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Coherentism maintains that coherent beliefs are more likely to be true than inco-
herent beliefs, and that coherent evidence provides more confirmation of a hy-
pothesis when the evidence is made coherent by the explanation provided by that
hypothesis. Although probabilistic models of credence ought to be well-suited to
justifying such claims, negative results from Bayesian epistemology have suggested
otherwise. In this essay we argue that the connection between coherence and con-
firmation should be understood as a relation mediated by the causal relationships
among the evidence and a hypothesis, and we offer a framework for doing so by
fitting together probabilistic models of coherence, confirmation, and causation. We
show that the causal structure among the evidence and hypothesis is sometimes
enough to determine whether the coherence of the evidence boosts confirmation of
the hypothesis, makes no difference to it, or even reduces it. We also show that,
ceteris paribus, it is not the coherence of the evidence that boosts confirmation, but
rather the ratio of the coherence of the evidence to the coherence of the evidence
conditional on a hypothesis.

1. Introduction

A man is dead and the police are asking questions. Two witnesses
believed not to have conferred with one another have implicated

Mrs White in the murder of her employer, Dr Black. Each of their
statements alone is damaging to White, yet both witnesses have given

the police the same detailed account of the crime, and it is partly the
‘coherence’ of their testimonies which lends an additional measure of
support to the hypothesis that White killed Black.

The focus of the investigation changes after the police discover that
they were wrong about the witnesses not having talked to one another.

The second witness, it turns out, was nowhere near the scene of the
crime. She instead simply repeated to the police what the first witness
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had told her to say. So, in light of these revelations, the second wit-

ness’s statement provides no reason for thinking that White killed

Black, and the coherence of their testimonies, such as it is, lends no

additional support whatsoever.

Sometimes coherence appears to amplify the support that individ-

ual pieces of evidence confer on a hypothesis, other times it does not,

yet explaining what accounts for this difference is a notoriously diffi-

cult problem. Consider the example of Black’s murder. The case

against White collapses not because of a change in the coherence of

the witness testimonies per se, but rather because of a change in our

understanding of what produced the coherence. In the first act, White

killing Black is a good explanation for the otherwise improbable event

of both witnesses reporting that she killed him. In the second act,

however, the agreement between the witnesses is not explained by

White having killed Black but rather by their collusion.

The epistemic moral of the story, it would seem, is that whether or

not coherence provides justification depends on what produces the

coherence. Yet critics of the coherence theory of justification from

Alfred Ewing (1934) on have cautioned against pinning hopes for

the coherence theory on intuitive examples of coherence, like our

two-act murder mystery, in the absence of a detailed theory of

coherence.
In this paper we attempt to follow Ewing’s counsel by introducing a

formal framework to explicate what ‘produces the coherence’ means

and to explain various examples of coherentist justification, including

why independent witness testimony is epistemically better than hear-

say, all things considered. To be more specific, we use the theory of

causal Bayesian networks to represent different causal explanations of

what it is for evidence to cohere, and we show how those causal re-

lationships are a mediating factor in probabilistic accounts of coher-

ence and confirmation. We are not overly concerned with how

coherence and confirmation should be modelled. Our interest is the

relationship between probabilistic association (coherence) and incre-

mental confirmation, and how this relationship is influenced by prob-

abilistic constraints induced by casual structure. Thus, the paper is

foremost an examination of how probabilistic models of coherence,

confirmation, and causal systems fit together.1

1 Models of coherence or confirmation, or the relation between them, are discussed by

Bovens and Hartmann 2003a, 2003b, 2006, Douven and Meijs 2007, Fitelson 2003, Glass 2006,

Meijs 2004, Olsson 2002, Shogenji 1999, Wheeler 2009. Causal Bayes nets, the probabilistic
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We approach this project in three stages. After presenting basic

probabilistic models of coherence and confirmation, we first examine

the relationship between coherence and confirmation in purely prob-

abilistic terms — that is, without causal structure — through focused

correlation (Myrvold 1996, Wheeler 2009). Focused correlation is a

ratio of two quantities: the degree of probabilistic association of a

set of evidence, and the degree of probabilistic association of that

evidence conditional on a specific hypothesis. We offer two results

which give conditions under which focused correlation tracks con-

firmation. Next we look at the role that causal structure plays in

regulating the relationship between coherence and confirmation. We

consider three basic causal scenarios, each involving three individual

pieces of evidence that are individually relevant to a hypothesis but

more or less coherent when considered in pairs. In one case the co-

herence between the evidence sets is the same, as it is in the Black

murder example above, but the causal relationship between hypothesis

and evidence is different. In another case the coherence of the evidence

sets differs but the causal structure is the same. In a third case, evi-

dence sets exhibit distinct levels of coherence and distinct causal struc-

tures. Finally, we discuss how these two components, probability and

causal structure, combine to explain when coherence contributes to

incremental confirmation and when it does not, ceteris paribus.
The organization of the paper is as follows. In section 2 we identify

coherence with probabilistic association and introduce two well-

known measures of probabilistic association. In section 3 we introduce

a variety of well-known measures of incremental confirmation. In

section 4 we present the assumptions and models we will use to

give structure to the idea of ‘ceteris paribus’ when we compare evi-

dence sets that differ in their degree of coherence but are otherwise

equal. In section 5 we describe the idea of focused correlation and

extend results connecting coherence to confirmation through focused

correlation (Wheeler 2009). In section 6 we present the case for

making causal beliefs explicit, and trace several consequences for the

relationship between coherence and confirmation that arise solely

from the causal structure governing the evidence and hypothesis. In

section 7 we discuss our results, and contrast our approach to coher-

ence with the approach taken in Bayesian epistemology. We give

proofs of the main theorems in an appendix.

model of causal systems now standard in computer science and statistics, are discussed in Pearl

2000, and in Spirtes, Glymour, and Scheines 2000.
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2. Simple probabilistic models of coherence

There are many things one might mean by claiming that a set of

propositions is coherent. Perhaps the most common idea is simply

that the propositions are associated. According to this notion, the

coherence of a set of propositions rises along with the likelihood of

any specific subset being true given that the complement of that sub-

set is true. For example, the heights of biological siblings are asso-

ciated. This was C. I. Lewis’s approach (Lewis 1946, BonJour 1985),

and one of its advantages is that it can track logical relations among

propositions. For example, let dS#e abbreviate the schema dThe die

landed # side upe, and consider two sets of propositions, (T1) and

(T2), where each describes a set of possible outcomes from rolling a

fair die once.

(T1) {S1, S2, S5, or S6}

(T2) {S1 or S3, S1 or S3 or S5, S1 or S2 or S3}

Clearly the set (T2) is more coherent than (T1), in Lewis’s sense.

However, given that the die is fair, the coherence of either set reflects

only the logical relations among its propositions: the propositions in

(T1) are disjoint, whereas those in (T2) overlap.

Alternatively, we might consider two individuals, A and B, and two

sets of logically unrelated propositions that describe them.

(T3) {A is a cowboy, A drinks Bordeaux, A sings karaoke}

(T4) {B is a salaryman, B drinks sake, B sings karaoke}

Set (T4) is more coherent than (T3), again in Lewis’s sense of coher-

ence, but in neither case does the coherence (or absence thereof ) in

either set derive from logical relations among the propositions.

Instead, coherence within either set is due to contingent cultural

facts about cowboys and salarymen. While Lewis’s definition suc-

cumbs to counterexamples (Bovens and Olsson 2000, pp. 688–9),

most probabilistic measures of coherence derive from Lewis’s general

approach.

Although we will stick to a probabilistic model of coherence as

association, we explicitly exclude logical sources of coherence for

two reasons. First, we want to use causal models over sets of propos-

itions (evidence) that might be more or less coherent, and defining

causal relations over logically related events or variables is a philo-

sophical minefield. Second, in our view the technicalities that come
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with trying to handle logically related propositions are a side issue that
has done more to obscure than clarify philosophical questions about

coherence.

2.1 Notation
We assume throughout that binary variables represent propositions.

For example, suppose that E
1

is a binary evidence variable representing
a witness report, where (E

1
= true) codes the proposition expressing

‘the witness reported that fact 1 is the case’, written E
1

for short, and
(E

1
= false) codes for the proposition ‘the witness reports that fact 1

is not the case’, abbreviated by ‰E
1
. A straightforward account of

coherence based on probabilistic association2 is the deviation from
independence measure advanced by Tomoji Shogenji (1999):3

SðE1, E2,…, EnÞ ¼
PðE1 \ E2 \… \ EnÞ

PðE1ÞPðE2Þ… PðEnÞ

Still another measure of association for two variables, X and Y,
is Pearson’s correlation coefficient, which for binary variables is

defined as:

�X , Y ¼
PðX \ Y Þ � PðXÞPðY Þ

�X�Y

¼
PðXÞ PðY jXÞ � PðY Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PðXÞð1� PðXÞÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PðY Þð1� PðY ÞÞ
p ,

where the variance of a binary variable X is �2

X ¼ PðXÞð1� PðXÞÞ.

3. Confirmation

The debate about how to model confirmation is contentious and
might forever remain so. We have no desire to enter this debate

here. Our concern is only to examine how popular probabilistic con-
ceptions of incremental confirmation relate to popular probabilistic

notions of coherence.
Several measures of confirmation have been offered. A few of the

more popular options use probability to express how much

2 Other proposals along these lines have been made by Huemer 1997, Cross 1999, Olsson

2002, Fitelson 2003, Glass 2006, and Wheeler 2009.

