Contradiction Contrariety Subcontrariety Non-contradiction

a1(Φ) = 0 a1(Φ) = 0 a1(Φ) = 1 a1(Φ) = 1

a2(Φ) = 0 a2(Φ) = 1 a2(Φ) = 0 a2(Φ) = 1

Subalternation Mere non-contradiction

a1(Φ) = 1 a1(Φ) = 1

a2(Φ) = 1 a2(Φ) = 1

a3(Φ) = 0 a3(Φ) = 1

Implicance Mere subalternation

a1(Φ) = 1 a1(Φ) = 1

a2(Φ) = 1 a2(Φ) = 1

a3(Φ) = 0 a3(Φ) = 0

a4(Φ) = 0 a4(Φ) = 1

The above branching tree shows that the 4 standard oppositions are not
on a par: subalternation is a special subcase of non-contradictoriness,
while the meaning of NCD is the logical value A(Φ) = 〈1, 1〉 that merely
relies upon q1(Φ) and q2(Φ). Regarding implicance, the crucial role of
q3(Φ) or q4(Φ) in its definition might lead to a rejection of its opposi-
tional nature: rather, implicance IM is an identity relation R that can
be formed by the trivial opposite-forming operator I in

IM(Φ) = R(α, I(α))

and means that not every relation R between an arbitrary sentence α
and its transformation ⊗(α) results in a proper opposition; only the non-
trivial operators N, R and C are opposite-forming operators, accordingly.
No wonder I is not an opposite-forming operator, indeed: I has been
shown to be the direct product of any element ⊗ by itself, and the
fact that these elements behave like sentential negations means that I
amounts to an “exact” (involutive) double negation or affirmation.

The same holds for sb, since sb(α) = cd(ct(α)) = N(R(α)) = C(α),
with the crucial difference that the double negation NR(α) does not lead
to a proper affirmation I(α) but a sort of weak affirmation C(α) implied
by its superaltern α.

Here is a matrix of the five oppositional relations between binary
sentences Θ, including two classes of incompatible relations (CT + CD)
and compatible relations (SCT + NCD) in addition to the subcase SB
⊆ NCD. The blanks are identity relations I(α) = R(α, I(α)) that don’t
belong to the range of Op(α, O(α)), again, and the two extremes cases
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Θ1 and Θ16 distinguish themselves by standing into a double relation of
contradiction and subalternation.

Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 Θ7 Θ8

Θ1 SB SB SB SB SB SB SB

Θ2 SB CT CT CT SB CT CT

Θ3 SB CT CT CT SB SB CT

Θ4 SB CT CT CT CT SB CT

Θ5 SB CT CT CT CT CT SB

Θ6 SB SB SB CT CT NCD CD

Θ7 SB CT SB SB CT NCD SB

Θ8 SB CT CT SB SB CD NCD

Θ9 SB SB CT CT SB NCD CD NCD

Θ10 SB SB CT SB CT NCD NCD NCD

Θ11 SB CT SB CT SB NCD NCD NCD

Θ12 SB SB SB SB CD SB SB SB

Θ13 SB CD SB SB SB SCT SB SB

Θ14 SB SB CD SB SB SCT SCT SB

Θ15 SB SB SB CD SB SB SCT SCT

Θ16 CD, SB SB SB SB SB SB SB SB

Θ9 Θ10 Θ11 Θ12 Θ13 Θ14 Θ15 Θ16

Θ1 SB SB SB SB SB SB SB CD, SB

Θ2 SB SB CT SB CD SB SB SB

Θ3 CT CT SB SB SB CD SB SB

Θ4 CT SB CT SB SB SB CD SB

Θ5 SB CT SB CD SB SB SB SB

Θ6 NCD NCD NCD SB SCT SCT SB SB

Θ7 CD SB NCD SB SB SCT SCT SB

Θ8 SB NCD NCD SCT SB SB SCT SB

Θ9 NCD NCD SCT SCT SB SB SB

Θ10 NCD CD SB SCT SB SCT SB

Θ11 NCD CD SCT SB SCT SB SB

Θ12 SB SB SB SB SB SB SB

Θ13 SCT SCT SB SCT SCT SCT SB

Θ14 SB SB SCT SCT SCT SCT SB

Θ15 SB SCT SB SCT SCT SCT SB

Θ16 SB SB SB SB SB SB SB

To sum up, our abstract theory of opposition embraces the opposed
relations of consequence and rejection between arbitrary sentences α

and ψ.

Firstly, the semantic relation of consequence α ⊢ ψ or Cn(α, ψ) is a
relation of truth-preservation that exclusively refers to the compatible
relation SB.

α ⊢ ψ: for every ai, ai(α) = 1 only if ai(ψ) = 1.

Secondly, the opposite relation of rejection α ⊣ ψ or Cn−1(α, ψ) ([26])
is a relation of truth-nonpreservation that refers to incompatibility (CD
and CT) while including the relation of falsity-preservation ([27]).

