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Cassirer and the Structural Turn in
Modern Geometry

Georg Schiemer

1. Introduction

Ernst Cassirer’s Substanzbegriff und Funktionsbegriff (1910) pre-
sents a central contribution to neo-Kantian philosophy of sci-
ence. The book also contains a detailed and historically informed
analysis of several methodological developments in nineteenth-
century mathematics. In recent years, increased scholarly atten-
tion has been drawn to Cassirer’s philosophy of mathematics. A
specific focus has been put here on his analysis of Dedekind’s
foundational work in algebra and arithmetic (see, in particular,
Heis 2011, Biagioli 2016, Yap 2017, and Reck and Keller forth-
coming). It is argued that Dedekind’s influence led Cassirer to
formulate an early version of structuralism that is comparable
in several respects to modern debates in philosophy of mathe-
matics.

A second line of recent scholarship is concerned with Cas-
sirer’s neo-Kantian understanding of modern geometry. This
includes the study of Cassirer’s philosophical reflections on pro-
jective geometry, for instance, on the principle of continuity in
work by Poncelet (see, in particular, Heis 2011, 2007). It also con-
cerns Cassirer’s detailed discussion of group-theoretic methods
in geometry, in particular Felix Klein’s Erlangen Program (Ihmig
1997, 1999; Biagioli 2016). As was first shown by Ihmig, Klein’s
study of different geometries in terms of their corresponding
transformation groups first outlined in Klein (1893) exercised
a significant influence on Cassirer’s understanding of modern
mathematics and science more generally.

In this paper, we aim to further connect these two lines of re-
search. In particular, the paper will investigate Cassirer’s struc-
turalist account of mathematical knowledge developed in re-
sponse to several methodological developments in nineteenth-
century geometry. We want to defend the hypothesis here
that complementary to the axiomatic structuralism inspired by
Dedekind, Cassirer also articulated a version of geometrical
structuralism that is directly motivated by the systematic use
of transformations and invariants in projective geometry and in
Klein’s program. The aim here will be twofold. First, to give
a closer study of several developments in projective geometry
that form the direct background for Cassirer’s philosophical re-
marks on geometrical concept formation in Cassirer (1910) as
well as in subsequent writings. More specifically, the paper will
survey two related developments: (i) different attempts in work
by Poncelet, Chasles, Gergonne, and Pasch to justify the principle
of duality in projective geometry; (ii) Klein’s generalization of the
use of transformations in his Erlangen program.

The second aim in the paper will be to analyze the specific
character of Cassirer’s geometrical structuralism formulated in
Cassirer (1910). As will be shown, his account of modern ge-
ometry is best described as a “methodological structuralism”,
that is, as a view mainly concerned with structural methods
in modern mathematical practice (see Reck 2003). In particu-
lar, in the context of modern geometry, Cassirer identifies two
general methods governing how the structural content of a ge-
ometrical theory can be specified. This is the focus on invari-
ants of geometrical configurations specified relative to certain
structure-preserving transformations on the one hand and the
use of formal axiomatic definitions of geometrical notions on the
other hand. The paper will address how these “structural” meth-
ods in geometry, expressed most generally in Klein’s program
and in Hilbert’s Grundlagen der Geometrie of 1899, are analyzed
in Cassirer’s book. Concerning modern axiomatics, it will be
argued that Cassirer’s structuralist understanding of axiomatic
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geometry clearly reflects the transition from a purely syntactic to
a genuinely semantic or model-theoretic approach in Hilbert’s
work. Moreover, it will be shown how the central notion of
“transfer” (“Übertragung”) of relational content between differ-
ent geometrical configurations is described by Cassirer in the
context of both the axiomatic and the mapping based accounts
of geometry.

The article is organized as follows. Section 2 contains a brief
survey of some of the relevant geometrical background of Cas-
sirer (1910). The focus will lie here on nineteenth-century pro-
jective geometry, specifically on the principle of duality. Section
3 will then give a closer study of Cassirer’s philosophical re-
flections of modern geometry in the book. Subsection 3.1 first
discusses his general remarks on the logic of concept formation
in mathematics. In Subsection 3.2, we then focus on Cassirer’s
remarks on two particular developments, namely the use of
structure transfers in projective geometry and Klein’s group-
theoretic approach. Subsection 3.3 discusses Cassirer’s account
of formal axiomatics and the structural conception of theories
implied by this approach. In Section 4 we will then turn to a more
general assessment of Cassirer’s structuralism concerning geo-
metrical knowledge. Specifically, in Subsections 4.1 and 4.2, we
will discuss various points of contact between his position and
recent versions of mathematical structuralism. Section 5 gives a
brief summary of our findings as well as some suggestions for
future research.

2. Geometrical Background

Modern projective geometry plays a central background for
Cassirer’s work on mathematical concept formation in Cassirer
(1910).1 In particular, as we will see in the next section, a signif-
icant part of his book is dedicated to a discussion of several

1See, in particular, Heis (2007) for a detailed study of Cassirer’s discussion
of different developments in nineteenth-century projective geometry.

conceptual and methodological developments in nineteenth-
century projective geometry that begin with the work of Jean-
Victor Poncelet. In the present section, we will give a brief
overview of these geometrical developments. In particular, our
focus will be on two distinct methods developed in this field.
The first one is the systematic use of structure-preserving trans-
formations in projective geometry, in particular, the use of pro-
jective transformations in the study of certain general properties
of geometrical figures. The second method is the axiomatic spec-
ification of projective space first developed in work by Moritz
Pasch. In order to illustrate both methods and their genuinely
structural character, we will focus here on a particular issue
in projective geometry where both methods were fruitfully ap-
plied. This is the so-called principle of duality, that is, the principle
that any theorem in plane and solid projective geometry can be
translated into another theorem about figures with a dual (or
reciprocal) structure.

2.1. Projective geometry

Projective geometry became an independent research field in
the nineteenth century through work by a number of eminent
geometers such as Jean-Victor Poncelet, Joseph Gergonne, Karl
von Staudt, Julius Plücker, and Moritz Pasch, among many oth-
ers.2 Roughly put, the central idea underlying this branch of
geometry was to study those properties of geometrical figures
or configurations that are preserved under certain projective
transformations. Poncelet (1788–1867) is generally considered
to be one of the founders of modern projective geometry. The
ideas and methods developed in his monumental book Traité
des propriétés projectives des figures of 1822 were in several ways
formative for the subsequent development of the field.

2See Gray (2007) for a detailed historical study of the rise of projective
geometry in the nineteenth century. The present section closely follows a
discussion of this historical development given in Schiemer and Eder (2018).
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Poncelet’s approach was motivated by a simple question
which also played a central role in Cassirer’s discussion of mod-
ern geometry: Why does analytic geometry yield results that are
more general in character than those of synthetic geometry prac-
ticed in the spirit of Euclid? Poncelet’s answer to this was that
the analytic presentation of geometry and algebra more gener-
ally is characterized by the use of variables or “abstract signs”. It
is this use of abstract signs ranging over both real and imaginary
magnitudes that makes the analytic or algebraic approach in
geometry more fruitful than classical synthetic geometry. Rea-
soning in classical geometry, Poncelet argued, usually relies on
the use of concrete diagrams. As such, it is not possible here
to yield geometrical results that extend the properties of con-
crete geometrical configurations to such imaginary magnitudes.
Compare Poncelet on this point:

One always reasons upon the magnitude themselves which are al-
ways real and existing, and one never draws conclusions which do
not hold for the objects of sense, whether conceived in imagination
or presented to sight. (Quoted from Nagel 1939, 153)

A important case in geometry where such abstract considera-
tions turn out as fruitful is the case of ideal elements. The use of
such elements in geometrical reasoning goes back to work of Gi-
rard Desargues (1591–1661). In particular, in his book Brouillon
projet d’une atteinte aux événements des rencontres du cône avec un
plan (1639), Desargues first introduced so-called points at infinity.
The general idea here was simple: to every straight line exactly
one “point at infinity” can be added. Similarly, to each plane
a corresponding “line at infinity” can be added. This ensures
that, in contrast to Euclidean geometry, any two straight lines
including parallel ones have an intersection point. In the case of
parallel lines, the intersection point is simply the point at infinity
shared by them. Given this move, classical Euclidean space can
be extended by these ideal points and lines.

A central motivation for the introduction of such ideal ele-
ments in nineteenth-century projective geometry was the fact

that this has a strong unifying effect in geometrical reasoning:
points and lines at infinity allow one to state theorems in greater
generality. Consider the well-known Desargues theorem to il-
lustrate this fact:

Theorem 1 For any two triangles ∆ABC and ∆A′B′C′: if the lines
determined by corresponding points of the triangles meet in a point
O, then the corresponding sides of the triangles meet in three distinct
points J, K, and I that all lie on a line (see Fig. 1).

J

K

B
B′

I

C′

C
O A A′

B
B′

IJ K

C′

C

O A A′

Figure 1: Two variations of Desargues’s Theorem.

In Euclidean geometry, this theorem does not generally hold
since certain pairs of lines in the configuration might be paral-
lel. In the second diagram of Fig. 1, for instance, the lines AB and
A′B′ and CB and C′B′ are parallel and hence do not have inter-
section points. However, by stipulating the existence of points
and lines at infinity, Desargues’s result becomes a theorem in
projective geometry. In particular, if parallel lines are taken to
“meet at infinity” and the points of infinity are taken as points
on a “line at infinity”, the diagram on the right-hand side also
becomes a valid representation of the general theorem. Thus, the
extension of the domains of concrete lines and points by ideal
lines and points allows the geometer to get more general results
concerning the projective properties of figures. It also allows
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her to unify proofs by effectively abstracting from a case-to-case
reasoning based on particular diagrams. Thus, assuming a pro-
jective setting, the two figures in Fig. 1 are in fact representations
of the same geometrical fact and Desargues’s theorem applies
to each one of them.3

Poncelet was arguably the first to emphasize the generality
gained by the introduction of ideal elements in projective ge-
ometry. His attempt to justify the reference to points and lines
at infinity is based on what he took to be a general geometrical
principle, namely the “principle of permanence” or “continuity”:

The principle of continuity, considered simply from the point of
view of geometry, consists in this, that if we suppose a given figure
to change its position by having its points undergo a continuous
motion without violating the conditions initially assumed to hold
between them, the . . . properties which hold for the first position
of the figure still hold in a generalized form for all the derived
figures. (Quoted from Nagel 1939, 151)