3 Although in Bayesian epistemology this definition of association is attributed to Shogenji,

it pre-dates him in the general statistics literature by several decades.
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confirmation an evidence set E provides to a hypothesis H (Elles and

Fitelson 2002):4

r1ðH, EÞ ¼df log
PðHjEÞ

PðHÞ

lðH, EÞ ¼df log
PðEjHÞ

PðEj‰HÞ

koðH, EÞ ¼df

PðEjHÞ�PðEj‰HÞ

PðEjHÞþPðEj‰HÞ

Cohen (1977) and John Earman (1992) define the idea of incremental

confirmation of a hypothesis H by E
2

after we already know E
1
:

inc1ðH, E1, E2Þ ¼df PðHjE1, E2Þ � PðHjE1Þ

and there is a similar form based on the difference measure r
1

defined

above:

r2ðH, E1, E2Þ ¼df log
PðHjE1, E2Þ

PðHjE1Þ

An extension of incremental confirmation that normalizes for how

much room above P(HjE
1
) there is for E

2
to ‘boost’ the posterior of

H is:

inc2ðH, E1, E2Þ ¼df
PðHjE1, E2Þ � PðHjE1Þ

1� PðHjE1Þ

Although inc
1

and inc
2

are viewed as stand-alone measures, they also

may be combined to comprise measure Z (Crupi et al. 2007) for

propositions H and E in unconditional form, where inc
2
(H, E) = df

P(HjE) – P(H) / 1 – P(H) is used if P(HjE)� P(H), inc
1
(H, E) = df

P(HjE) – P(H) otherwise.

3.1 Confirmation and coherence
Using a measure of coherence (Coh) and a measure of confirmation

(Conf ) we can ask, all else equal, whether there is a relationship be-

tween the coherence of an evidence set and the confirmation that set

provides to a hypothesis. More formally, for two evidence sets E and

E0, a measure of coherence Coh and a measure of confirmation Conf,

4 The measures r
1
, l, and ko, are typically discussed in terms of evidence proposition E

representing an evidence set E of arbitrary size by a single conjunction of the propositions in

E. We will restrict our discussion in this paper mainly to evidence sets of size 2, i.e. jEj= 2.
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is it the case, and, if so, under what conditions is it the case, that more

‘coherence’ translates into more ‘confirmation’?5

(CB) Coh(E)>Coh(E0) ) Conf(H, E)>Conf(H, E0)

As many authors have noted, for measures of coherence involving only

association, the answer to the former question is clearly ‘No’. It is not

the association of the evidence that matters so much as the reason for

the association. Return to the Black murder and consider the differ-

ence between first-hand, independent testimony and hearsay.

Whatever the coherence of two separate witness reports and the co-

herence of two reports where one of the reports is hearsay, these two

evidence sets provide different confirmation to the hypothesis that

White killed Black. It is not the presence or absence of coherence

(association) between the witness reports alone that matters, but the

coherence in conjunction with the reason for the coherence.

Attempts to secure a connection between probabilistic models of

coherence, understood as simple association, and probabilistic models

of confirmation, either smuggle in a reason for the coherence — for

example, the partially reliable witness model of Bovens and Hartmann

(2003a, 2003b) — or rely upon a definition of coherence that is par-

tially built from the confirmation relation, as in Bovens and Hartmann

2003b. We discuss the partially reliable witness model further in sec-

tions 6 and 7.
Measures of coherence that explicitly include the hypothesis fare

better. Accounts of coherence that include the causal explanation of

the coherence should fare best of all.

4. Ceteris paribus

Ideally, we would like to compare the confirmation provided by two

sets of evidence that differ in their degree of coherence when all else

about the sets and their relationship to the hypothesis is equal. In this

section we attempt to formalize this idea.

In what follows we will assume that the domain D =<H, E> is the

hypothesis H = true and an evidence set E = {E
1
= true, … , En = true},

where H and E
1
, … , En are binary variables, none of which are logically

5 For our results to apply to inc
1
, we stipulate that inc

1
(H, E) stands for inc

1
(H, E

1
, E

2
) and

inc
1
(H, E9) stands for inc

1
(H, E

1
, E

3
). A similar remark will also apply with respect to inter-

pretations of inc
2

and r
2
.
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related. A variable assignment conveniently expresses either the con-

tent of a proposition or a witness report of a proposition. Extending

what follows to real-valued variables is certainly possible.

By insisting that no logical relations obtain, we mean that there are

positive probability distributions over D in which every pair of vari-

ables X and Y are probabilistically independent. This is not possible,

for example, in a setting in which E
1
= Mrs White killed Dr Black, and

E
2

= Mrs White killed Dr Black or Colonel Mustard killed Dr Black, for

in no positive distribution is E
1

independent of E
2
. We assume this

condition in order to activate the theory of causal Bayesian networks,

which requires variables that are unrelated logically.6

We assume that P(D), a probability distribution over a domain of

propositions D =<H, E>,7 is positive. We say that two distinct pieces

of evidence Ei and Ej are equally confirmatory for a hypothesis H iff

P(HjEi) = P(HjEj)

and

P(Hj‰Ei) = P(Hj‰Ej)

Consider two conditions:

(A1) Positive Relevance : all propositions in an evidence set E

are positively relevant to H, i.e. 8Ei 2 E, P(HjEi)> P(H)>
P(Hj‰Ei)

(A2) Equal Relevance : all propositions in an evidence set E are

equally confirmatory, i.e. 8Ei, Ej 2 E, P(HjEi) = P(HjEj),

P(Hj‰Ei) = P(Hj‰Ej)

We say that an evidence set whose elements satisfy (A1) with respect to

H is a positive evidence set for H, and a positive evidence set whose

elements satisfy (A2) with respect to H is an equally positive evidence

set (epe) for H.
To determine whether positive coherence of an evidence set entails

positive incremental confirmation of some hypothesis from that

evidence set, we consider only positive evidence sets. To compare

6 Witness reports whose contents are logically related are not themselves logically related in

this way, for it is perfectly possible to have a measure involving propositional variables V
1
:

(Witness 1 report = Mrs White did it), and V
2
: (Witness 2 report = Mrs White did it or Colonel

Mustard did it), in which V
1

and V
2

are independent.

7 Probability can be interpreted as credal or objective without consequence for the devel-

opment of the argument.
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the confirmatory power for H of two sets of evidence E and E0, where

E and E0 are identical in all respects except for their coherence, we first

look at epe sets and then relax this condition to allow evidence of

variable strength.

5. Focused correlation

Wheeler (2009) attempted to address the apparent disconnect between

Shogenji coherence and confirmation by invoking the idea of the co-

herence conditional on the hypothesis.

S E1, E2ð Þ ¼
PðE1, E2Þ

P E1ð ÞPðE2Þ

S E1, E2jHð Þ ¼
PðE1, E2jHÞ

P E1jHð ÞPðE2jHÞ

Using the ratio of the Shogenji coherence and the conditional

Shogenji coherence, a relation first introduced by Wayne Myrvold

(1996), Wheeler examined how focused correlation tracks

confirmation.
The focused correlation of a set of evidence E = {E

1
, … , En} with

respect to a hypothesis H is the ratio of the coherence/association of

the evidence conditional on H to the coherence/association of the

evidence simpliciter, which can be expressed generally as:

ForH E1, … , Enð Þ ¼df
S E1, … , EnjHð Þ

S E1, … , Enð Þ
¼

P HjE
1
, … , Enð ÞP Hð Þn�1

P HjE
1

ð Þ…P HjEnð Þ

For cases in which (A1) is satisfied, if the focused correlation of E with

respect to H is greater than 1, then there is more association in the

evidence set E given H than there is in the evidence alone. So, when

(A1) holds and ForH(E)> 1 we say that focused correlation is infla-

tionary, and when (A1) holds and ForH(E)< 1 we say that it is defla-

tionary. If ForH(E) = 1 we say that it is stable.
Wheeler (2009) connected inflationary focused correlation and

positive incremental confirmation. Before examining the role of

causal structure, we strengthen these connections for the case of

evidence sets with two variables.

Consider hypothesis H and evidence sets E = {E
1
, E

2
} and

E0 = {E
1
, E

3
} satisfying assumption (A1). For each of the confirmation

measures above, the confirmation of H on an evidence set E is positive

(greater than 0) if ForH(E) is inflationary.
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Proposition 1
If E is a positive evidence set for H, and ForH(E)> 1, then all of the

following hold:

r
1
(H, E)> 0

r
2
(H, E)> 0

l(H, E)> 0

ko(H, E)> 0

inc
1
(H, E)> 0

inc
2
(H, E)> 0

Proposition 1 says that for any evidence set E in which all the evidence

individually confirms H, that is, whenever H and E satisfy (A1), if E

has a focused correlation for H above 1, then E provides positive

confirmation of H by any of these six popular confirmation measures

of incremental confirmation. If a set of evidence has more conditional

Shogenji coherence on H than it does unconditionally, then the evi-

dence provides positive confirmation to H.
When we further assume that each piece of evidence is equally

confirmatory to H individually, that is, when we strengthen the as-

sumptions on evidence to satisfy both (A1) and (A2), then focused

correlation tracks confirmation:

Proposition 2
If E = {E

1
, E

2
} and E0 = {E

1
, E

3
}, and E [ E0 is an equally positive evi-

dence set for H, then all of the following inequalities are equivalent:

ForH(E)> ForH(E0)

r
1
(H, E)> r

1
(H, E0)

r
2
(H, E)> r

2
(H, E0)

l(H, E)> l(H, E0)

ko(H, E)> ko(H, E0)

inc
1
(H, E)> inc

1
(H, E0)

inc
2
(H, E)> inc

2
(H, E0)

So, in at least two important respects, focused correlation tracks con-

firmation and incremental confirmation, whereas simple coherence
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(association) does not. Looking at the formula for focused correlation,

it is immediate that two equally positive evidence sets can have equal

association while having unequal focused correlation and thus un-

equal confirmation.