α ⊣ ψ: for every ai, ai(α) = 1 only if ai(ψ) = 0.
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Finally, the relation of opposition α ≬ ψ or Op(α, ψ) encompasses con-
sequence and rejection by proceeding as a common theory of truth-
inversion. That is:

α ≬ ψ: for some ai, ai(α) = 1 and ai(ψ) = 0.

Then every opposition proceeds by inversion, whether globally or locally
([17]): global inversion obtains if ai(α) 6= ai(ψ) for every answer ai,
whereas local inversion means that ai(α) 6= ai(ψ) for some ai.

2.4.2. How?

Opposition constitutes a pluralist theory of negation, where the latter
occurs through some opposite-forming operators. Apart from the trivial
operator of identity I = O(O), the Piagetian operators of reversibility
lead to the whole relation Op(α, ψ) = Op(α, O(α)) by proceeding as
difference-forming operators. In other words, any two sentences are op-
posed to each other whenever they differ in meaning, and this matches
with the view that the sole sentential relation departing from the range
of Op is equivalence (Sion’s implicance IM).

Just as there is a variety of plausible meanings for the logical con-
nectives, the non-trivial operators of reversibility N, R, C are different
sentential negations. The most famous instance of these is N, which
usually proceeds as a classical or contradictory-forming negation cd(α).
However, this current comparison between inversion and contradictori-
ness does not mean that every Piagetian operator corresponds to exactly
one relation of opposition or one sentential negation. The situation is
indeed more intricated between the three overlapping classes of functions
O, ⊗, and sentential negations.

We have already said that, unlike N, the operators R and C are not
extensional functions but intensional unary operators that variously play
the role of either negations or affirmations (depending upon the value of
their operands). By generalizing some results of Béziau ([6]), it can be
proved that

R behaves like paracomplete negation ¬ when Op(α, R(α)) = CT(α, ψ)

Example. Let α = Θ2; then R(Θ2) = Θ5, and Op(Θ2, Θ5) = CT(α, ψ).
More generally:

Op(α, R(α)) = Op(α, ¬α)

whenever α is a determinate sentence, i.e. ai = 1 for one ai.
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R behaves like classical (complete and consistent) negation ∼ when
Op(α, R(α)) = CD(α, ψ).

Example. Let α = Θ6; then R(Θ6) = Θ8, and Op(Θ6,Θ8) = CD(α, ψ).
More generally:

Op(α, R(α)) = Op(α, ∼α)

whenever α is a semi-determinate sentence, i.e. ai = 1 for two ai. R be-
haves like paraconsistent negation, when Op(α,R(α)) = SCT(α, ψ).

Example. Let α = Θ12; then R(Θ12) = Θ13, and Op(Θ12,Θ13) = SCT(α,
ψ). More generally:

Op(α, R(α)) = Op(α,−α)

whenever α is an indeterminate sentence, i.e. ai(α) = 1 for three ai.

C behaves like a weak double negation (an iteration of ∼, ¬, or −),
since C = NR.

2.4.3. How many?

What is the cardinality of the set of oppositions, assuming that there is
only one such set? Op can reasonably go beyond the four Aristotelian
oppositions by extending the questioning of Q(Φ) in QAS. Whereas we
previously claimed that some attempted extensions are wrong in relying
upon different questions, nothing prevents Moretti’s questions Q(Φ) =
〈q1(Φ),q2(Φ)〉 from including further questions qi(Φ) about extra truth-
values like indeterminacy I beyond T and F. Not even the historical
background of Aristotle’s logic of propositions, where any sentence about
future events was said to be neither true nor false; despite this, the theory
of opposition has always been confined to a bivalent framework. Given
this unjustified restriction, an abstract logic of oppositions is entitled to
go beyond this philosophical objection.

Since every question qi(Φ) characterizing an opposition is a question
about a truth-value, there can be only two such questions for a theory
of classical oppositions where V2 = {F, T}. And given that the whole
mn oppositions result from n questions and m corresponding sorts of an-
swers, any extension of n or m should extend the number of oppositions.

Let us take some examples of many-valued logics, e.g. three-valued
logics ([10, 15, 16, 22]). There should be n = 3 questions about their
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opposed sentences, while maintaining m = 2 corresponding yes- or no-
answers:

q1(Φ): “3(v(α) = v(ψ) = T)?”
q2(Φ): “3(v(α) = v(ψ) = F)?”
q3(Φ): “3(v(α) = v(ψ) = I)?”

Does it mean that any such truth-functional semantics uniquely results in
a set of mn = 23 = 8 different oppositions A(Φ) = 〈a1(Φ), a2(Φ), a3(Φ)〉
mapping from Φ to {0, 1}; and if so, how are they related to each other?
Matters are not so easy with many-valuedness, for at least two reasons.