The principle of continuity expressed here can be understood as
a geometrical transfer principle. It roughly states that the projec-
tive properties of a given figure are preserved under continuous
transformations of the figure. Thus, given two “general” figures
and a continuous transformation between them, any incidence
relation between the points and lines of the first figure also ap-
plies to the second figure. This holds also in cases where the
real lines and points of the original figure are mapped to points
and lines of infinity in the second configuration. Consider again
the diagram on the left-hand side of Fig. 1 illustrating Desar-
gues’s theorem: if the intersection points are moved in certain
directions, we eventually get the figure on the right-hand side
where the corresponding sides of the triangles are parallel. The
central assumption expressed in Poncelet’s principle is that if

3Compare again Schiemer and Eder (2018) for a more detailed discussion
of this example. I would like to thank Günther Eder for his permission to use
the diagrams in Fig. 1 and Fig. 2 also in the present paper.

one can derive a second figure from a given figure in terms of
such a continuous transformation, then “any property of the
first figure can be asserted at once for the second figure.”4

2.2. Principle of duality

A second geometrical principle first discussed in Poncelet’s work
concerns the issue of projective duality. Roughly put, this is the
fact that every theorem concerning the projective properties of
a figure can be translated into another theorem by interchanging
the words “point” and “line” in planar geometry and the words
“point” and “plane” in solid geometry. Consider Desargues’s
theorem to illustrate this fact. We saw that the theorem states
that if the lines going through corresponding vertices of the two
triangles meet in a single point, then the intersection points of
the corresponding lines of the triangles all lie on a single line.
Desargues’s theorem can be shown to be self-dual. Thus, it can
be demonstrated that the dualized version of the statement is
also generally valid in a projective setting. As mentioned above,
dualization effectively means a syntactic translation here that is
based on the substitution of the term “point” in the formulation
of the theorem by the term “line” and of the predicate “lying on
a line” by the predicate “meeting in a point”. Given this dual
translation, it turns out that the converse statement of Desar-
gues’s theorem is also a theorem in projective geometry. Thus, if
the three points determined by corresponding sides of any two
triangles all lie on the same line, then the lines determined by
corresponding points of the triangles all meet in the same point.

A second, also well-known example of a pair of dual theorems
in projective geometry are the theorems of Pascal and Brianchon.
Pascal’s theorem is this:

4A second point relevant in the discussion of the principle of continuity
are so-called “imaginary elements”, that is, points and lines which are usually
represented by complex coordinates in analytic geometry. See again Schiemer
and Eder (2018) for a closer discussion of this.
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Theorem 2 Let A, B, C,D , E, F be six points on a conic section that
form a hexagon. Then the intersection points of the pairs of opposite
sides AB and DE, FA and CD and BC and EF of the hexagon will
always lie on a line. (See Fig. 2, left diagram.)

Now consider Brianchon’s theorem, first formulated more than
a hundred years after Pascal’s result:

Theorem 3 Let a , b , c , d , e , f be six lines that form a hexagon which
circumscribe a conic. Then the principal diagonals a ∩ b and e ∩ d,
a ∩ f and c ∩ d, and e ∩ f and b ∩ c of the hexagon meet in a single
point. (See Fig. 2, right diagram.)

CEA

I

B
D F

J
K

a

b

c

d

e

f

k

ij

Figure 2: Pascal’s and Brianchon’s theorem.

A moment’s reflection shows that Brianchon’s and Pascal’s the-
orems are in fact dual: one can get the one from the other via the
method of dualization, that is by substituting the words “point”
for “line” (and vice versa) as well as all the concepts defined in
terms of them in their formulations.

Poncelet and other geometers in the nineteenth century real-
ized that this and many other examples of dual theorems exist
due to a general metatheoretical principle valid in plane and
solid projective geometry, namely the principle of duality. The
practical importance of this principle lies in the fact that it ex-
pands knowledge about geometrical figures and their projective
properties. In particular, with each proof of a theorem in pro-
jective geometry, one immediately gets a proof of another dual

statement of a symmetrical nature. A second important feature
of duality, also first stressed by Poncelet, is that the principle has
drawn attention away from particular geometrical configura-
tions and towards their general invariant form or structure. Given
that theorems about a configuration can always be transformed
into new theorems via the method of dualization, it turns out
that the primitive geometrical elements (such as points, lines,
and planes) turn out to be interchangeable. Thus, similarly to
Poncelet’s principle of continuity, duality can be viewed as a
“structural” method that allows one to abstract from the con-
crete spatial elements and to focus on the general form of certain
configurations.

To see how this general projective form of figures was usually
characterized in nineteenth-century geometry, it is instructive to
study how the principle of duality was justified in the nineteenth
century. At least two different approaches were developed at the
time, namely the justification (i) in terms of certain “dual” trans-
formations between figures that preserve their projective prop-
erties and (ii) in terms of the axiomatic specification of these
projective properties.5 The transformation-based approach is
first specified in Poncelet’s Traité. The principle of duality is in-
troduced here in the context of Poncelet’s new theory of poles
and polars. Poles and polars are concepts of the geometry of
conic sections: polars are lines that can be assigned to given
points in the plane, relative to some conic section and based on
a uniform method of construction. Poles are points that can be
assigned to any line of the plane, again relative to a conic and
based on a given construction method. A polar transformation

5A third approach to explain duality, first introduced by Julius Plücker,
and based on the analytic presentation of geometrical concepts, will not be
discussed here. See Gray (2007) and Nagel (1939) for a closer discussion of
the analytic approach. Compare Klein’s Vorlesungen über Nicht-Euklidische Ge-
ometrie (1928) and Nagel (1939) for more detailed discussions of these three
approaches. See Schiemer and Eder (2018) for a more detailed discussion of
the different approaches to duality.
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is a transformation or mapping between figures that assigns to
each point its polar line and to each line its corresponding pole.6
The key feature of such a transformation is that it preserves the
incidence relations between points and lines: if a point P lies on
line l, then the polar line l′ of P goes through the pole P′ of l. Put
in modern terminology, a polar transformation between points
and lines preserves the incidence structure of a geometrical con-
figuration.

Given the general theory of poles and polars, Poncelet success-
fully showed in his book how one can construct new figures from
existing ones based on the use of such dual transformations.
This method of construction secures that all of the projective
properties of the original figure are transformed into “similar”
dual properties of the second figure based on the mapping of
points to lines and vice versa. In Poncelet’s Traité, this fact is
taken to explain the general validity of the principle of duality
in projective geometry. More specifically, the phenomenon that
projective theorems can be dualized is viewed as a consequence
of the fact that, relative to a given conic section, one can always
construct a dual mapping between geometrical configurations
in the plane in which their incidence properties are preserved.7

The second approach to provide a mathematical justification
of the principle of duality is based on the axiomatic presenta-
tion of geometry. An early and formative articulation of this view
can be found in the work of Joseph Diez Gergonne (1771–1859),
in particular, in a number of articles from the 1820s in which
the duality of projective theorems is explicitly discussed. Even
though Gergonne does not provide a general explanation of du-
ality here, there exists some textual evidence that he intends to
justify the principle based on a (proto-)axiomatic presentation

6See Coxeter (1974/1987) for a detailed study of polar theory.
7This explanation of projective duality in terms of polar transformations

was significantly generalized in Michel Chasles’ Aperçu historique sur l’origine
et le dévéloppement des méthodes en géométrie (1837). See Nagel (1939) for detailed
discussion of Chasles’ work on duality.

of the general laws of projective geometry.8 In particular, it is
first emphasized in these works that duality is ultimately a result
of the symmetrical nature of the deductive proofs of dual theo-
rems. Thus, according to Gergonne, the duality phenomena in
projective geometry should be understood syntactically, that is,
in terms of a “correspondence” between the primitive laws and
proofs, and not object-theoretically, in terms of dual mappings
between geometrical figures.

A more detailed treatment of the axiomatic approach to dual-
ity is present in Moritz Pasch’s Vorlesungen über Neuere Geometrie
(1882). Pasch’s book contains the first systematic axiomatization
of projective geometry.9 Moreover, Section 12 of the book also
explicitly addresses the issue of reciprocity (that is, of duality) as
a property of statements about solid projective geometry. Dual-
ity is described here again purely syntactically as a translation
between theorems that result from the substitution of the primi-
tive constants “point” and “plane” (as well as of the geometrical
concepts defined in terms of them). His argument for the general
validity of the principle is based on two central premises. The
first one concerns the fact that the axiom system presented in
the book is symmetrical in the sense that the respective axioms
of the system always come in pairs: for every axiom there exists
a dual axiom of the same logical form:10

P1. It is always possible to lay a line through two points.
P2. Every line is determined by any two of its points.
P3. Every line that contains a proper point is a proper line.
P4. It is always possible to lay a plane through three points.
P5. Every plane is determined by three of its points that do

not lie in a straight line.

8For a detailed discussion of Gergonne’s views on duality and references
compare Nagel (1939) and Gray (2007).

9See, in particular, Schlimm (2010) for a detailed survey of Pasch’s work.
10See, in particular, Pasch (1882, §§7–8). The author would like to thank

Dirk Schlimm for providing him with translations of Pasch’s axioms.
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P6. Every plane that contains a proper point is a proper
plane.

P7. A line that has two points in common with a plane lies
completely in it.

P8. It is always possible to lay a plane through a line and a
point.

P9. Every plane is determined, if one knows one of its lines
and a point that is outside of the line.

P10. It is always possible to lay a plane through two lines
that have a point in common.

P11. Every plane is determined by any two of its lines.
P12. Two lines in a plane have always a point in common.
P13. A line and a plane have always a point in common.
P14. Two planes have always a line in common.
P15. Three planes always have a point or a line in common.