The equal relevance condition is theoretically important for this

result because it isolates the role that coherence may or may not

play in boosting the confirmation of a hypothesis. But this condition

is too restrictive in practice, since positive evidence sets may have

unequal strengths. One therefore might worry that Proposition 2

tells us more about the strength of the epe condition than it does

about the virtues of focused correlation to track confirmation

strength. This worry is misplaced, however, since Schlosshauer and

Wheeler (2011) have shown how to generalize Proposition 2 for posi-

tive evidence sets without (A2) when the ratio of P(H j E
2
) to P(H jE

3
)

is bounded by a variable relevance condition:

(A2*) Variable Relevance:
ForHðE1, E3Þ

ForHðE1, E2Þ
< PðHjE

2
Þ

PðHjE
3
Þ
� 1

Clearly, Proposition 2 holds as the special case when PðHjE
2
Þ

PðHjE
3
Þ
¼ 1. Call a

positive evidence set satisfying (A2*) a variable, positive evidence set.

Then,

Proposition 2* (Schlosshauer and Wheeler 2011)
Suppose E = {E

1
, E

2
}, E0 = {E

1
, E

3
}, and E [ E0 is a variable, positive

evidence set for H, and confi ranges over the six incremental con-

firmation measures above. Then, ForH(E)> ForH(E0) if and only if

confi(H, E)> confi(H, E0).

Proposition 2* tells us how the equal relevance assumption can be

relaxed while preserving the bidirectional tracking between focused

correlation and confirmation. The key idea behind replacing (A2)

with (A2*) is that, if the individual strengths of relevant evidence

remain within the general limits specified by (A2*), this suffices to

guarantee bidirectional tracking. If instead one is interested in a spe-

cific incremental confirmation measure, or is interested in only uni-

directional tracking, even less stringent limits may apply

(Schlosshauer and Wheeler 2011).
Although focused correlation captures something about the rela-

tionship between coherence and confirmation, it does not represent

the whole story, pace Myrvold 2003.8 Consider again the two witnesses

8 Myrvold (2003) is not concerned with coherence per se, but instead proposes a normal-

ized form of focused correlation as an account of unified evidence for a hypothesis. While it is
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who have not conferred yet provide similar testimony implicating Mrs

White in the murder of Dr Black. A natural way to make sure that

witnesses do not coordinate their testimony about a hypothesis is to

ensure that both evidence variables are conditionally independent of

the hypothesis variable, a property that is sometimes called evidential

independence.

(A3) Evidential Independence: any propositions E
1
, … , En 2 E

are evidentially independent with respect to H iff both9

(+) P(E
1
, … , En jH) = P(E

1
jH)�…� P(En jH), and

(–) P(E
1
, … , En j‰H) = P(E

1
j‰H)�…� P(En j‰H)

If we assume (A3) and positive relevance (A1) with regard to

E = {E
1
, E

2
} and H, then the focused correlation of E

1
and E

2
with

respect to H is strictly less than 1, thus the focused correlation is

deflationary. However, the incremental confirmation of the hypothesis

may still be positive.10 Notice that this case is not a counterexample to

Proposition 1 since the antecedent is not satisfied. However, it does

show that Proposition 1 does not apply in the seemingly ideal case of

independent witness testimonies. We return to this point in section 7.
Why does focused correlation capture something about the rela-

tionship between coherence and confirmation? And why does it work

in some circumstances but not in others? The answer to both of these

questions, we believe, depends on the causal structure governing the

system.

true that focused correlation controls all the parameters that determine the behaviour of the

most common incremental confirmation measures (and then some), there are logical/causal

structures which regulate the relationships between evidence and hypothesis that confound the

use of focused correlation as a stand-alone unified measure. Distributions satisfying the prop-

erties (A1) and (A3) are one example. See the discussion of proposition 3.

9 The positive (+) condition together with the negative condition (–) entails that (A3)

defines evidentially independent variables with respect to a hypothesis variable; alternatively,

we may stick to propositions and talk about each condition as one of two weaker variants of

(A3), namely (A3
+) and (A3

–).

10 To see that focused correlation is deflationary, notice that the numerator is 1, due to

independence (A3), but the denominator is greater than 1, due to positive relevance (A1).

Thanks to David Danks for this point. To see that incremental confirmation is positive in this

case, see Proposition 3 in Sect. 6.
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6. Causal structure

The notion that causal relationships between hypothesis and evidence

should play an important role in a theory of coherence is not a new

one. Olsson (2002) remarks that:

We may safely conclude that coherence is not truth conducive if the

reports are entirely dependent on each other … On the other hand, it is

implausible to require full independence for coherence to have the

desirable effect; intuitively, a tiny influence of one report on the other does

not cancel out the effect of coherence entirely. (2002, p. 259)

What Olsson means by ‘the reports are entirely dependent on each

other’ is that they directly cause each other. Similarly, Bovens and

Hartmann (2003a, 2003b) describe a witness testimony model incor-

porating (A3) and an analogue to our (A1), arguing that ‘coherence

will play a confidence boosting role when the information sources are

independent and partially reliable’ (2003b, p. 604). They too have at

least a partially specified causal situation in mind:

The coherence of the story is of no consequence when the sources have had

a chance to confer or when the sources are reporting what they inferred

from the facts that other sources are reporting on … (2003b, p. 604)

Moreover, even BonJour has remarked on the role that causal facts

might play in coherentist justification:

The fact that a belief was caused in this way rather than some other can

play a crucial role in a special kind of coherentist justification. The idea is

that the justification of these perceptual or observational beliefs, rather

than merely appealing to the coherence of their propositional contents

with the contents of other beliefs (so that the way that the belief was

produced would be justificationally irrelevant), appeals instead to a general

belief that beliefs caused in this special way (and perhaps satisfying further

conditions as well) are generally true. (2002, pp. 206–7)

Our thesis is that causal facts are relevant to coherentism. Our pro-

posal is to represent causal relationships directly within a theory of

coherence using causal Bayes nets.

6.1 Causal Bayes nets
The role of causal structure can be made more explicit and formal by

using causal Bayes nets, which provide all the apparatus needed to

represent causal systems,11 and to characterize the constraints such

structures impose on the probability distributions they might

11 See Spirtes, Glymour, and Scheines 2000, and Pearl 2000.
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produce. Let a causal graph G = {V, E} be a set of random variables V

and a set of directed edges E such that Ei= Ej 2 E if and only if Ei is a

direct cause of Ej relative to V. The set of direct causes of a variable are

its parents. A set of variables V is causally sufficient just in case for

every pair of variables Vi ,Vj 2 V, the direct common causes of Vi ,Vj

are also in V.
An acyclic causal graph G over a causally sufficient set of variables V

and a probability distribution P(V) satisfy the Causal Markov Axiom

(Spirtes, Glymour, and Scheines 2000) just in case P(V) factors

according to the causal graph:

PðV Þ ¼
Y

X2V

PðXjparentsðXÞÞ

This factorization12 imposes independence constraints on the probability

distributions — the set of P(V)s — that can be generated by the causal

graph. Those independence constraints are characterized by the graph-

theoretic relation of d-separation (Pearl 1988), and they can be viewed as

the non-parametric consequences of qualitative causal structure.

An additional axiom typically applied to causal Bayes nets is the

Faithfulness assumption (Spirtes et al. 2000). A graph G and a prob-

ability distribution P(V) over the variables13 in G satisfy the

Faithfulness Axiom just in case the only independence relations in

P(V) are those entailed by the Causal Markov axiom.14

If causal structure alone plays a mediating role between coherence

and confirmation, then that connection should be through the inde-

pendence constraints in distributions that are Markov and Faithful

to the causal graph, which accurately describes the qualitative causal

relationships between the propositions comprising the evidence and

the hypothesis.

6.2 The Common Cause Model
One easy application of causal Bayes nets to the coherence debate is to

causally interpret the model of partially reliable, independent witness

reports discussed by Bovens and Hartmann (2003a), Olsson (2002),

and others. Figure 1, in which each Ri is a binary fact variable, Repi a

binary witness report variable, and H a (hidden) binary hypothesis

12 If X has no parents, then P(X j parents(X)) = P(X).

13 Again, the Faithfulness Axiom applies to causally sufficient sets of variables.

14 Pearl’s d-separation relation characterizes the independence relations entailed by the

Causal Markov axiom for any acyclic graph (Pearl 1988).
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variable gives the most plausible interpretation of the partially reliable

witness report model of Bovens and Hartmann.
A simplification of the Bovens-Hartmann model is the single-factor

Common Cause Model in Figure 2.
Interpreted as a causal Bayes net, this model entails (A3); that is,

within a single-factor Common Cause Model, any pair of evidence

variables are independent conditional on H:

8i, j, Ei ’ Ej jH, (i 6¼ j)15

How then does the causal structure in such a model mediate the

relationship between coherence and confirmation?