On the one hand, there may be an ambiguity between the meaning
of the gappy truth-value I, “neither true nor false”, and the content of
classical oppositions. As any set of questions Q(Φ) is about whether
related sentences Op(α, ψ) can be true or false together, an ontological
reading of v(α) = I (as in [16]) is to the effect that α is neither true
nor false for the time being but will come to be true or false afterwards.
In other words, that v(α) = I seems to imply that α and ψ may be
true (or false) together when v(α) = T (or F), respectively. If so, then
no difference occurs between an opposition arising from non-classical or
classical valuations, and the non-standard answer a3(Φ) collapses into
a standard one a1(Φ) or a2(Φ). At the same time, an epistemological
reading of I (as in [15]) does not mean that something indeterminate will
come to be either true or false as previously, thus making the answering
game more complicated. The same conceptual trouble arises with the
paradoxical or glutty readings of I as “meaningless” and “both true and
false”, respectively ([10], [22]), thus leaving undecided the cardinality of
oppositions for many-valued logics.

On the other hand, another way to account for many-valued oppo-
sitions would consist in extending the number of answers rather than
questions. Then QAS can turn the non-classical value I into a non-
bivalent answer about classical values; that is: assigning the truth-value
I to a sentence may mean that it can be true or false but not definitely,
so that a proper answer to q1(Φ) and q2(Φ) could be “maybe” (1/2)
instead of “yes” (1) or “no” (0). It results in an alternative set of logical
values from m = 3 answers and n = 2 questions, i.e. mn = 32 = 9 dif-
ferent oppositions A(Φ) = 〈a1(Φ), a2(Φ)〉 mapping Φ onto {0, 1/2, 1}.
In addition to the ambiguous meanings of I, there is a patent gap here
between Moretti’s 23- and 32-semantics: what about the 9th value in the
former? Such difficulties need to be settled before going to more com-
plex many-valued systems, e.g. the four-valued FDE system combining
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the gappy and glutty interpretations of I ([5]). Whatever the result may
be, the point is that any set of oppositions comes from a combination of
questions and answers about the compossible properties of sentences.

3. Conclusion: results and open problems

Our algebraic theory of opposition generates five main results.

1. Opposition is a n-ary relation; its 2-ary version Op(α, ψ) = Op(α,
O(α)) includes an opposition-forming operator of opposite O such that
O(α) = ψ is an opposite of α.

2. The asymmetry of subalternation is due to its special status within
the range of oppositions. Unlike the two basic questions characterizing
an opposition in Moretti’s 22-semantics, SB means that, for every answer
ai in Moretti’s semantics, ai(α) = 1 only if ai(ψ) = 1; but the converse
need not hold.

3. A functional calculus of oppositions can be devised within an alterna-
tive logical framework: Question-Answer Semantics, turning the Fregean
truth-values into non-Fregean logical values and expressing the meaning
of an opposition Φ by means of ordered answers.

4. The number of the standard oppositions is justified by the number
of answers characterizing oppositions, namely: 22 = 4 combinations of
yes-no answers to their compossible truth-values.

5. Oppositions can be viewed as a set of compossible properties for
sentences; although the usual property at hand is truth and falsity (i.e.
non-truth) in a bivalent frame, the concept of truth can be kept apart
and replaced by a combination of answers 1 and 0 that makes logical
consequence (or entailment) a mere special case of opposition as subal-
ternation.

The present paper has not exhausted all the various topics included
into the theory of opposition. One of these is to investigate the logical
properties of the general operator of opposition, beyond those of con-
sequence (as subalternation) and rejection (as incompatibles). Another
one is a functional calculus of opposite-forming operators and their ap-
plication to philosophical logics for speech acts: assertions and denials
can be turned into more fine-grained attitudes, and our operators O pave
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this way with different sorts of denials like mere opposition (contradic-
tion), strong opposition (contrariety), qualification (subcontrariety), or
concession (weak double affirmation).

Despite these positive results, two kinds of main difficulties are to be
settled before going on:

I. A computational difficulty, in connection with many-valued opposi-
tions and the algebraization of mixed sentences.

Many-valued oppositions have been considered in the preceding sec-
tion, where the problem is whether the introduction of further truth-
values beyond truth and falsity leads to new oppositions or not.

The algebraization of mixed sentences has not been approached in
the present paper, but it cannot be eluded if we are to achieve a compre-
hensive theory of logical oppositions. The problem is how to construct
a common question-answer game including different sorts of sentences
with quantifiers, modalities, and the like. Our present state of research
presented various algebraic semantics for a limited syntax, so that modal
sentences or binary sentences are not merged there into more complex
expressions like modal binary sentences.

II. A representational difficulty, concerning the translation of non-
standard logics within QAS.

A Boolean algebra has been assumed throughout the paper, but it
might be too much limited to render the relations of non-standard logics
like non-monotonic patterns. An extension of oppositions to such areas
could call for non-Boolean algebras. This case has been already (only
slightly) considered in QAS, with the new answer “maybe” beyond the
standard yes-no answers; but it need to be completed, in order to test
the relevance of this abstract logic of oppositions.

Acknowledgement: I want to thank the anonymous referees for their
helpful remarks and corrections.
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