(Pasch 1882, §8)

The second premise used in the proof of the duality principle
concerns what Pasch calls the “rigorous deductive method” in
geometry. This is the claim that all theorems of projective geom-
etry are deductively derivable from the axiom system specified
in the book. Thus, no information other than that specified in
the axioms is needed to prove the general truths in projective
geometry. In particular, Pasch was the first to show that no refer-
ence to diagrams is needed in the demonstration of a theorem.
Given these two assumptions, duality is “verified” by Pasch as
follows:

The law of reciprocity can be verified first for the graphical sen-
tences of §§7, 8, 9, since the reciprocal sentence of every sentence
also belongs to this group. Every other sentence to be considered
here is a consequence from these sentences. In its articulation and
proof only graphical concepts are used. One can restrict oneself
here to the base concepts; the other concepts are deduced from
the base concepts or can be given with the help of the relevant
definitions. Every theorem is thus the result of a consideration in
which only graphical base concepts are mentioned and in which

one only refers to the graphical sentences mentioned above. If one
substitutes systematically the word ‘point’ by ‘plane’, ‘plane’ by
‘point’ and the used theorems by its reciprocals in this approach,
then its correctness remains untouched; but as a result one finds
‘point’ and ‘plane’ interchanged, i.e. one has proved the reciprocal
theorem. (Pasch 1882, 96)

This justification of the general principle of duality thus runs
as follows: the axioms of projective geometry are symmetrical
in the sense specified above. Each theorem provable from this
set of axioms contains only the primitive constants (or “base
concepts”) specified in the axioms or defined constants. It fol-
lows from this that the dual translation of every theorem must
therefore also be a theorem since it must be provable from the
dual axioms of the axioms used in the derivation of the original
theorem. Notice that this justification of duality is strictly syn-
tactic in character. Pasch’s focus is, as we saw, on the translation
between geometrical statements and, most importantly, on the
purely formal character of deductive geometrical proofs. This
formalism is described in a well-known passage in his book:

In fact, if geometry is genuinely deductive, the process of deducing
must be in all respects independent of the sense of the geometrical
concepts, just as it must be independent of figures; only the relations
set out between the geometrical concepts used in the propositions
(respectively definitions) concerned ought to be taken into account.
(Pasch 1882, 98)

Thus, what is relevant in the justification of the principle of
duality is, according to Pasch, the purely relational properties
specified by the axioms of projective geometry.

Given this brief overview over certain developments in pro-
jective geometry, two points of commentary are in order here.
Notice first that all of the newly developed methods outlined
here gave rise to a structural conception of geometrical objects.
This is evident, in particular, in both principles of projective ge-
ometry discussed here, namely the principles of continuity and
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of duality. As we saw, the duality of theorems effectively shows
that the geometrical content of a configuration is in fact restricted
to its projective properties, for instance, properties concerning
the incidence relations between points and lines in them. More-
over, two particular figures such as the diagrams representing
Brianchon’s and Pascal’s theorems can be treated as structurally
equivalent from a projective point of view since they share all
relevant properties up to duality. Secondly, our brief survey of
the debate on the proper justification of duality shows that two
complementary approaches on how to capture this abstract geo-
metrical content or the notion of sameness of such content have
been devised in nineteenth-century geometry. This is, on the one
hand, the notion of invariance under certain mappings or trans-
formations. On the other hand, structural content is explained in
terms of formal axiomatic conditions. In the following section,
we will survey how these structural ideas in modern geometry
were addressed in Cassirer’s work.

3. Cassirer on Modern Geometry

3.1. Concept formation in mathematics

Cassirer’s philosophical analysis of modern geometry is based
on a more general study of concept formation in the exact sci-
ences. The first chapter of Cassirer (1910) is concerned with
the “logic of concept formation”, more specifically, with the
question of how abstract concepts are introduced in modern
mathematics.11 As Cassirer points out, the new philosophical
understanding of concepts outlined in the book, in particular
the shift from “substance concepts” to “function concepts”, is di-
rectly motivated by modern mathematics. What is characteristic
about mathematical concept formation according to him? A cen-

11Compare Heis (2014) and Ihmig (1997) for detailed studies of Cassirer’s
account of mathematical concept formation and his intellectual background,
in particular the Marburg school of neo-Kantianism.

tral feature that Cassirer is concerned with has to do with the
specific relation between abstract concepts and their concrete
instances. In the case of geometry, this is the relation between
abstract concepts of certain curves or spaces and concrete ob-
jects, e.g., particular intuitive figures exemplifying them.

This relation between mathematical concepts and concrete in-
stances is elucidated by Cassirer based on a distinction between
two “schemata of concept formation”. The first one is the tradi-
tional philosophical theory of substance concepts based on an
abstractionist account of concept formation. Very roughly, this
is the view that general concepts are formed by abstraction from
particulars in the sense that specific properties of the instances
are neglected except those shared by all individuals. Heis de-
scribes this “abstractionism about conceptual formation” in the
following way: “concepts are formed by noticing similarities
or differences among particulars and abstracting the concept,
as the common element, from these similarities or differences”
(Heis 2014, 248). Notice that this approach presents a bottom-up
view of concept formation. Thus, by constructing general con-
cepts from particular instances via abstraction, the concepts turn
out to be functionally dependent on their instances. In a sense,
knowledge of the instances is presupposed in the construction
of general concepts.12

Now, Cassirer is critical of the traditional logic of concept for-
mation via abstraction. He contrasts this account with a second,
in his view preferable, scheme which is also paradigmatic for
modern mathematics. The construction of so-called “functional
concepts” is not based on the elimination of particular proper-
ties of instances. Instead, the specific nature of the particular ob-
jects falling under a functional concept is preserved or implicitly
contained in a general concept. Concept formation in modern
mathematics is therefore not based on Aristotelian abstraction,

12See again Heis (2014) for a more detailed survey of Cassirer’s presentation
of the Aristotelian view.

Journal for the History of Analytical Philosophy vol. 6 no. 3 [190]



but rather on a different type of generalization. How does Cas-
sirer understand this new form of conceptual generalization?
Let us see how the logic of functional concepts is illustrated by
him in the context of analytic geometry, more specifically, in the
case of the analytic presentation of second-order curves:

The genuine [mathematical] concept does not disregard the pecu-
liarities and particularities which it holds under it, but seeks to
show the necessity of the occurrence and connection of just these
particularities. What it gives is a universal rule for the connection
of the particulars themselves. Thus we can proceed from a general
mathematical formula, for example, from the formula of a curve
of the second order, to the special geometrical forms of the circle,
the ellipse, etc., by considering a certain parameter which occurs
in them and permitting it to vary through a contiguous series of
magnitudes. Here the more universal concept shows itself also
the more rich in content; whoever has it can deduce from it all the
mathematical relations which concern the special problems, while,
on the other hand, he takes these problems not as isolated but as
in continuous connection with each other, thus in their deeper
systematic connections. The individual case is not excluded from
consideration, but is fixed and retained as a perfectly determinate
step in a general process of change. (Cassirer 1923, 19–20)

The central idea expressed here concerns the notion of a “rule of
variation” between individuals. According to Cassirer, a math-
ematical concept such as the concept of a second-order curve
specifies a general rule or law on how the individual objects—
that is, particular curves in a given space—are interrelated.
Moreover, this example also makes clear how the method of
“deducing” special instances from a general concept is under-
stood here. Concepts such as second-order curves are often rep-
resented analytically in modern geometry, that is, by functions
expressed in terms of algebraic equations. The link to concrete
instances of such concepts is given by the fact that the variables
occurring in the corresponding equation can be assigned differ-
ent numerical values and thus different interpretations in the

underlying coordinate system. It is in this sense that knowl-
edge about special geometrical figures is retained in the general
concept.

As we will see in the following two sections, Cassirer identifies
several types of mathematical concept formation in his discus-
sion of nineteenth-century geometry. Before turning to a closer
analysis of these methods, two further points of commentary
about the general logic of functional concepts should be made
here. (Both points will be relevant for our philosophical assess-
ments of Cassirer’s geometrical structuralism given in Section 4.)
The first issue concerns the way in which the relation between
general concepts and concrete instances is viewed by Cassirer.
As we saw above, a central feature of the Aristotelian account of
conceptual abstraction is what Heis has termed the “primacy of
particulars”: given the fact that concepts are formed via abstrac-
tion from particular instances, it follows that our knowledge
of these particulars has to be presupposed in the construction
of the concepts. In the case of functional concepts, the depen-
dency relation between concepts and objects falling under them
is reversed. Cassirer explicitly holds that the construction of
mathematical concepts is independent of the mathematical ob-
jects instantiating them. Compare, for instance, the following
passage on the new account of functional abstraction in mathe-
matics:

What lends the theory of abstraction support is merely the circum-
stance that it does not presuppose the contents, out of which the
concept is to develop, as disconnected particularities, but that it
tacitly thinks them in the form of an ordered manifold from the
first. The concept, however, is not deduced thereby, but presup-
posed; for when we ascribe to a manifold an order and connection
of elements, we have already presupposed the concept, if not in
its complete form, yet in its fundamental function. (Cassirer 1923,
17)13

13Compare also the following, closely related passage:
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Thus, in Cassirer’s view, concept formation in mathematics is
effectively a top-down approach: functional concepts are con-
structed independently of their instantiations and are thus “log-
ically prior” to them.14

The second issue to be addressed here concerns the connec-
tion between Cassirer’s novel account of concept formation and
mathematical structuralism. As will be shown in closer detail in
Section 4, Cassirer’s understanding of function concepts closely
reflects a structuralist conception of mathematics. Notice, in par-
ticular, how Cassirer describes the notion of “serial form” as the
characteristic content of functional concepts:

The serial form F(a , b , c . . . )which connects the members of a man-
ifold obviously cannot be thought after the fashion of an individual
a or b or c, without thereby losing its peculiar character. Its “be-
ing” consists exclusively in the logical determination by which it
is clearly differentiated from other possible serial forms Φ,Ψ . . . ;
and this determination can only be expressed by a synthetic act of
definition, and not by a simple sensuous intuition. (Cassirer 1923,
26)

The passage is crucial for the understanding of Cassirer’s gen-
eral conception of mathematical knowledge: mathematical the-
ories have as their true subject matter a “serial form” which is
determined by the relations between elements of a given do-
main or manifold. This form is abstract and specified through
a “synthetic act of definition”.15 Paraphrased in modern termi-

. . . for instead of the community of “marks” the unification of elements
in a concept is decided by their “connection by implication.” And this
criterion, here only introduced by way of supplement and as a secondary
aspect, proves on closer analysis to be the real logical prius; for we have
already seen that “abstraction” remains aimless and unmeaning if it does
not consider the elements from which it takes the concept to be from the
first arranged and connected by a certain relation. (Cassirer 1923, 24)

14See, in particular, Heis (2007, 2014) for a rich survey of the (neo-)Kantian
background of Cassirer’s top-down approach to mathematical concept forma-
tion.

15It should be mentioned here that Cassirer’s account of mathematical

nology, one can say that a “serial form” presents an abstract
structure defined by a mathematical theory that can be instan-
tiated by the elements of any concrete system. In the following
two subsections, we will turn to a closer discussion of Cassirer’s
philosophical analysis of nineteenth-century geometry in order
to see how this general understanding of mathematical concepts
is illustrated in this field.