The answer is that the coherence between pieces of evidence in this

model is entirely due to the relationship between the hypothesis and

each piece of evidence individually. More precisely, the correlation

between any pair of evidence variables Ei and Ej in a single-factor

Common Cause Model is just the product of the correlations between

Ei and H and Ej and H.16 In Figure 2, for example, let a parameterize the

Repn

Rn

Rep2

R2

Rep1

R1
… 

H 

…

Figure 1: Common Cause Model for Bovens and Hartmann

a c 
b 

H 

E1 E2 ….. En

Figure 2: Single-factor Common Cause Model

15 Ei ’ Ej jH is to be read: Ei is independent of Ej conditional on H, for i 6¼ j, where Ei, Ej,

and H are random variables, or sets of random variables. If Ei, Ej, and H are naturally

interpreted as events, then they can just as easily be represented as a random variable with

binary outcome, e.g. Ei = 0, for the event did not occur, and Ei = 1, for the event occurred.

16 In a singly connected CBN with only binary variables, the correlation of any two vari-

ables is the product of the correlations between every pair of variables connected by an edge
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correlation between the hypothesis H and the evidence E
1
, b the cor-

relation between H and E
2
, and c the correlation between H and En.

Then,

rE1, E2
= ab

rE1, En = ac

rE2, En = bc

This leads to the conjecture that, in a single-factor Common Cause

Model that satisfies positive relevance (A1) and in which the prior

probabilities of E
2

and E
3

are the same, if rE1, E2
> rE1, E3

, then after

knowing E
1
, the incremental confirmation provided by E

2
to H exceeds

that provided by E
3
. More formally, we have the following proposition

about the relationship between correlation and confirmation in this

class of models:

Proposition 3
If {E

1
, E

2
, E

3
} satisfies positive relevance (A1) and independence (A3)

with respect to H, and P(E
2
) = P(E

3
), then rE1, E2

> rE1, E3
, inci(H,

E
1
, E

2
)> inci(H, E

1
, E

3
)

In single-factor Common Cause Models, coherence among the evi-

dence arises from the individual relationships between the hypothesis

and the evidence. So, for example, it is impossible within this class of

models for two sets of equally positive and independent evidence to

have different levels of correlation or different levels of Shogenji

coherence:

Proposition 4
If E = {E

1
, E

2
} and E0 = {E

1
, E

3
} satisfy positive relevance (A1), equal

relevance (A2), and independence (A3) with respect to H, and

P(E
2
) = P(E

3
), then rE1, E2

= rE1, E3
and S(E

1
, E

2
) = S(E

1
, E

3
)

on the trek between them (Danks and Glymour 2001). Thus, if X, Y, Z occur in a singly

connected CBN, with Y on the trek between X and Z, then: rXZ = rXY * rYZ. The idea is simple,

but the jargon requires some explanation. A network is singly connected just in case there is at

most one undirected path between every pair of variables. A trek from X to Y is either a

directed path from X to Y, a directed path from Y to X, or the concatenation of two directed

paths from a third variable Z to both X and Y. For example, the only trek between Rep
1

and

Rep
2

in Figure 1 is: Rep
1
 R

1
 H = R

2
= Rep

2
. In Figure 2, the only trek between E

1
and E

2

is: E
1
 H = E

2
. As all single-factor Common Cause Models are singly connected and because

all connections are treks, the correlation between any two pieces of evidence Ei and Ej (i 6¼ j) is

the product of the correlation between Ei and the hypothesis H and the correlation between H

and Ej.
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Independence (A3) is necessary for Proposition 4, and single-factor

Common Cause Models entail (A3). Interestingly, any model in which

the hypothesis d-separates the evidence also entails (A3). So, for ex-

ample, Figure 3 also satisfies (A3).
Moreover, if H and all Ei are binary propositional variables, then

any probability distribution that can be parameterized by the

single-factor common cause structure in Figure 2 can also be para-

meterized by Figure 3, and vice versa.

One motivation for the Common Cause Model arises from the view

that coherence should confirm a hypothesis exactly when the explan-

ation provided by that hypothesis, when true, is the source of the

coherence. Since causes explain and common causes produce coher-

ence, Common Cause Models would seem to fit the bill. Jonathan

Cohen (1977, p. 98) discusses an explanation-based conception of

coherence in which the co-occurrence of a set of propositions is

explained by a particular hypothesis. Cohen’s explanation-based

coherence contrasts the probability of the co-occurrence of the evi-

dence when the hypothesis is true against the probability of that

co-occurrence when the hypothesis is false. As this is basically a vari-

ation of the measure l from section 3, we might formalize Cohen’s idea

as follows:

C1ðE1, E2, … , En, HÞ ¼
PðE1, E2, … , EnjHÞ

PðE1, E2, … , Enj‰HÞ

A similar measure assesses the ratio of how much increase in the

probability of co-occurrence of the evidence is gained from supposing

the hypothesis false to supposing it true, over how much could have

been gained:

C2ðE1, E2, … , En, HÞ ¼
PðE1, E2, … , EnjHÞ � PðE1, E2, … , Enj‰HÞ

1� PðE1, E2, … , Enj‰HÞ

How does Cohen’s explanation-based conception of coherence relate

to confirmation in Common Cause Models? In the simplest case, in

which two evidence sets that share a common member are compared,

HE1

E2
… En

Figure 3: Alternative to Common Cause Model
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E = {E
1
, E

2
} and E0 = {E

1
, E

3
}, this amounts to asking, if the explana-

tion-based association of E is larger than E0, whether that difference in

association entails that E
2

provides more incremental confirmation

than E
3
. In other words the question is, for i = 1,2, does

Ci(E, H)>Ci(E0, H) entail inc
1
(H, E

1
, E

2
)> inc

1
(H, E

1
, E

3
)? Interest-

ingly the answer is ‘No’ unless H [ E [ E0 satisfies (A1), (A2), and

(A3),17 in which the antecedent cannot be satisfied since Ci(E, H) must

equal Ci(E0, H).18

6.3 Coherence and causation
So far we have only considered causal models that entail (A3). But

since not every causal model satisfies (A3), it is natural to consider

how causal structure can constrain or mediate the relationship

between coherence and confirmation in general. To begin to address

this question, consider a causal model (Figure 4) that simultaneously

represents three important limit cases:

(1) Independence (A3): all of the coherence among the evidence

is because of the hypothesis (e.g. E = {E
1
, E

2
})

(2) No degree of coherence among the evidence is because of the

hypothesis (e.g. E0 = {E
1
, E

3
})

(3) The evidence has no coherence, but each piece of evidence is

individually relevant to the hypothesis (e.g. E00 = {E
1
, E

4
})

White kills
Black

H

White is bankrupt
E4

Windfall for Black
E1

The newspaper reports
that Black is rich

E3

Miss Scarlett
reports that H

E2

Col. Mustard
reports that H

E5

Professor Plum
reports that H

E6

Figure 4: Causal Model of the Murder of Dr Black

17 They satisfy (A3) in virtue of the causal structure.

18 This result contrasts with Olsson’s (2005, pp. 126–33), who assumes (A1) and (A2) but

not (A3).
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The hypothesis of interest, H, is whether Mrs White murdered Dr

Black. There are several pieces of evidence relevant to this hypothesis.

E
1

is whether or not Black receives a large inheritance prior to his death,

and E
4

is whether or not White is recently bankrupt. We code E
1
= 1 as

‘windfall’ and E
4

= 1 as ‘bankrupt’ so that both are positively relevant to

H. Both of these facts are evidence for, but also causes of, the hypothesis

of interest. We will assume that whether or not White is recently bank-

rupt has no causal connection to Black inheriting a fortune, so E
1

and E
4

are causally and probabilistically independent. Proposition E
3

is the

published newspaper report that Dr Black struck it rich. As any

reader of newspapers knows, gossip columns are only partially reliable.19

Still, we assume that such a report is an effect of whether or not Dr

Black is in fact wealthy, and probabilistically independent of everything

else given the state of his finances. Finally, we have three testimonies on

H by three partially reliable witnesses: Miss Scarlett (E
2
), Colonel

Mustard (E
5
), and Professor Plum (E

6
).

The independence relations entailed by the Causal Markov axiom

applied to this model are numerous:

(1) {E
1
, E

3
, E

4
} ’ {E

2
, E

5
, E

6
} jH

(2) E
2

’ E
5
jH, E

2
’ E

6
jH, E

5
’ E

6
jH

(3) {E
1
, E

3
} ’ E

4

(4) E
1

’ E
4
j E

3

(5) {E
2
, E

5
, E

6
} ’ E

3
j any non-empty subset of {E

1
, H}

(6) H ’ E
3
j any subset of {E

1
, E

2
, E

4
, E

5
, E

6
} that contains E

1

20

We assume that any joint probability distribution over these variables

is Faithful to the causal graph in Figure 4. That is, no other independ-

ence relations over these variables hold in P.21

Consider first the two evidence sets, E = {E
1
, E

2
} and E0 = {E

1
, E

3
}.

The coherence in E is for the same reason that different effects of a

common cause are coherent: any coherence between E
1

and E
2

is the

result of the connection between E
1

and H and between H and E
2
. The

19 In the sense of Bovens and Hartmann (2003a); that is, P(E
3
j‰E

1
)� P(E

3
j E

1
)< 1.

20 The independence relations entailed by the graph are over variables. Since the variables

are binary, this independence condition encodes both E
1

’ E
2
jH and E

1
’ E

2
j‰H. A similar

remark applies for each independence relation in the list that follows.