3.2. Transformations and invariance

Cassirer’s main focus in the third chapter of Cassirer (1910) is
on nineteenth-century geometry, spanning the period between
Poncelet’s Traité of 1822 to Felix Klein’s Erlangen program first
outlined in his monumental paper “Vergleichende Betrachtun-
gen über neuere geometrische Forschungen” of 1872 (see Klein
1893). A general topic in Cassirer’s survey concerns the ques-
tion how mathematicians like Poncelet and Klein conceived of
the role of concrete figures or diagrams in geometrical proofs.
According to Cassirer, modern projective geometry is primarily
characterized by an abstraction from diagrams in geometrical
reasoning which allows one to reach a level of generality that is
comparable to the results in analytic geometry:

We saw how the progress of geometrical thought tends more and
more to allow the subordination of the particular intuitive figures
in the proof. The real object of geometrical interest is seen to be
only the relational connection between the elements as such, and
not the individual properties of these elements. Manifolds, which
are absolutely dissimilar for intuition, can be brought to unity in
so far as they offer examples and expressions of the same rules of
connection. (Cassirer 1923, 251)

Cassirer identifies Poncelet’s work as a starting point in this

knowledge was influenced by other contributions within neo-Kantian philos-
ophy, in particular Natorp’s Die logischen Grundlagen der exakten Wissenschaften
of 1910. We would like to thank an anonymous reviewer for stressing this
point.
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gradual development towards formal geometrical reasoning.16
The central method employed by Poncelet and by subsequent
mathematicians in the demonstration of general results is based
on the use of projective transformations. More specifically, it
is to study those geometrical properties of configurations that
are preserved by such transformations. Cassirer describes the
general idea underlying this approach in the following way:

[The universality of the synthetic approach is secured], as soon
as we regard the particular form we are studying not as itself
the concrete object of investigation but merely as a starting-point,
from which to deduce by a certain rule of variation a whole system
of possible forms. The fundamental relations, which characterize
this system, and which must be equally satisfied in each particular
form, constitute in their totality the true geometrical object. What
the geometrician considers is not so much the properties of a given
figure as the network of correlations in which it stands with other
allied structures. (Cassirer 1923, 80)

This “rule of variation” which determines the relevant “funda-
mental relations” between concrete figures, is specified here in
terms of the notion of continuous transformations:

We say that a definite spatial form is correlative to another when it
is deducible from the latter by a continuous transformation of one
or more of its elements of position: yet in which the assumption
holds that certain fundamental spatial relations, which are to be
regarded as the general conditions of the system, remain invariant.
The force and conclusiveness of geometrical proof always rests
then in the invariants of the system, not in what is peculiar to the
individual members as such. (Cassirer 1923, 80)

Given Cassirer’s general remarks on this new style of reason-
ing in projective geometry, several points should be emphasized

16Compare, for instance, an interesting related remark on Poncelet in one of
Cassirer’s later writings: “[Poncelet] had to emancipate geometrical thought
from all connection with ‘elements’ that can be given in intuition, and to
consider the relations between these elements as the proper and only subject-
matter of geometrical knowledge” (Cassirer 1944, 23–24).

here. Notice first that, given this focus on the invariant properties
of geometrical figures preserved by continuous transformations,
the particular nature of figures becomes irrelevant in geomet-
rical proofs. The use of transformations can thus be viewed as
a way to generalize over individual figures in order to grasp to
the real subject matter of a geometry, namely the “fundamental”
relations between the spatial forms of a given manifold. Thus,
as Cassirer points out, the true geometrical objects are invariant
forms of figures which are induced by a certain type of correla-
tions.

Secondly, Cassirer’s discussion of projective geometry closely
mirrors his general remarks on mathematical concepts in the in-
troductory chapter of Cassirer (1910). In particular, we can view
his remarks on the use of projective transformations and the re-
sulting study of invariants in work by Poncelet as an illustration
of the general logic of concept formation outlined there. Recall
that, according to Cassirer, what is specific about “functional”
concepts in modern mathematics is that knowledge about the
individual cases is not lost as in the case of “substance” con-
cepts. Instead, the objects and their specific properties are, so to
speak, retained in the general concepts and can be “deduced”
from them. A very similar picture emerges from Cassirer’s dis-
cussion of Poncelet’s projective method:

[In Poncelet’s geometry] between the ‘universal’ and ‘particular’
there subsists the relation which characterizes all true mathemati-
cal concept formation; the general case does not absolutely neglect
the particular determinations, but it reveals the capacity to evolve
particulars in their concrete totality from a principle. (Cassirer
1923, 82)

Thus, by focusing only on the incidence properties as well as
on those metrical properties of a geometrical figure that are pre-
served under projective transformations, one does not neglect its
specific nature. Rather, Poncelet’s approach allows one to con-
sider a figure as an exemplification of an abstract geometrical
form that is possibly shared by many other figures.
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The third point to mention here is that Cassirer’s discussion of
the new style of reasoning in projective geometry clearly sounds
structuralist to the modern reader. This concerns, in particular,
his remarks on the purely “relational” character of geometrical
knowledge. In shifting attention away from the particular dia-
grams and towards their invariant properties, geometrical theo-
ries turn out to have a new and abstract subject-matter, namely
the “network of correlations” between particular figures. Com-
pare again Cassirer on this point:

We saw how the progress of geometrical thought tends more and
more to allow the subordination of the particular intuitive figures
in the proof. The real object of geometrical interest is seen to be
only the relational connection between the elements as such, and
not the individual properties of these elements. Manifolds, which
are absolutely dissimilar for intuition, can be brought to unity in
so far as they offer examples and expressions of the same rules of
connection. (Cassirer 1923, 251)

Cassirer’s structuralist view is articulated most explicitly in his
discussion of Poncelet’s principle of continuity, already men-
tioned in Section 2. Recall from above that this principle was
introduced in the Traité as a way of generalizing demonstrations
about projective properties of spatial configurations. Cassirer
describes the general significance of the principle in the follow-
ing way:

It is this interpretation, which Poncelet characterizes philosophi-
cally by the expression principle of continuity, and which he formu-
lates more precisely as the principle of the permanence of mathematical
relations. The only postulate that is involved can be formulated by
saying that it is possible to maintain the validity of certain rela-
tions, defined once for all, in spite of a change in the content of
the particular terms, i.e., of the particular relata. We thus begin by
considering the figure in a general connection [Lage], and do not
analyse it in the beginning into all its individual parts, but permit
changes of them within a certain sphere defined by the conditions
of the system. If these changes proceed continuously from a def-
inite starting-point, the systematic properties we have discovered

in a figure will be transferable to each successive “phase,” so that
finally determinations, which are found in an individual case, can
be progressively extended to all the successive members. (Cassirer
1923, 80–81)

Given this description, the central mathematical idea underlying
Poncelet’s principle is indeed a structuralist one: the principle is
formulated based on the distinction between general (or “sys-
tematic”) relations and concrete elements (or figures) as their
possible relata. These general properties are characterized by
the fact that they can be mapped from one particular figure
to another one in terms of a suitable continuous transformation.
The principle of continuity thus effectively allows one to abstract
from the concrete relata of a given relation in order to yield a
general relational form.

The central method underlying this abstraction from concrete
figures it is what Cassirer terms the “operation of transfer of re-
lations” (“Verfahren der Relations-Übertragung”), i.e., the method
of transferring a certain relational structure between different
geometrical configurations. In the context of Poncelet’s work,
the relevant relational structure consists of those invariants of
a given figure preserved under the projective correlations. As
we saw in the previous section, these are mainly properties con-
cerning the incidence relations holding between the points, lines,
and planes in a geometrical configuration. For instance, in the
example of Desargues’s theorem, we saw the relevant projective
properties of the co-linearity of points and the concurrency of
lines.17

A second example of a projective transfer principle that is also
explicitly discussed in Cassirer’s work is the principle of duality.
Recall from the previous section that Poncelet explained duality

17Projective properties are not limited to incidence relations, but also con-
cern a number of metrical invariants, for instance, the cross-ratio of points on
a projective line. See, for instance, Coxeter (1974/1987) for a detailed study of
the projective invariants.
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phenomena in projective geometry in terms of dual transforma-
tions. Such “indirect correlations” between figures, that is, trans-
formations that reverse the “order” of composition of the parts
of a figure, are also briefly mentioned in Cassirer (1910, 108).
The relevant feature of such mappings is that they also preserve
the projective properties of a figure, at least up to dual equiva-
lence. For instance, polar transformations are so construed that
any incidence relation between lines and points in the original
figure can be translated into a reciprocal incidence relation that
holds between the corresponding poles and polars.

Now, similar to simple projections, dual transformations can
also be viewed as a way to “transfer” the projective content of one
configuration to another one. The existence of such a mapping
between two figures shows that they share the same structural
properties and are thus structurally indiscernible, at least in a
projective setting. Dual transformations are in fact more gen-
eral than simple projections, since they show that the particular
nature of the basic elements is irrelevant in the specification of
the geometrical structure of a figure: different configurations
such as the illustrations of Pascal’s and Brianchon’s theorems
in Figure 2 can nevertheless share the same abstract incidence
structure up to duality. Thus, in Cassirer’s terms, what mat-
ters is not the “content of the singular elements of a relation”
but rather what is preserved under the change of such elements
under such a transformation. Compare Cassirer’s related discus-
sion of dual transformations in his unpublished text “Einheit der
Wissenschaft”, written in 1931:

It is, for instance, characteristic of “dual transformations” which
play a decisive role in the construction of the modern projective
geometry that, based on them, configurations of different levels can
be transformed into each other. A statement about points and lines
is not subject to change if we interchange the words ‘point’ and
‘line’ in conformity with the principle of duality. It thus conforms
with the viewpoint of modern geometrical concept formation that
two dualistically opposing figures are not viewed as two distinct,
but as essentially the same figures. (Cassirer 2010, 167)

The most general and systematic expression of this notion of
a transfer of relational structure can be found, according to
Cassirer, in Felix Klein’s group-theoretic approach in geome-
try. As is well known, Klein’s programmatic paper “Vergleich-
ende Betrachtungen” of 1872 offered a radically new method
for the study of different geometries studied at the time, for in-
stance projective, Euclidean, hyperbolic, and conformal geome-
try (among others).18 This was the use of groups of transforma-
tions to characterize the relevant properties of configurations of
a given space. More specifically, Klein’s principal idea was to
identify each geometry with a space or, more formally, a mani-
fold M and a group G of transformations acting on M that leave
the relevant geometrical properties invariant. A manifold of n
dimensions for Klein was simply a set of n-ary tuples of real
or complex numbers. The transformations of a manifold were
usually understood analytically, that is as functions expressed
by certain algebraic equations.19

Klein’s important insight was that certain classes of spa-
tial transformations—equipped with a suitable composition
function—form a group in the algebraic sense of the term that,
in a way, encodes the abstract content of a given geometry.20
Compare Klein on this point:

The most essential idea required in the following discussion is
that of a group of space-transformations. The combination of any
number of transformations of space is always equivalent to a sin-
gle transformation. If now a given system of transformations has
the property that any transformation obtained by combining any

18Compare, e.g., Gray (2007), Hawkins (2000), and Birkhoff and Bennett
(1988) for detailed historical studies of Klein’s program, its mathematical back-
ground, and its influence on subsequent geometrical research.