21 Faithfulness is explained in Ch. 3 of Spirtes, Glymour, and Scheines 2000.

Mind, Vol. 0 . 0 . 2013 � Wheeler and Scheines 2013

Coherence and Confirmation through Causation 19

 by guest on June 22, 2013
http://m

ind.oxfordjournals.org/
D

ow
nloaded from

 

http://mind.oxfordjournals.org/


evidence set E0 marks the other extreme — no coherence between E
1

and E
3

is the result of the correlation between E
1

and H and between H

and E
3
. If E and E0 have identical coherence, do they afford different

degrees of confirmation to H? Since both sets share E
1
, this reduces to

the question of whether the incremental confirmation for H afforded

by E
2

always exceeds that of E
3
, or vice versa, or neither.

By the causal structure of this model, H and E
3

are independent

conditional on E
1
, P(H j E

1
) = P(H jE

1
, E

3
), thus E

3
provides zero in-

cremental confirmation after E
1
. Thus, the question of whether E and

E0 afford different degrees of confirmation to H reduces to asking

whether E
2

provides positive incremental confirmation to H condi-

tional on E
1
, that is, P(H j E

1
, E

2
)> P(H j E

1
). The answer is ‘Yes’, and it

makes no difference how strong the relationship between H and E
2

is,

so long as it is positive.

Proposition 5
If E = {E

1
, E

2
} and E0 = {E

1
, E

3
} are positive evidence sets for H, then

for any probability distribution P such that P(H, E
1
, E

2
, E

3
} that is

Markov and Faithful to the causal graph in Figure 4, inc
1
(H, E

1
, E

2
)

> inc
1
(H, E

1
, E

3
) with respect to P.

So coherence plays no role whatsoever in this case. It is the causal

structure of the situation that determines the result.

6.4 No coherence
Now consider evidence sets E = {E

1
, E

2
} and E00 = {E

1
, E

4
}. From the

causal graph in Figure 4, we know that E
1

and E
4

are probabilistically

independent, so E00 has zero association, which means zero correlation

and a Shogenji coherence equal to 1. Is it nevertheless possible for E00 to

provide more confirmation to H than E, even though E has positive

coherence? The answer, in a surprisingly wide range of cases, is ‘Yes’.

Proposition 6
In cases for which E and E00 are equally positive evidence (epe)

sets for H, then in any probability distribution P(H, E
1
, E

2
, E

4
} that

is Markov and Faithful to the causal graph in Figure 4,

inc
1
(H, E

1
, E

4
)> inc

1
(H, E

1
, E

2
) if and only if a/b> S(E

1
, E

2
), where

� ¼
PðHjE1, E4Þ

PðHjE1Þ
and � ¼

PðHjE4Þ

PðHÞ
¼

PðH, E4Þ

PðHÞPðE4Þ

The incremental confirmation from an evidence set with no coherence

(E00) exceeds the confirmation from an evidence set with positive
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coherence (E) just in case the ratio of the incremental confirmation
provided by E

4
after knowing E

1
to the confirmation provided by E

4

alone is greater than coherence of E.
Clearly these propositions are just the tip of the iceberg. Most are

restricted to simple evidence sets that overlap, others require fairly
strong assumptions, and others involve only particular measures of

coherence and confirmation. What we hope is clear, however, is that a
programme in which one directly models the causal reason for coher-

ence will aid in the project of explicating the relationship between
coherence and confirmation.

7. Discussion

The results in Propositions 1 and 2, when considered in the context of
causal Bayes nets, can appear confusing and counterintuitive.

Proposition 1 gives a sufficient condition for positive confirmation of
a hypothesis H from an evidence set E. If the coherence of E, condi-
tional on H, is greater than the coherence of E simpliciter, that is, if

ForH(E)> 1, then E confirms H.22 Consider a few simple versions of the
structures we have considered earlier, which are displayed in Figure 5,

again assuming positive relevance for each piece of evidence Ei.
In graph A, ForH(E)< 1. This is because E

1
and E

2
are independent,

so S(E) = 1, but E
1

and E
2

are negatively associated conditional on H,
so S(EjH)< 1. In graphs B and C, ForH(E) is also less than 1. This is

because E
1

and E
2

are independent conditional on H, so S(E jH) = 1,
but E

1
and E

2
are positively associated, so S(E)> 1. In elaborations of

each of these structures that involve adding a causal connection be-

tween E
1

and E
2
, it is possible to parameterize the model such that

ForH(E)> 1, but in the simple structures pictured in Figure 5,

Proposition 1 cannot be activated because the antecedent is false.
Beginning with a piece of evidence E

1
that is a cause of H, as in

graphs A and B, and choosing between getting a new piece of evidence
E

2
that is a cause of H (graph A) or an effect of H (graph B), where

both E
1

and E
2

are individually equally correlated with H, which struc-
ture ought one to prefer if the goal is to maximize the confirmation of

H? If E
2

is selected to be a cause of H (graph A), then one would be
opting for evidence that has no coherence. If E

2
is selected to be an

effect of H (graph B), then one would be opting for evidence that has

22 Always assuming positive relevance, (A1), of each member of E.
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all of its coherence through H. As Proposition 6 shows, neither choice

dominates; the outcome depends on a subtle inequality.

Proposition 2 demonstrates that focused correlation tracks confirm-

ation when comparing a pair of equal positive evidence sets for H or,

within bounds, a pair of variable positive evidence sets for H.23

Readers familiar with the impossibility theorems of Erik Olsson

(2005) and Luc Bovens and Stephan Hartmann (2003a) may wonder

how this can be true. Olsson’s result, for example, shows that ‘there

are no informative coherence measures that are truth-conducive cet-

eris paribus in a basic Lewis scenario’ (Olsson 2005, p. 213). The ceteris

paribus conditions for Olsson’s result, partial reliability and independ-

ence, are shared with Bovens and Hartmann’s witness model, and

those conditions correspond to our (A1) and (A3), respectively.

There are subtle and important differences between these witness

models and our own framework, but we view (A1) and (A3) to be

the signature of Bayesian witness models, and our Propositions 3 and

4 show how evidential coherence is completely determined by the

strength of individual evidence within Bayesian witness models.

Specifically, Proposition 4 is our simplified and generalized version

of Olsson’s impossibility result. This result shows that there can be no

difference in coherence between equally positive relevant evidence sets

for H (A2) which satisfy evidential independence and P(Ei) = P(Ej), for

all individual pieces of evidence. Proposition 3 shows that any differ-

ence in coherence between two positive evidence sets will be directly

due to a difference in evidential strength.
This brings us back to the beginning of this essay and how to ex-

plain why colluding witnesses offer less compelling testimony than

independent witnesses for the claim that White killed Black.

Proposition 5 tells us that collusion is always worse than positive evi-

dence offered by independent witness reports. Neither evidential co-

herence nor our own impossibility result about Bayesian witness

models holds any sway.

E1

H
E2

E1

H
E2

E1

H
E2

A B C

Figure 5: Three different hypothesis–evidence relationships

23 For evidence sets of size 2 with a common variable.

Mind, Vol. 0 . 0 . 2013 � Wheeler and Scheines 2013

22 Gregory Wheeler and Richard Scheines

 by guest on June 22, 2013
http://m

ind.oxfordjournals.org/
D

ow
nloaded from

 

http://mind.oxfordjournals.org/


Our approach to the riddle of coherence is different from Bayesian

epistemology in at least four respects. First, we reject a central tenet of

Bayesian epistemology, which is that the relationship between coher-

ence and likelihood of truth is fully determined by probability alone

(Bovens and Hartmann 2003a, pp. 12, 27). In our view, it is necessary to

take into consideration the causal structure that might regulate the

relationships between evidence and a hypothesis. Second, we think

that it is a mistake to focus on the specific formulation of ‘truth con-

duciveness’ and ‘coherence’ before understanding the general principles

for how association, incremental confirmation, and causal structure fit

together. Our strategy has been to start with what we believe are the

most common incremental confirmation measures and very basic

approaches to measuring probabilistic association and to explore gen-

eral principles for how the two constrain one another given various

causal structures. Third, on the Bayesian view, models of witness testi-

mony are believed to characterize an ideal class of models within which

to explore the general relationship between measures of coherence and

likelihood of truth. In our view, this has it exactly backwards. What is

surprising about Bayesian witness models is that, while designed to

capture a pre-theoretic truth about ideal witness testimony which ap-

pears to be charitable to coherence theory, they specify conditions that

are inimical to understanding how probability and likelihood of truth

fit together.24 Last, although there are some exceptions (Douven and

Meijs 2007), most Bayesian coherence measures attempt to combine

logical and probabilistic notions of coherence. However, we think that

these two notions are better kept separate.

8. Conclusion

The project of explicating notions of coherence and confirmation has

occupied philosophers of science for hundreds of years. Further, vir-

tually every philosopher since William Whewell who has discussed

both notions has connected them. Recently, many have tried to

model these ideas and the connection between them using only the

probability calculus. Attempts to connect coherence simpliciter to con-

firmation are bound to fail, as probabilistic models of coherence make

no reference to either the reason for coherence or the reason any piece

of evidence in a set of evidence should relate to the hypothesis. In our

24 However, the conditional independence assumption of Bayesian witness models is reli-

ability conducive. See Wheeler 2011.
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view, any such efforts ought to include, explicitly in the formalism,

both the reason the evidence is coherent and how the evidence is

causally related to the hypothesis. We have tried to argue that focused

correlation and causal structure move in this direction.

Since evidence can be causally connected to other evidence and to

the hypothesis in virtually any way possible, it turns out to be very

useful to explicitly and formally model the causal structure governing

the evidence and the hypothesis. Even when one connects causal struc-

ture to probability only qualitatively through independence and con-

ditional independence, quite a lot about the relationship between

coherence and confirmation can be adduced. In cases in which all

items of evidence are effects of the hypothesis but are otherwise caus-

ally independent, coherence and confirmation are tightly connected.25

In cases in which the coherence between the items of evidence has

nothing causally to do with the hypothesis, coherence and confirm-

ation are entirely disconnected. In cases in which pieces of evidence

are not caused by the hypothesis nor cause each other, the story is

more complicated, but extremely rich none the less.
We have not offered a proof that focused correlation and/or causal

structure are the only keys to the castle, nor do we think one is forth-

coming. Nor have we offered anything approaching a complete theory

of coherence and confirmation through focused correlation and causal

structure. For one thing, we have concentrated on evidence sets of size

2, and difficulties loom for attempts to make comparisons of larger

evidence sets (Bovens and Hartmann 2006). Focused correlation is

defined for arbitrary-sized information sets, but confirmation, covari-

ance, and correlation are here conceived of as binary relationships, or

ternary in conditional form. Thus, studying the relationship between

the focused correlation of evidence sets greater than size two and in-

cremental confirmation, covariance, or Pearson’s correlation, will re-

quire a decision as to how to partition the evidence set. For either inc
1

or inc
2
, for example, there is more than one incremental confirmation

question that is compatible with a single focused correlation problem

25 Philosophers, statisticians, and computer scientists have learned a lot about how to tell,

from data, whether or not a set of measured variables are indeed effects of an unmeasured

common cause and otherwise causally independent, and so this case is epistemically particu-

larly exciting. See Silva, Scheines, Glymour, and Spirtes (2006), Junker and Ellis (1997), and

Glymour (1998).
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involving an evidence set of size greater than two. To expect otherwise

is a category mistake, and negative results should be no surprise.26
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Appendix

Proposition 1
Theorems 1–6 establish that positive focused correlation of a positive

evidence set E for H entails positive confirmation of H given E. We

omit countermodels falsifying the converse relation.

Theorem 1
Let {E

1
, E

2
} be a positive evidence set for H. Then, ForH (E

1
, E

2
)> 1)

inc
1
(H, E

1
, E

2
)> 0.

Proof

We wish to show that, for any positive evidence set {E
1
, E

2
} for H,

ForH (E
1
, E

2
)> 1 only if P(H j E

1
, E

2
) – P(H jE

1
)> 0. Suppose ForH

(E
1
, E

2
)> 1. Both P(H j E

1
)> P(H) and P(H j E

2
)> P(H) by (A1).

We now show that P(H j E
1
, E

2
)> P(H j E

1
).

ForHðE1, E2Þ ¼
PðHjE1, E2Þ

PðHÞ
�

PðHÞPðE1Þ

PðH, E1Þ
�

PðHÞPðE2Þ

PðH, E2Þ
> 1

¼
PðE1, E2, HÞ

PðH, E2Þ
�

PðE1Þ

PðH, E1Þ
�

PðHÞPðE2Þ

PðH, E2Þ
> 1

¼
PðE1, E2, HÞ

PðH, E2Þ
�

PðE1Þ

PðH, E1Þ
� " > 1, where " < 1 by ðA1Þ; So,

¼ PðHjE1, E2Þ � " > PðHjE1Þ:

Thus, whenever {E
1
, E

2
} is positive evidence for H and ForH

(E
1
, E

2
)> 1, then inc

1
(H, E

1
, E

2
)> 0. #
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Theorem 2
Let {E

1
, E

2
} be a positive evidence set for H. Then, ForH (E

1
, E

2
)> 1)

inc
2
(H, E

1
, E

2
)> 0.

Proof
From Theorem 1, whenever {E

1
, E

2
} is positive evidence for H and

ForH (E
1
, E

2
)> 1, it follows immediately that inc

2
(H, E

1
, E

2
)> 0

unless PðHjE1Þ ¼ 1, but P(H jE
1
) cannot equal 1, by (A1). Thus,

whenever {E
1
, E

2
} is positive evidence for H and ForH (E

1
, E

2
)> 1,

then inc
2
(H, E

1
, E

2
)> 0. #

Theorem 3
Let {E

1
, E

2
} be a positive evidence set for H. Then, ForH (E

1
, E

2
)> 1)

r
1
(H, E

1
, E

2
)> 0.

Proof
By (A1), P(H)/P(H j E

1
)< 1 and P(H)/P(H j E

2
)< 1. So, given ForH

(E
1
, E

2
)> 1, P(H jE

1
, E

2
)> P(H). It follows immediately that

log[P(H jE
1
, E

2
) / P(H)]> 0. #

Theorem 4
Let {E

1
, E

2
} be a positive evidence set for H. Then, ForH (E

1
, E

2
)> 1)

r
2
(H, E

1
, E

2
)> 0.

Proof
By theorem 1, if ForH (E

1
, E

2
)> 1 then P(H j E

1
, E

2
)� "> P(H jE

1
),

and "< 1. Then P(H j E
1
, E

2
)> P(H jE

1
). Therefore, log[P(H j E

1
,

E
2
) / P(H j E

1
)]> 0. #

Theorem 5
Let {E

1
, E

2
} be a positive evidence set for H. Then, ForH (E

1
, E

2
)> 1)

ko(H, E
1
, E

2
)> 0.

Proof

By (A1), P(H)/P(H jE
1
)< 1 and P(H)/P(H jE

2
)< 1. So given ForH

(E
1
, E

2
)> 1, then P(H j E

1
, E

2
) / P(H)> 1. Hence,

(i) P(H j E
1
, E

2
)> P(H jE

2
)> P(H)

therefore

(ii) P(‰H j E
1
, E

2
)< P(‰H jE

2
)< P(‰H)

Now we wish to show that PðE1, E2jHÞ�PðE1, E2j‰HÞ
PðE1, E2j‰HÞþPðE1, E2j‰HÞ

> 0.
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Observe:

(iii) PðH, E1, E2Þ

PðHÞPðE1, E2jHÞþPðE1, E2j‰HÞ
�

Pð‰H, E1, E2Þ

Pð‰HÞPðE1, E2jHÞþPðE1, E2j‰HÞ
> 0

therefore

(iv) PðH, E1, E2Þ

PðHÞ � �
Pð‰H, E1, E2Þ

Pð‰HÞ � > 0

Hence, P(E
1
, E

2
j H)� 1/a> P(E

1
, E

2
j‰H)� 1/a. Therefore, ko(H,

E
1
, E

2
) iff P(E

1
, E

2
j H)> P(E

1
, E

2
j‰H) iff

(v) PðHjE1, E2ÞPðE1, E2Þ

PðHÞ
> Pð‰HjE1, E2ÞPðE1, E2Þ

Pð‰HÞ

which is ensured by (i) and (ii). So, ForH (E
1
, E

2
)> 1 entails ko(H, E

1
,

E
2
)> 0 whenever {E

1
, E

2
} is positive evidence for H. #

Theorem 6
Let {E

1
, E

2
} be a positive evidence set for H. Then, ForH (E

1
, E

2
)> 1)

l(H, E
1
, E

2
)> 0.

Proof

By (A1), P(H)/P(H j E
1
)< 1 and P(H)/P(H j E

2
)< 1, and by

hypothesis we suppose that focused correlation is greater than 1.

Therefore, from Theorem 5, since these conditions entail P(E
1
, E

2
j

H)> P(E
1
, E

2
j‰H), it follows immediately that log[P(E

1
, E

2
j H) /

P(E
1
, E

2
j‰H)]> 0. #

Proposition 2

Lemma 1
Let {E

1
, E

2
} and {E

1
, E

3
} are epe-evidence sets for H. Then,

(a) If (P(H j E
1
, E

2
)P(H) / P(H j E

1
) P(H jE

2
)) = ((P(H j E

1
, E

3
)

P(H)) / P(H jE
1
) P(H j E

3
)), then P(H jE

1
, E

2
) = P(H j E

1
, E

3
)

(b) If (P(H j E
1
, E

2
)P(H) / P(H j E

1
) P(H jE

2
))> ((P(H j E

1
, E

3
)

P(H)) / P(H jE
1
) P(H j E

3
)), then P(H jE

1
, E

2
)> P(H jE

1
, E

3
)

Now we prove proposition 2 by the following seven theorems. To

shorten the proofs, we use the notation ‘X=Y’ to abbreviate two

cases, (i) when X>Y and (ii) when X = Y.

Theorem 7
ForH (E

1
, E

2
)� ForH (E

1
, E

3
) ) inc

1
(H, E

1
, E

2
)� inc

1
(H, E

1
, E

3
).