19This analytic presentation of transformations of a space is not explicitly
discussed in Klein (1893). However, in subsequent writings on the Erlangen
program, the relevant transformations are usually characterized by Klein in
this way. See, e.g., Klein (1926).

20See Wussing (1984/2007, 186) for a closer discussion of Klein’s concept of
a transformation group.
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transformations of the system belongs to that system, it shall be
called a group of transformations. (Klein 1893, 217)

Given this set-up, Klein was able to characterize different geome-
tries in terms of their corresponding transformation groups, or
more precisely, in terms of the properties of configurations that
are preserved by the transformations of the respective group. For
instance, Euclidian geometry is characterized in terms of what
Klein called the “principal group” of spatial transformations. This
is the group of isometries, viz., the distance-preserving transfor-
mations including reflections, rotations, and translations. Pro-
jective geometry, in turn, is characterized by the group of all
projective transformations of a manifold, and so on.

This novel group-theoretic approach in geometry brought
with it a new conception of the subject matter of a geometri-
cal theory.21 Briefly put, geometry turns into a form of invariant
theory, i.e., into a study of those properties of figures that are
preserved under certain transformations. Compare Klein’s well-
known description on this new account of geometry:

Given a manifold and a group of transformations of the same;
to investigate the configurations belonging to the manifold with
regard to such properties as are not altered by the transformations
of the group . . . to develop the theory of invariants relating to that
group. (Klein 1893, 218–19)

Now, the central mathematical motivation for this focus on trans-
formation groups and their invariants was to provide a uni-
form method for the comparison of different geometries: this
is achieved by the fact that the groups corresponding to sev-
eral geometries can be ordered in terms of the group-theoretic
notions of subgroup and group extension. Presented schemat-
ically, think of two groups of transformations A, B such that A
forms a subgroup of B. Then all invariant properties of configu-
rations in a manifold M relative to B also turn out to be invariant

21See, in particular, Rowe (1985) and Marquis (2009) on this point.

relative to A (but not vice versa). Given this, one can say that
for two geometries A � 〈M,A〉 and B � 〈M, B〉, geometry A is
a subgeometry of B if the transformation group A is a subgroup
of B. Given the fact the transformation groups corresponding
to several geometries present subgroups of this form, Klein was
able to present a hierarchy of geometries studied at the time. For
instance, he was able to give a precise account of the relation
between Euclidean and projective geometry. Since the group
of all isometric transformations characteristic for Euclidean ge-
ometry forms a subgroup of the projective transformations, it
follows that Euclidean geometry is a subgeometry of projective
geometry. This means that all of the projective invariants (such
as the cross-ratio of four collinear points) are also invariants in
Euclidean geometry. However, it is not the case that invariant
properties studied in Euclidean geometry are also preserved
under projective transformations. This concerns, in particular,
simple metrical properties concerning the sameness of lengths
or angles.22

Cassirer, in his Substanzbegriff und Funktionsbegriff of 1910 as
well as in later works, viewed this group-theoretic approach
in geometry as a direct generalization of the transformation-
based approach in projective geometry. In fact, Klein’s program
is described by him as a culmination point in the development
towards a structural conception of geometry outlined above.23
More specifically, Cassirer holds that given the plurality of dif-
ferent geometrical methods, there is “a uniform basic form of
geometrical concept formation”. This is the use of transforma-
tions of geometrical objects for the specification of their invariant
form. As he points out, the most systematic expression of this
basic form is to be found in Klein’s approach:

22Compare again Wussing (1984/2007) for a detailed account of Klein’s
classification of geometries in terms of their groups.

23Compare in particular Ihmig (1997) for a detailed study of Cassirer’s re-
ception of Klein’s program and of the significant influence the group-theoretic
approach in geometry exercised on Cassirer’s general philosophy.
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This development reaches its systematic conclusion in the theory
of groups; for here change is recognized as a fundamental con-
cept, while, on the other hand, fixed logical limits are given to
it. . . . Geometry, as the theory of invariants, treats of certain un-
changeable relations; but this unchangeableness cannot be defined
unless we understand, as its ideal background, certain fundamen-
tal changes in opposition to which it gains its validity.

The unchanging geometrical properties are not such in and for
themselves, but only in relation to a system of possible transforma-
tions that we implicitly assume. Constancy and change thus appear
as thoroughly correlative moments, definable only through each
other. (Cassirer 1923, 90–91)

This and related remarks suggest that Cassirer takes Klein’s
group-theoretic approach to be a specification of how “func-
tional” concepts—expressing an abstract “network of correla-
tions” between concrete objects—can be constructed in geom-
etry. Specifically, he makes two important philosophical ob-
servations regarding the abstract character of Klein’s focus on
transformations of space.

The first observation concerns the notion of “geometrical
properties”. What Klein’s group-theoretical approach shares
with the preceding developments in projective geometry is that
attention is gradually shifted away from particular figures in
space and towards their relational properties. Cassirer empha-
sizes at several places that Klein first introduced a systematic
method on how to specify the relevant structural properties of
a given geometry. Recall that for Klein, a geometry consists of
a manifold M and a group G of transformations f : M → M
acting on M. If we think of configurations as subsets of the man-
ifold, i.e., F1 , F2 ⊆ M, then a property P of configurations in M
can be called a G-property if is it invariant relative to G, i.e. for
any F1 ⊆ M: if P(F1) then for all f ∈ G: P( f (F1)). Notice that, in
this account, what counts as a geometrical property is clearly de-
pendent on the choice of a particular group of transformations.
Thus, by changing the relevant group of transformations, for in-

stance by adding certain types of transformations, what counts
as a geometrical property will also change. Compare Cassirer
on this relative character of geometrical properties:

“Geometry is distinguished from topography by the fact that only
such properties of space are called geometrical as remain un-
changed in a certain group of operations.” If we adhere to this
explanation, we gain a view of very diverse possibilities for the
construction of geometrical systems, all equally justified logically.
For as we are not bound in the choice of the group of transfor-
mations, which we take as the basis of our investigation, but can
rather broaden this group by the addition of new conditions, a
way is opened by which we can go from one form of geometry to
another structure [Struktur] by changing the fundamental system
to which all assertions are related. (Cassirer 1923, 89)

Notice the explicit use of the notion of “structure” in this con-
text: the structure of a given geometry is determined by its group
of transformations. Modifying this group will lead to a differ-
ent, but “logically equal” geometrical structure. The comparison
of projective and Euclidean geometry mentioned above illus-
trates this point. The respective groups of projective and of Eu-
clidean transformations determine different sets of geometrical
invariants. In Cassirer’s terms, they induce different geometri-
cal “structures”. Nevertheless, these geometries are on par with
each other in the sense that none is preferable to the other, at
least if both are conceived as pure geometrical theories.

Cassirer’s second important observation is related to the idea
of the transfer of relational structure already discussed above.
Recall that, according to him, the method of transfer in Poncelet’s
work on projective geometry is based on the use of correlations
that preserve the projective properties of a figure. Moreover,
we saw that two distinct figures connected by such a transfor-
mation are usually considered to be equivalent or structurally
indiscernible, at least from a projective point of view. As Cassirer
notes, this notion of structural equivalence is again generalized
in Klein’s group-theoretic approach. In particular, Klein explic-
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itly points out in 1872 that one can use the transformations of
a given type to transfer certain properties of a given figure to
another one. For instance, he argues here that “[e]very space-
transformation not belonging to the principal group can be used
to transfer the properties of known configurations to new ones”
(Klein 1893).

Moreover, Klein also points out that if a figure can be trans-
formed into another one in this sense, then the two figures are
congruent relative to the underlying group of transformations.
More generally, given a geometry consisting again of a man-
ifold M and a group G of transformations on M, we can say
that two figures F1 , F2 ⊆ M are G-congruent if there exists at
least one transformation f ∈ G such that f (F1) � F2. Given the
structural character of Klein’s approach, one could also say that
G-congruence presents a relative notion of structural equivalence
between the configurations in a given manifold. Thus, two fig-
ures in a given space are structurally equivalent with respect to
a given geometry if there exists at least one transformation that
transfers all relevant properties from one to the other.24

Precisely this understanding of the geometrical congruence of
figures as a kind of structural equivalence is also highlighted in
Cassirer’s analysis of Klein’s approach. Compare, for instance,
the following passage in his later article “The Concept of Group
and the Theory of Perception” of 1944:

From this definition of “geometrical properties” the conditions
become immediately apparent under which two spatial con-
cepts/configurations are “equivalent” to each other, i.e. are but
different expressions of one and the same geometrical “essence”.
The “essence” of a triangle is not altered, the logical assertions about
it are not invalidated, when we change its individuality in certain

24Klein, in his writings, was explicit about the fact that this understanding of
geometrical equivalence is rooted in modern projective geometry, for instance,
in the principle of duality. Compare the following remark: “From the modern
point of view two reciprocal figures are not to be regarded as two distinct
figures, but as essentially one and the same” (Klein 1893, 221).

ways, e.g., displace it in space or make the absolute lengths of the
side increase or decrease. We may say quite generally that two
series of expressions which are transformed in this manner must
be considered as geometrically equivalent, i.e., defining identical
geometrical figures. (Cassirer 1944, 6–7)

Notice again that what counts as structurally equivalent in a
given space is again dependent on the particular choice of a
group of transformations acting on the space.25 For instance, in
Euclidean geometry, one usually distinguishes between differ-
ent types of conic sections—namely hyperbola, parabola, and
ellipses—given the fact that they have different metrical prop-
erties. In contrast, in projective geometry, these three types of
conics are treated as the same geometrical configuration since
they are projectively equivalent.

3.3. Formal axiomatics

The second methodological innovation in modern geometry dis-
cussed in detail in Cassirer (1910) concerns the development of
formal axiomatics. As was shown in Section 2, the axiomatic
method became of central importance in projective geometry
in the nineteenth-century. In particular, it was Pasch who pre-
sented the first systematic axiomatization of projective geometry
in his Vorlesungen über neuere Geometrie (1882). As we saw, Pasch’s
axiom system was taken to be descriptively complete in the sense
that all theorems of solid projective geometry can be deduced
from the axioms alone. Moreover, he was first to emphasize
the importance of formal and rigorous deductive reasoning and
the fact that demonstrations of geometrical theorems should
not depend in any way on empirical intuition or on the use of
diagrams.