(i) If {E
1
, E

2
} and {E

1
, E

3
} are epe-evidence sets for H and ForH

(E
1
, E

2
) = ForH (E

1
, E

3
), then inc

1
(H, E

1
, E

2
) = inc

1
(H, E

1
, E

3
)
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(ii) If {E
1
, E

2
} and {E

1
, E

3
} are epe-evidence sets for H and ForH

(E
1
, E

2
)> ForH (E

1
, E

3
), then inc

1
(H, E

1
, E

2
)> inc

1
(H, E

1
, E

3
)

Proof

By Lemma 1a for equality case and 1b for inequality, P(H jE
1
,

E
2
)= P(H jE

1
, E

3
). Then P(H j E

1
, E

2
)� P(H jE

1
)= P(H jE

1
, E

3
)�

P(H jE
1
). So, ForH (E

1
, E

2
)� ForH (E

1
, E

3
) ) inc

1
(H, E

1
, E

2
)�

inc
1
(H, E

1
, E

3
). #

Theorem 8
inc

1
(H, E

1
, E

2
)� inc

1
(H, E

1
, E

3
) ) inc

2
(H, E

1
, E

2
)� inc

2
(H, E

1
, E

3
)

(i) If {E
1
, E

2
} and {E

1
, E

3
} are epe-evidence sets for H and inc

1
(H,

E
1
, E

2
) = inc

1
(H, E

1
, E

3
), then inc

2
(H, E

1
, E

2
) = inc

2
(H, E

1
, E

3
)

(ii) If {E
1
, E

2
} and {E

1
, E

3
} are epe-evidence sets for H and inc

1
(H,

E
1
, E

2
)> inc

1
(H, E

1
, E

3
), then inc

2
(H, E

1
, E

2
)> inc

2
(H, E

1
, E

3
)

Proof

if P(H j E
1
, E

2
)� P(H j E

1
)= P(H j E

1
, E

3
)� P(H j E

1
), then by

Lemma 1 P(H jE
1
, E

2
)= P(H jE

1
, E

3
). Thus, (P(H jE

1
, E

2
)�

P(H jE
1
) / 1� P(H j E

1
)= (P(H jE

1
, E

3
)� P(H j E

1
) / 1� P(H jE

1
).

So, inc
1
(H, E

1
, E

2
)� inc

1
(H, E

1
, E

3
) ) inc

2
(H, E

1
, E

2
)� inc

2
(H,

E
1
, E

3
). #

Theorem 9
inc

2
(H, E

1
, E

2
)� inc

2
(H, E

1
, E

3
) ) r

1
(H, E

1
, E

2
)� r

1
(H, E

1
, E

3
)

(i) If {E
1
, E

2
} and {E

1
, E

3
} are epe-evidence sets for H and inc

2
(H,

E
1
, E

2
) = inc

2
(H, E

1
, E

3
), then r

1
(H, E

1
, E

2
) = r

1
(H, E

1
, E

3
)

(ii) If {E
1
, E

2
} and {E

1
, E

3
} are epe-evidence sets for H and inc

2
(H,

E
1
, E

2
)> inc

2
(H, E

1
, E

3
), then r

1
(H, E

1
, E

2
)> r

1
(H, E

1
, E

3
)

Proof
If P(H j E

1
, E

2
)� P(H j E

1
) / 1� P(H j E

1
)= (P(H j E

1
, E

3
) – P(H j E

1
) /

1 – P(H jE
1
) then P(H jE

1
, E

2
)= P(H j E

1
, E

3
). Thus it follows

immediately that log[(P(H j E
1
, E

2
) /P(H)]= log[(P(H jE

1
, E

3
) /

P(H)]. So, inc
2
(H, E

1
, E

2
)� inc

2
(H, E

1
, E

3
)) r

1
(H, E

1
, E

2
)� r

1
(H,

E
1
, E

3
). #

Theorem 10
r

1
(H, E

1
, E

2
)� r

1
(H, E

1
, E

3
) ) r

2
(H, E

1
, E

2
)� r

2
(H, E

1
, E

3
).

(i) If {E
1
, E

2
} and {E

1
, E

3
} are epe-evidence sets for H and r

1
(H,

E
1
, E

2
) = r

1
(H, E

1
, E

3
), then r

2
(H, E

1
, E

2
) = r

2
(H, E

1
, E

3
).
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(ii) If {E
1
, E

2
} and {E

1
, E

3
} are epe-evidence sets for H and r

1
(H,

E
1
, E

2
)> r

1
(H, E

1
, E

3
), then r

2
(H, E

1
, E

2
)> r

2
(H, E

1
, E

3
).

Proof

(i) if log[(P(H j E
1
, E

2
) /P(H)] = log[(P(H j E

1
, E

3
) /P(H)], then

P(H jE
1
, E

2
)= P(H jE

1
, E

3
), and immediately log[(P(H j E

1
, E

2
) /

P(H jE
1
)]= log[(P(H jE

1
, E

3
) /P(H jE

1
)]. So, r

1
(H, E

1
, E

2
)� r

1
(H,

E
1
, E

3
) ) r

2
(H, E

1
, E

2
)� r

2
(H, E

1
, E

3
). #

Theorem 11
r

2
(H, E

1
, E

2
)� r

2
(H, E

1
, E

3
) ) l(H, E

1
, E

2
)� l(H, E

1
, E

3
)

(i) If {E
1
, E

2
} and {E

1
, E

3
} are epe-evidence sets for H and r

2
(H,

E
1
, E

2
) = r

2
(H, E

1
, E

3
), then l(H, E

1
, E

2
) = l(H, E

1
, E

3
)

(ii) If {E
1
, E

2
} and {E

1
, E

3
} are epe-evidence sets for H and r

2
(H,

E
1
, E

2
)> r

2
(H, E

1
, E

3
), then l(H, E

1
, E

2
)> l(H, E

1
, E

3
)

Proof

By hypothesis, r
2
(H, E

1
, E

2
)= r

2
(H, E

1
, E

3
). So P(H j E

1
, E

2
)=

P(H jE
1
, E

3
). Observe that log[P(E

1
, E

2
jH) / P(E

1
, E

2
j‰H)]=

log[P(E
1
, E

3
jH) / P(E

1
, E

3
j‰H)] reduces to:

log
PðHjE

1
, E2ÞPðE1, E2ÞPðHÞ

Pð‰HjE
1
, E2ÞPðE1, E2ÞPð‰HÞ

= log
PðHjE

1
, E3ÞPðE1, E3ÞPðHÞ

Pð‰HjE
1
, E3ÞPðE1, E3ÞPð‰HÞ

:

But this inequality holds if P(H jE
1
, E

2
)= P(H j E

1
, E

3
), which

holds by Lemma 1. So, r
2
(H, E

1
, E

2
)� r

2
(H, E

1
, E

3
) ) l(H, E

1
,

E
2
)� l(H, E

1
, E

3
). #

Theorem 12
l(H, E

1
, E

2
)� l(H, E

1
, E

3
) ) ko(H, E

1
, E

2
)� ko(H, E

1
, E

3
)

(i) If {E
1
, E

2
} and {E

1
, E

3
} are epe-evidence sets for H and l(H,

E
1
, E

2
) = l(H, E

1
, E

3
), then ko(H, E

1
, E

2
) = ko(H, E

1
, E

3
)

(ii) If {E
1
, E

2
} and {E

1
, E

3
} are epe-evidence sets for H and l(H,

E
1
, E

2
)> l(H, E

1
, E

3
), then ko(H, E

1
, E

2
)> ko(H, E

1
, E

3
)

Proof
Let:

a = P(E
1
, E

2
jH)

b = P(E
1
, E

2
j‰H)

c = P(E
1
, E

3
jH)
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d = P(E
1
, E

3
j‰H)

Suppose a/b= c/d, by hypothesis. Hence, ac = bd. To show that

a–b/a + b = c–d/c + d, observe that this equality reduces to

�bc þ ad

ða þ bÞðc þ dÞ
>¼ 0

which holds since –bc + ad= 0, by hypothesis.
So, l(H, E

1
, E

2
)� l(H, E

1
, E

3
)) ko(H, E

1
, E

2
)� ko(H, E

1
, E

3
). #

Theorem 13
ko(H, E

1
, E

2
)� ko(H, E

1
, E

3
) ) ForH (E

1
, E

2
)� ForH (E

1
, E

3
)

(i) If {E
1
, E

2
} and {E

1
, E

3
} are epe-evidence sets for H and ko(H,

E
1
, E

2
) = ko(H, E

1
, E

3
), then ForH (E

1
, E

2
) = ForH (E

1
, E

3
)

(ii) If {E
1
, E

2
} and {E

1
, E

3
} are epe-evidence sets for H and ko(H,

E
1
, E

2
)> ko(H, E

1
, E

3
), then ForH (E

1
, E

2
)> ForH (E

1
, E

3
)

Proof
Let:

a = P(HjE
1
, E

2
)

1� a = P(‰HjE
1
, E

2
)

b = P(HjE
1
, E

3
)

1� b = P(‰HjE
1
, E

3
)

We have ko(H, E
1
, E

2
)= ko(H, E

1
, E

3
), by hypothesis.

ð1Þ log
PðE1, E2jHÞ

PðE1, E2j‰HÞ
= log

PðE1, E3jHÞ

PðE1, E3j‰HÞ

which is equivalent to

ð2Þ log
PðHjE1, E2ÞPðE1, E2ÞPðHÞ

Pð‰HjE1, E2ÞPðE1, E2ÞPð‰HÞ
= log

PðHjE1, E3ÞPðE1, E3ÞPðHÞ

Pð‰HjE1, E3ÞPðE1, E3ÞPð‰HÞ

Then, the (in)equality of equation (2) holds if P(H jE
1
, E

2
)=

P(H jE
1
, E

3
), which follows by Lemma 1.