25Compare again Cassirer on this relativity of structural identity in Klein’s
account: “Thus, what in the geometrical sense must be taken as ‘identical’
and what as ‘different’ is by no means predetermined at the outset. On the
contrary, it is decided by the nature of the geometrical investigation, viz., by
the choice of a determinate group of transformations” (Cassirer 1944, 7).
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This abstraction from geometrical intuition in axiomatic
proofs also marks the transition from the classical to the mod-
ern understanding of axiomatic geometry in Cassirer’s view.
While, as in Pasch’s account, intuition may still provide a rel-
evant source for the specification of the primitive geometrical
concepts–that is, of points, lines, and planes in space—the re-
lations of incidence or concruence between them are now to be
“deduced conceptually” from the axioms of a theory. Compare
Cassirer’s description of what is essentially Pasch’s empiricist ap-
proach to axiomatic geometry, illustrated in terms of the notion
of “betweenness”:26

We can still take the elementary contents of geometry: the point,
the straight line and the plane, from intuition; but all that refers
to the connection of these contents must be deduced and under-
stood conceptually. In this sense, modern geometry seeks to free a
relation, such as the general relation of “between,” which at first
seems to possess an irreducible sensuous existence, from this re-
striction and to raise it to free logical application. The meaning
of this relation must be determined by definite axioms of con-
nection in abstraction from the changing sensuous material of its
presentation; for from these axioms alone is gained the meaning
in which it enters into mathematical deduction. By this extension,
we can make the concept of “between” independent of its original
perceptual content and apply it to series in which the relation of
“between” possesses no immediate intuitive correlate. (Cassirer
1923, 91–92)

Thus, intuition may still be used to grasp the domain of basic
elements of a geometrical theory. However, all of their rele-
vant properties have to be specified independently of it. A ge-
ometrical notion such as the “betweenness” between points is
understood here as a “general relation” whose meaning is to
be determined through general axiomatic definitions and thus

26See, again, Schlimm (2010) for a detailed study of Pasch’s empiricist ac-
count of axiom choice.

without reference to any concrete or intuitive relata to which it
may apply.

It is interesting to see here that Cassirer takes this new focus
on axiomatic definitions and rigorous deductive proofs to be
closely connected to the developments in projective geometry
outlined in Section 2. In particular, his article “Kant und die
moderne Mathematik” (1907) contains an explicit discussion of
Pasch’s axiomatic justification of the principle of duality:

As is generally known, the law of duality is the fact that every
projective statement remains true if one interchanges the words
“point” and “plane” in it whereas one leaves unchanged the
straight lines together with all those properties they share with
points and planes. The proper logical basis of this reciprocity lies
in the fact that, in the geometrical theory present in front of us,
the concepts of “points” and “lines” were assumed as undefinable
such that their content cannot be relevant for the truth of the the-
ory; this truth thus has to remain valid if one assigns a different
meaning to these entities; given the condition that one ascribes
to them only and precisely those relations which they possessed
before. (Cassirer 1907, 28)

This account of the “logical basis” of duality corresponds pre-
cisely to Pasch’s justification of the principle based on his account
of formal geometrical proofs that preserve only logical structure
and are independent of the concrete meaning of the primitive
geometrical terms. Moreover, Cassirer takes Pasch’s account to
be characteristic for a general tendency in geometry to neglect
“intuitive elements” in geometrical proofs.

Even though Pasch is mentioned briefly in this context, Cas-
sirer’s main attention is dedicated to David Hilbert’s work, in
particular his Grundlagen der Geometrie of 1899. Hilbert’s axiom-
atization of Euclidean geometry is described by Cassirer as a
“pure science of relations” (“Beziehungslehre”) in which all ties
to geometrical intuition are given up. Whereas in Pasch’s ac-
count geometrical intuition still plays a role in the process of
axiom choice, Hilbert’s axioms are viewed here as free-standing
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conditions that implicitly define the primitive terms of the the-
ory.27 Before turning to a closer discussion of Cassirer’s remarks
on Hilbert’s new method, let us briefly outline the basic ap-
proach in Grundlagen.

As is well known, Hilbert starts his treatment of Euclidean
geometry by mentioning the three types of primitive objects
(namely points, lines, and planes) and by presenting a num-
ber of axioms which specify the relations between these objects.
His axiom system is divided into five axiom groups: the ax-
ioms of connection, the axioms of order, the axiom of parallels, the
axioms of congruence, and the axiom of continuity (in particular,
Archimedes’ axiom and the axiom of completeness added in
the second edition of the book). This classification of the axioms
into different groups is based on the particular kinds of geomet-
rical properties they specify: The axioms of connection form the
“projective basis” of his system (that is, the incidence axioms in
the modern sense).

The axioms of order specify the basic properties of the or-
dering of points on a straight line and thus define the notion
of “betweeness” already mentioned in Cassirer’s above remark.
The third group contains only the well-known axiom of paral-
lels. The axioms of congruence, in turn, determine the notion of
congruence of line segments and angles. Finally, the two com-
pleteness axioms are introduced by Hilbert in order to get a
complete and, in modern terms, categorical axiomatization of
Euclidean space. The Archimedes axiom roughly states that, if
sufficiently often repeated on a line, every line segment exceeds
the length of any previously given line segment. The axiom of
completeness was added in the second edition of the book and
has a different, genuinely metatheoretic status. It states that the
system of points, lines and planes satisfying the base axiom sys-

27It should be noted here Pasch’s axiomatic work in projective geometry
exercised a significant influence on Hilbert’s axiomatic approach. See Schlimm
(2010) and Toepell (1986) for a closer discussion of this line of influence.

tem cannot be extended without violating one of the remaining
axioms.

The central innovation in Hilbert’s Grundlagen does not lie
in the particular formulation of these axioms or their classifi-
cation into groups, but rather on his new understanding of an
axiomatic theory.28 In particular, the axioms of the five groups
are no longer viewed as true descriptions of an intuitively acces-
sible domain, but rather as implicit definitions of the primitive
terms as well as of the primitive relations of incidence, paral-
lelity, congruence, and so on. Consider, for instance, Hilbert’s
“projective” basis of Euclidean geometry, that is, the axioms of
connection:

1.1 Two distinct points A and B always completely determine
a straight line a. We write AB � a or BA � a.

1.2 Any two distinct points of a straight line completely
determine that line; that is, if AB � a and AC � a, where
B , C, then is also BC � a.

1.3 Three points A, B, C not situated in the same straight line
always completely determine a plane α. We write
ABC � α.

1.4 Any three points A, B, C of a plane α, which do not lie in
the same straight line, completely determine that plane.

1.5 If two points A, B of a straight line a lie in a plane α, then
every point of a lies in α.

1.6 If two planes α, β have a point A in common, then they
have at least a second point B in common.

1.7 Upon every straight line there exist at least two points, in
every plane at least three points not lying in the same
straight line, and in space there exist at least four points
not lying in a plane. (Hilbert 1899)

These axioms are taken to express general conditions for the in-
cidence relations between points, lines, and planes which need

28Compare, in particular, Torretti (1978), Nagel (1939), and Gray (2008) on
Hilbert’s conception of formal axiomatics.
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to be met by any system of Euclidean geometry. Hilbert’s new
understanding of axioms as implicit definitions brought with it a
fundamental change in how geometrical theories are conceived.
Roughly put, axiomatic theories are no longer about a partic-
ular geometrical space, but are now understood as schematic
or formal in the modern sense of the term. As such, they can
be (re-)interpreted in different systems that satisfy the abstract
conditions specified in the axioms.

Hilbert’s approach in Grundlagen is described as another cul-
mination point in the development of pure geometry in Cas-
sirer’s book. What is particularly interesting here is that Cassirer
was likely the first philosopher to see a close conceptual con-
nection between Hilbert’s contributions to structural axiomatics
and the group-theoretic approach in geometry introduced by
Klein three decades earlier.29 In his view, both accounts present
endpoints to two different developments in nineteenth-century
geometry that eventually led to a “structural turn” in the field. In
Klein’s case, this was the systematic use of transformations first
introduced in work by Poncelet and Chasles. In Hilbert’s case,
this was the axiomatic tradition starting with work by mathe-
maticians such as Gergonne and Pasch.

How are these two geometrical methods related according
to Cassirer? Two points should be emphasized here. The first
concerns his understanding of the subject matter of geometri-
cal theories. In Cassirer’s view, in both Klein’s and Hilbert’s
accounts, geometrical theories are effectively about relational
structures. We saw that in Klein’s algebraic approach of study-
ing geometries in terms of their characteristic transformation
groups, geometry becomes the study of invariants. As Cassirer
pointed out, a group of spatial transformations can be consid-
ered as an abstract concept that represents, in his own words,
the “structure” of a particular geometry. In turn, in Hilbert’s

29This fact was first stressed in Ihmig’s work on Cassirer. See, in particular,
Ihmig (1997, 327).

Grundlagen, Euclidean space is determined axiomatically in the
following sense: the axioms of the five groups specify differ-
ent structural properties—or, in Cassirer’s terms, “characteristic
conditions”—of the primitive relations of the theory.