So, ko(H, E
1
, E

2
)� ko(H, E

1
, E

3
) ) ForH (E

1
, E

2
)� ForH

(E
1
, E

3
). #
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Proposition 3
If {E

1
, E

2
, E

3
} satisfy positive relevance (A1) and independence (A3)

with respect to H, and P(E
2
) = P(E

3
), then rE1, E2

> rE1, E3
, inci(H, E

1
,

E
2
)> inci(H, E

1
, E

3
).

Proof of Proposition 3

(1) For binary variables X, Y, H, any distribution P(X, Y, H) in

which X ’ Y jH holds can be parameterized by a causal

Bayes network (CBN) with the graph X = H = Y.

(2) Among binary variables X, Y, Cov(X, Y) = P(Y, X) – P(X)P(Y).

So, we have that Cov(Ei, H) = P(H j Ei) – P(H)P(Ei), for

i = 1, 2, 3.

(3) By (A1), P(H jE
1
)>P(E

1
). So P(H j E

1
)> P(H)P(E

1
), and

thus Cov(E
1
, H)> 0. Similarly, Cov(E

2
, H)> 0 and Cov(E

3
,

H)> 0.

(4) In a singly connected CBN over binary variables, the corre-

lation between any two variables X, Y, Cor(X, Y), is the

product of the correlations on the trek from X to Y.

(Danks and Glymour, 2001)

(5) Since Cov(E
1
, H), Cov(E

2
, H), and Cov(E

3
, H) are positive,

Cor(E
1
, H), Cor(E

2
, H), and Cor(E

3
, H) are positive. So, both

Cor(E
1
, E

2
) and Cov(E

1
, E

2
) are positive and Cor(E

1
, E

3
) and

Cov(E
1
, E

3
) are positive.

()) Suppose rE1, E2
> rE1, E3

. By (4), Cor(E
1
, H) Cor(E

2
, H)>

Cor(E
1
, H) Cor(E

3
, H). By (5) we know that these correlations are

positive, so Cor(E
2
, H)>Cor(E

3
, H). By hypothesis P(E

2
) = P(E

3
),

so Cov(E
2
, H)>Cov(E

3
, H). Thus, P(H j E

2
)>P(H jE

3
).

(() Suppose inci(H, E
1
, E

2
)> inci(H, E

1
, E

3
). Then, by (A2) and

(A3), P(H j E
1, E

2
) – P(H jE

1
)> P(H jE

1
E

3
) – P(H j E

1
) iff

P(HjE
2
)> P(HjE

3
). Since P(E

2
) = P(E

3
), Cov(E

2
, H)>Cov(E

3
, H).

Since by (5) correlations are positive, Cor(E
2
, H)>Cor(E

3
, H),

and by (4), Cor(E
1
, H) Cor(E

2
, H)>Cor(E

1
, H) Cor(E

3
, H). So,

rE1, E2
> rE1, E3

. #
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Proposition 4
If E = {E

1
, E

2
} and E9 = {E

1
, E

3
} satisfy positive relevance (A1), equal

relevance (A2), and independence (A3) with respect to H, and

P(E
2
) = P(E

3
), then rE1, E2

= rE1, E3
and S(E

1
, E

2
) = S(E

1
, E

3
).

Proof of Proposition 4

Suppose P(D) is a positive probability distribution over (H, E
1
, E

2
,

E
3
) such that E = {E

1
, E

2
} and E9 = {E

1
, E

3
} satisfy positive relevance

(A1), equal relevance (A2), and independence (A3) with respect

to H, and P(E
2
) = P(E

3
).

Lemma 2
Then, the covariance of E

2
and H is identical to the covariance of E

3

and H, since

PðE2Þ½PðHjE2Þ � PðHÞ� ¼ PðE3Þ½PðHjE3Þ � PðHÞ�

and (A1) guarantees that the covariance is positive. #
Then:

(1) By (A1), Cor(H, Ei) is positive for i = 1, 2, 3

(2) From P(E
2
) = P(E

3
) and Lemma 1, Cor(H, E

2
) = Cor(H, E

3
)

(3) So, by the Danks-Glymour product rule (2001), rE1, E2
= rE1, E3

(4) Also, since both P(E
2
) = P(E

3
) and rE1, E2

= rE1, E3
, then

Cov(E
1
, E

2
) = Cov(E

1
, E

3
)

(5) So, S(E
1
, E

2
) = S(E

1
, E

3
)

Proposition 5
If E = {E

1
, E

2
} and E9 = {E

1
, E

3
} are positive evidence sets for H, then in

any probability distribution P(H, E
1
, E

2
, E

3
} that is Markov and

Faithful to the causal graph in Figure 4, inc
1
(H, E

1
, E

2
)> inc

1
(H, E

1
,

E
3
).

Proof of Proposition 5

(1) PðE1, E2jHÞ
PðE1, E2j‰HÞ

¼
PðE1jHÞ

PðE1j‰HÞ
�

PðE2jHÞ
PðE2j‰HÞ

, by E
1

’ E
2
jH

(2)

PðE1, E2jHÞ
PðE1, E2j‰HÞ

PðE1jHÞ
PðE1j‰HÞ

¼
PðE2jHÞ

PðE2j‰HÞ
, from dividing both sides by PðE1jHÞ

PðE1j‰HÞ
:

(3) PðE2jHÞ
PðE2j‰HÞ

> 1, by positive relevance and Bayes’s theorem
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(4)

PðE1, E2jHÞ
PðE1, E2j‰HÞ

PðE1jHÞ
PðE1j‰HÞ

> 1, by (2) and (3)

(5)

PðE1, E2jHÞ
PðE1, E2j‰HÞ

PðE1jHÞ
PðE1j‰HÞ

¼

PðHjE1, E2ÞPðE1, E2Þ=PðHÞ

Pð‰HjE1, E2ÞPðE1, E2Þ=Pð‰HÞ

PðHjE1ÞPðE1Þ=PðHÞ

Pð‰HjE1ÞPðE1Þ Pð‰HÞ,=

, by Bayes’s theorem

(6)

PðE1, E2jHÞ
PðE1, E2j‰HÞ

PðE1jHÞ
PðE1j‰HÞ

¼

PðHjE1, E2Þ

Pð‰HjE1, E2Þ

PðHjE1Þ

Pð‰HjE1Þ

, cancellations from (5)

(7)

PðHjE1, E2Þ

Pð‰HjE1, E2Þ

PðHjE1Þ

Pð‰HjE1Þ

> 1, by (6) and (4)

(8) So, P(H j E
1
, E

2
) – P(H jE

1
)> 0, and inc

1
(H, E

1
, E

2
)> 0

(9) Since E
3

’ H j E
1

P(H j E
1
, E

3
) – P(H j E

1
) = 0, and thus

inc
1
(H, E

1
, E

3
) = 0

(10) So, inc
1
(H, E

1
, E

2
)> inc

1
(H, E

1
, E

3
) #

Proposition 6
If E = {E

1
, E

2
} and E00 = {E

1
, E

4
} are equally positive evidence sets for

H, then in any probability distribution P(H, E
1
, E

2
, E

4,) that is Markov

and Faithful to the causal graph in Figure 3,

inc
1
(H, E

1
, E

4
)> inc

1
(H, E

1
, E

2
) if and only if S(E

1
, E

2
)> a/b

where

a = P(H jE
4
) / P(H)

b = P(H jE
1
, E

4
) / P(H j E

1
)

Proof of Proposition 6

(1) Because E and E00 are epe, inc
1
(H, E

1
, E

4
)> inc

1
(H, E

1
, E

2
) if

and only if ForH (E00)> ForH(E)

(2) ForH (E
1
, E

4
) =

PðE1, E4jHÞ

PðE1jHÞPðE4jHÞ

PðE1, E4Þ

PðE1ÞPðE4Þ

¼
PðE1, E4jHÞ

PðE1jHÞPðE4jHÞ
, since E

1
’ E

4

(3) ForH (E
1
, E

2
) =

PðE1, E2jHÞ
PðE1jHÞPðE2jHÞ

PðE1, E2Þ

PðE1ÞPðE2Þ

¼
PðE1ÞPðE2Þ

PðE1, E2Þ
, since E

1
’ E

2
jH
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(4) ForH (E
1
, E

4
) =

PðHjE1, E4Þ=PðHÞ

PðE1jHÞPðE4jHÞ
, Bayes’s theorem to numerator

in (2)

(5) ForH (E
1
, E

4
) =

PðHjE1, E4ÞPðE1, E4ÞPðHÞ

PðHjE1ÞPðHjE4ÞPðE1ÞPðE4Þ
, Bayes’s theorem to deno-

minator in (4)

(6) ForH (E
1
, E

4
) =

PðHjE1, E4ÞPðHÞ

PðHjE1ÞPðHjE4Þ
� 1, since E

1
’ E

4
entails P(E

1
, E

4
)

= P(E
1
)P(E

4
)

(7) If ForH (E
1
, E

4
)> ForH (E

1
, E

2
) iff

PðHjE1, E4ÞPðHÞ

PðHjE1ÞPðHjE4Þ
> PðE1ÞPðE2Þ

PðE1, E2Þ

(8) iff
PðHjE1, E4ÞPðHÞ

PðHjE1ÞPðHjE4Þ
�

PðE1ÞPðE2Þ

PðE1, E2Þ
> 1

(9) iff
PðHjE1, E4Þ

PðHjE1Þ
� SðE1, E2Þ >

PðHjE4Þ

PðHÞ

(10) SðE1, E2Þ >

PðHjE4Þ

PðHÞ

PðHjE1, E4Þ

PðHjE1Þ
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