Given this approach, it seems natural to say that what an
axiomatic theory is really about is also an abstract structure
implicitly defined by it. Such a view is expressed by Cassirer in
Cassirer (1910) as well as in his related writings. Consider, for
instance, the following remark:

Wherever a definite form of connection is given, which we can
express in certain rules and axioms, there an identical “object”
is defined in the mathematical sense. The relational structure as
such, not the absolute property of the elements, constitutes the real
object of mathematical investigation. (Cassirer 1910, 92–93)

Notice again Cassirer’s explicit use of the notion of “relational
structure”, now in the context of modern axiomatic geometry. In
axiomatic theories such as Hilbert’s axiom system for Euclidean
geometry, an abstract structure functions as the proper object of
investigation. The nature of particular geometrical objects such
as points, lines, and planes is determined solely through their
role in such a structure.30

This and related passages show that Cassirer proposes an
structuralist interpretation of Hilbert’s work which is similar in
character to his analysis of Klein’s group-theoretic approach. In
fact, the two methods are described here as alternative types of
concept formation in geometry that allow for the specification of
the same geometrical concepts by different means. For instance,

30Compare Cassirer on this purely relational conception of geometrical ob-
jects in Hilbert’s axiomatic approach: “The point and the straight line signify
nothing but structures which stand in certain relations with others of their
kind, as these relations are defined by certain groups of axioms. Only this
systematic ‘complexion’ of the elements, and not their particular characters, is
taken here as the expression of their essence. In this sense, Hilbert’s geometry
has been correctly called a pure theory of relations” (Cassirer 1910, 93–94).
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just as Klein’s focus on the principal group of isometric trans-
formations can be thought of as a way to specify the abstract
concept of Euclidean space, Hilbert’s axiomatic conditions also
specify an abstract or higher-level concept, namely the structure
of Euclidean space that can be instantiated by different concrete
systems.31

The second point to be mentioned here again concerns the
notion of “transfer” of relations. In Cassirer’s understanding,
this method plays a central role both in projective geometry
and in Klein’s group-theoretic approach. Generally speaking,
the relevant transfers in these contexts are effected in terms
of “correlations” that preserve certain geometrical properties.
For instance, in the case of duality, we saw that one relevant
type of transformations concerns Poncelet’s polar transforma-
tions which allow one to identify geometrical configurations
with reciprocal incidence properties. Interestingly, in Klein’s
Vergleichende Untersuchungen of 1872, the topic of transfer prin-
ciples is also discussed in a more general sense, namely on the
level of geometrical theories. As was mentioned before, Klein’s
general motivation for his group-theoretic approach was not
primarily to study particular geometries such as Euclidean or
projective geometry in isolation, but rather to compare different
theories in terms of their corresponding transformation groups.
In Section 4 of the paper—titled “Transfer by Representation”
(“Übertragung durch Abbildung”)—he introduces a new ac-
count of “transfer principles” to show the equivalence of differ-
ent geometries that share similar transformation groups. Very
roughly, the idea sketched here is that two geometries, conceived
again as groups of transformations acting on a given manifold,
can be taken to be “essentially the same” if there exists a trans-

31The view of an axiom system as an explicit definition of a higher-level
mathematical concept goes back to Frege’s critical discussion of Hilbert’s ax-
iomatics. Compare also Carnap’s discussion of “explicit concepts” in mathe-
matics that are defined by an axiom system. See, in particular, Carnap (1929).

fer between the two manifolds which induces an isomorphism
between the corresponding transformation groups. Compare
Klein on this method of “transfer by mapping”:

Suppose a manifoldness A has been investigated with reference to a
group B. If, by any transformation whatever, A be then converted
into a second manifoldness A′, the group B of transformations,
which transformed A into itself, will become a group B′, whose
transformations are performed upon A′. It is then a self-evident
principle that the method of treating A with reference to B at
once furnishes the method of treating A′ with reference to B′,
i.e., every property of a configuration contained in A obtained by
means of the group B furnishes a property of the corresponding
configuration in A′ to be obtained by the group B′. (Klein 1893,
223)

Paraphrased in modern terms, the idea expressed here is that
two geometries—understood as tuples of the form (A, B) and
(A′, B′)—are essentially similar if there exists a bĳective map-
ping F : A → A′ that induces an isomorphism between the
corresponding groups α : B → B′ that preserves the group
actions of B and B′ on A and A′ respectively.32

Now, this general method of transfer by mappings on the
level of geometries is clearly structural in character. A central
consequence of Klein’s approach is that it allows one to identify
the abstract content of geometries that describe spatial elements
of a very different kind. This indifference to the nature of the
basic elements of a geometry is explicitly addressed in Section
5 of Klein’s paper titled “On the Arbitrariness in the Choice of
the Space-Element”:

As element of the straight line, of the plane, of space, or of any
manifoldness to be investigated, we may use instead of the point
any configuration contained in the manifoldness, a group of points,
a curve or surface, etc. . . . But so long as we base our geometrical

32Compare Rowe (1985) and Marquis (2009) for a closer discussion of Klein’s
transfer principles.
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investigation on the same group of transformations, the geometri-
cal content [Inhalt der Geometrie] remains unchanged. That is, every
theorem resulting from one choice of space element will also be
a theorem under any other choice; only the arrangement and cor-
relation of the theorems will be changed. The essential thing is
thus the group of transformations; the number of dimensions to
be assigned to a manifold is only of secondary importance. (Klein
1893, 224)

Thus, in the study of a geometry, the particular nature of the
basic elements of space is not relevant. The real “content of a ge-
ometry” is the abstract structure encoded in the group of spatial
transformations. Consequently, two geometries that describe
manifolds with distinct basic spatial elements can nevertheless
be identified in terms of their abstract content if their corre-
sponding groups of transformations are “similar” (that is, in
modern terminology, isomorphic) with each other.33

Returning to Cassirer’s Substanzbegriff und Funktionsbegriff, it
is somewhat surprising that Klein’s treatment of transfer prin-
ciples and of the structural equivalence of geometries is not ad-
dressed here (nor, to the best of our knowledge, in any of his later
writings on the group-theoretic approach in geometry). How-
ever, Cassirer refers to a closely related notion of equivalence
of geometries in his discussion of modern axiomatics. Compare
the following passage in which Cassirer gives an illustration of
this kind of equivalence between axiomatic theories:

Two complexes of judgments, of which the one deals with straight
lines and planes, the other with the circles and spheres of a certain
group of spheres, are regarded as equivalent to each other on this
view, in so far as they include in themselves the same content of
conceptual dependencies along with a mere change of the intuitive
“subjects,” of which the dependencies are predicated. In this sense,
the “points” with which ordinary Euclidean geometry deals can

33Klein discusses a number of geometries in his paper whose equivalence
can be shown based on the existence of a suitable transfer principle. See, in
particular, Klein (1893, §4).

be changed into spheres and circles, into inverse point-pairs of a
hyperbolic or elliptical group of spheres, or into mere number-trios
without specific geometrical meaning, without any change being
produced in the deductive connection of the individual propo-
sitions, which we have evolved for these points. This deductive
connection constitutes a distinct formal determination, which can
be separated from its material foundation and established for itself
its systematic character. The particular elements in this mathemat-
ical construction are not viewed according to what they are in and
for themselves, but simply as examples of a certain universal form
of order and connection; mathematics at least recognizes in them
no other “being” than that belonging to them by participation in
this form. For it is only this being that enters into proof, into the
process of inference, and is thus accessible to the full certainty, that
mathematics gives its objects. (Cassirer 1923, 93)

This passage again highlights Cassirer’s structuralist conception
of geometrical theories. Two theories can describe systems of
basic spatial objects of different sorts, for instance lines and
planes in one case and circles and spheres in the other case.
Nevertheless, they can be said to have the same content if there
exists a systematic replacement between the elements of the two
systems such that the “deductive connection” between axioms
and theorems is preserved.

In view of Cassirer’s geometrical background, there exist at
least two ways to understand this method of replacement in the
present axiomatic context. One is syntactic, the other model-
theoretic in character. Recall from Section 2 that one way to
justify the principle of duality in projective geometry was based
on the axiomatic specification of projective space. In particu-
lar, in Pasch’s account in 1882, the principle is expressed as a
purely syntactic result: given the symmetric character of his ax-
iom system as well as a notion of formal geometrical proof, it
follows that any theorem about the projective properties of a
configuration can be translated into a dual statement which is
also deducible from the axiom system in question. Given Cas-
sirer’s above characterization of the equivalence between two
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“complexes of judgments”, i.e., sets of statements, in terms of
the preservation of the “deductive connection” between them,
it seems natural to interpret this kind of transfer in direct anal-
ogy to the axiomatic justification of duality, namely as a purely
syntactic procedure.

That said, we mentioned above that Cassirer’s main back-
ground in his discussion of modern axiomatics is not Pasch
but Hilbert’s Grundlagen. As was shown, Pasch’s purely syn-
tactic view is complemented here by a genuinely semantic or
model-theoretic conception of axiomatic theories. Specifically,
Hilbert’s metatheoretic consistency and independence results
are presented in the Grundlagen in terms of analytic model con-
structions and based on the fact that the axioms of his theory can
be reinterpreted relative to these models.34 Hilbert was explicit
about this model-theoretic conception of axiomatic theories and
also the use of model-theoretic methods, in particular of struc-
ture preserving mappings between models, in the proof of his
metatheoretic results. The new style of reasoning is expressed
most clearly by Hilbert in his famous correspondence with Frege.
In particular, in a letter from 29 December in 1899, he writes:

But surely it is self-evident that every theory is merely a framework
or schema of concepts together with their necessary relations to
one another, and that the basic elements can be construed as one
pleases . . . each and every theory can always be applied to infinitely
many systems of basic elements. For one has to apply a univocal
and reversible one-to-one transformation and stipulate that the
axioms are the same also for the transformed things. Indeed, this
is frequently applied, for example in the principle of duality, etc.; I
also apply it in my independence-proofs. (Frege 1980, 40)

Notice Hilbert’s reference to projective duality in this passage.
As we saw in Section 2, a common way to justify the principle
of duality in projective geometry was based on the notion of
structure-preserving mappings. A similar idea of a transfer of

34Compare Sieg (2014) and Hallett (2008) for detailed discussion of Hilbert’s
metatheoretic approach.

structure in terms of transformations is also discussed here in
the context of Hilbert’s model-theoretic approach to formal the-
ories.35 Given this background of Cassirer’s remarks on modern
axiomatics, it is thus plausible to interpret his above discussion
of the equivalence of axiomatic theories in a genuinely semantic
way. The replacement of the geometrical objects of one domain
by those of another domain is then not understood in terms of
the syntactic translation of the primitive vocabulary of a geom-
etry, but rather in terms of the semantic reinterpretation of its
statements. The kind of semantic transfer of relations is thus
induced by mappings between the two systems that satisfy the
axiomatically defined relational structure.

This interpretation of Cassirer’s understanding of transfers
in the context of axiomatic theories receives further confirma-
tion if one looks at the central reference in his discussion of this
topic, namely Weber’s and Wellstein’s Enzyklopädie der Elementar-
Mathematik of 1903. Cassirer mentions this book for its “very
instructive examples and elucidations” in a footnote attached to
the above passage. In Volume 2 of the textbook, Weber gives
a detailed discussion of Hilbert’s axiomatization of Euclidean
geometry and the idea of such semantic transfers. More specifi-
cally, it is shown that Hilbert’s axiom system can be reinterpreted
in a spherical geometry if the primitive terms are reinterpreted
in a new geometrical system of bundles of spheres. The fact that
all of Hilbert’s theorems are also true in this new geometry is
justified in terms of the existence of a “mapping procedure”,
that is, a mapping between the two domains that preserves all
of the axiomatically defined properties. Compare Weber on this
point:

35In particular, the second sentence in this passage can be read as an early for-
mulation of the model-theoretic isomorphism lemma: relativized to Hilbert’s
categorical theory of Euclidean geometry: any two systems (possibly with do-
mains of different objects) are identical as models of the theory if there exists
a bĳective mapping between them that preserves the structural properties
expressed in the axioms.
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. . . [in the study] of the primitive elements “point”, “line”, “plane”,
“space” and of the primitive concepts “between”, “distance”, “an-
gle”, “congruence”, one has to strictly distinguish between the
properties which can be transferred from conventional space to
any other linear and three-dimensional manifold and those prop-
erties which apply to these concepts individually. Transferable are,
for instance, the properties of connection and order, of continuity,
and congruence, in so far as they are collected in the (Hilbertian)
axioms. . . . The transferable properties concern the relations of the
primitive concepts to each other, the individual properties concern
the relations to our sensuality. (Weber and Wellstein 1903, 109–10)

Notice, in particular, the explicit use of the term “transferable
properties” in this discussion of Hilbert’s work. It is precisely
this semantic notion of transfer of structure that Cassirer was
also referring to in his account of modern axiomatics.

4. A Geometrical Structuralism

Cassirer’s philosophical reflections on modern geometry in Cas-
sirer (1910) as well as in related writings present an attempt to
describe the general “structural turn” in the field. More gen-
erally, it is justified to say that Cassirer formulated an early
version of structuralism concerning mathematical knowledge.36
This fact has already been emphasized in recent scholarly work.
In particular, Yap, Heis, and Reck have surveyed the forma-
tive influence of Dedekind’s work on the foundations of arith-
metic on Cassirer’s philosophy of mathematics. It is argued there
that Dedekind’s proto-axiomatic presentation of arithmetic pre-
sented a general paradigm for Cassirer’s understanding of struc-
tural mathematics. In the present section, we want to take up
this debate and analyze how Cassirer’s discussion of the struc-
tural methods in nineteenth-century geometry relates to this

36This point has first been emphasized in Ihmig (1997). See also Heis (2011)
and Biagioli (2016).

general Dedekind-style structuralism about arithmetic and to
contemporary philosophy of mathematics more generally.

4.1. Methodological structuralism

On first glance, Cassirer’s general discussion of the structural
nature of mathematical knowledge seems closely connected to
modern structuralism. Consider again how the subject matter
of mathematical theories is characterized by him in 1910:

The relational structure as such, not the absolute property of the
elements, constitutes the real object of mathematical investiga-
tion. . . . The particular elements in this mathematical construction
are not viewed according to what they are in and for themselves,
but simply as examples of a certain universal form of order and
connection; mathematics at least recognizes in them no other “be-
ing” than that belonging to them by participation in this form. For
it is only this being that enters into proof, into the process of infer-
ence, and is thus accessible to the full certainty, that mathematics
gives its objects. (Cassirer 1923, 93)

This reads as a variant of modern non-eliminative structuralism,
as developed in work by Shapiro, Resnik, and Parsons (among
others).37 All of the central ingredients of their accounts are
present here: mathematical theories are taken to study abstract
structures or patterns as their subject matters. Mathematical ob-
jects, in turn, are merely positions in such structures, specified in
terms of their interrelations with the other objects. These objects
have no intrinsic nature or properties outside their structure. In
Cassirer’s terms, their very mathematical “being” is determined
by the fact that they instantiate the abstract relational structure
in question.

That said, it should be emphasized that Cassirer’s account also
differs in crucial respects from modern versions of structural-
ism. First of all, Shapiro’s (and to a lesser degree also Resnik’s)

37See, in particular, Shapiro (1997), Parsons (1990), and Resnik (1997).
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theories are primarily theories about a proper structuralist on-
tology of mathematics. Both philosophers take structures and
the positions in them to be entities that (i) exist in some abstract
realm and (ii) whose metaphysical nature needs to be speci-
fied in some form, for instance in terms of Platonic universals
in Shapiro’s case. In contrast, in Cassirer’s work, one finds lit-
tle interest in such metaphysical speculations concerning the
nature of structural objects. Rather, as we saw in Section 3.1,
his main focus is on the status of mathematical concepts and on
the general logic of concept formation. Put differently, Cassirer’s
philosophy of mathematics is less concerned with mathematical
ontology or our epistemological access to mathematical objects,
than it is with the study of different methods of constructing
abstract concepts.

Cassirer’s position is thus best characterized as an early ver-
sion of “methodological structuralism”.38 In particular, looking
at the extensive discussion of modern geometry in the third
chapter of Substanzbegriff und Funktionsbegriff, we saw that he
identified two “structural methods”, namely formal axiomatics
and the transformations-based approach expressed most sys-
tematically in Klein’s Erlangen program. A central insight of
Cassirer was that these two methods lead to a similar struc-
turalist conception of the subject matter of geometrical theories.
Moreover, he takes both approaches to characterize a notion of
structural transfer between different mathematical domains.

38Compare Reck on a closer specification of this position: “As the term
‘methodological structuralism’ suggests, this first position has primarily to
do with mathematical method, rather than with semantic and metaphysical
issues as the others do. . . . [M]ethodological structuralism consists then of such
a general, largely conceptual approach (as opposed to more computational and
particularist approaches)” (Reck 2003, 371).

4.2. A top-down view

Whereas Cassirer was clearly less concerned with the ontology
of mathematical objects, there is a number of interesting points
of contact with the modern debate. These concern, in partic-
ular, his understanding of the relation between mathematical
concepts and concrete instances, for instance, between abstract
geometrical concepts of a given space or curve and concrete sys-
tems or configurations of this form. As we want to show here,
Cassirer’s view of this relationship anticipates a kind of top-down
structuralism similar in spirit to Shapiro’s ante rem structuralism
(see Shapiro 1997). Moreover, viewed in this way, it can also
be shown how Cassirer’s account of geometry connects with
the general “Dedekind-style structuralism” highlighted in re-
cent scholarly work.

Let us look at the two structural methods described in Cassirer
(1910) in turn. In Cassirer’s discussion of Hilbert’s structural
axiomatics, the connection to Dedekind’s approach is evident.
Dedekind, in his Was sind und was sollen die Zahlen? (1888), gave
an axiomatic presentation of arithmetic that is, from a method-
ological point of view, very similar to Hilbert’s axiomatic treat-
ment of Euclidean geometry. As has recently been pointed out
by Reck, Heis, and Yap, Cassirer describes Dedekind’s approach
as a structuralist one, using more or less that same terminology
as in his discussion of Hilbert:

What is here [in Dedekind’s work] expressed is just this: that there
is a system of ideal objects whose content is exhausted in their
mutual relations. The ‘essence’ of the numbers is completely ex-
pressed in their positions. (Cassirer 1923, 39)

Thus, given the axiomatic definition of the abstract concept of
the natural number structure, individual objects such as the
natural numbers are merely positions in a structure whose only
relevant properties are relational ones, that is, those determined
by the interrelations with the other numbers in the structure.
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This treatment of Dedekind’s and Hilbert’s axiomatic ap-
proaches is clearly related to modern versions of non-eliminative
structuralism in the work of Resnik, Shapiro, and Parsons
(among others). This concerns, in particular, the structural con-
ception of objects as positions in a mathematical pattern or struc-
ture.39 Also relevant here is the fact that the axiomatic method
is described by Cassirer as a top-down approach in mathemati-
cal concept formation. An axiom system specifies a higher-level
concept or a set of abstract conditions that any model of the
theory has to satisfy. Axiomatically defined concepts are thus,
in Cassirer’s own terms, “logically prior” and thus independent
of the more concrete instances satisfying them. For instance, in
the context of Dedekind arithmetic, the specification of a natu-
ral number structure is independent of concrete number systems
which meet the conditions laid down in the axioms. Similarly, in
the case of geometry, Cassirer rightly describes Hilbert’s axioms
as “hidden definitions” of abstract properties of the Euclidean
space that are independent of any concrete or intuitive objects.
Thus, Hilbert’s axioms are not viewed as descriptive statements
about the properties of an intuitively given domain. Rather, they
function prescriptively, as definitions of abstract conditions that
any space has to satisfy in order to count as Euclidean.40 Com-
pare again Cassirer on this general point in axiomatic concept
formation:41

The determination of the individuality of the elements is not the
beginning but the end of the conceptual development; it is the

39See Shapiro (1997), Resnik (1997), and Parsons (1990). Compare, for in-
stance, Parsons’ discussion of the structural characters of objects: “By the
‘structuralist view’ of mathematical objects, I mean the view that reference to
mathematical objects is always in the context of some background structure,
and that the objects have no more to them than can be expressed in terms of
the basic relations of the structure” (1990, 303).

40See, in particular, Schlimm (2013) for a detailed investigation of this
prescriptive-descriptive distinction in modern axiomatics.

41Heis gives a detailed study of Cassirer’s top-down approach in mathe-
matical concept formation and describes this as a direct consequence of his
Kantian view of mathematics. See, in particular, Heis (2007).

logical goal, which we approach by the progressive connection of
universal relations. (Cassirer 1910, 94)

Notice that this account conforms with Cassirer’s general re-
marks on the top-down nature of mathematical concept forma-
tion presented in Section 3.1. Given the concepts-first or “rela-
tions over relata” view stated here, it seems natural to interpret
Cassirer’s understanding of modern axiomatic theories (both
Dedekind’s arithmetic and Hilbert’s geometry) as an early ver-
sion of ante rem structuralism.42

Let us turn to the second geometrical method discussed in
Cassirer’s book, that is, the systematic use of transformations in
projective geometry and in Klein’s Erlangen program. Here too,
Cassirer observed a shift in attention from particular geomet-
rical figures to the study of their invariant form. This focus on
invariant relations and the notion of the structural equivalence
of geometrical objects is again closely related to the modern de-
bates in structuralism. In particular, one way in which the struc-
turalist thesis is usually characterized in modern philosophy
of mathematics is based on the notion of structural properties.
Roughly put, it is argued that mathematical theories study only
structural properties of their objects, i.e., properties not concern-
ing their “internal nature” but rather how these objects “relate to
each other”.43 Properties in this sense are usually characterized
in terms of the invariance under isomorphism, i.e., invariance
under structure-preserving mappings. As we saw, a similar fo-
cus on invariant properties can also be found in Cassirer, most
explicitly in his discussion of Klein’s program: geometrical prop-
erties specified relative to a given transformation group are the
structural ones.

42This form of structuralism is discussed in most detail by Shapiro. See, in
particular, Shapiro (1997).

43Compare, for instance, Linnebo on such a general characterization of
structuralism: “Very roughly, mathematical structuralism is the view that
pure mathematics is the investigation of abstract structures, and that all that
matters to mathematics is purely structural properties of objects” (Linnebo
2008, 60).
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Can Cassirer’s discussion of Klein’s group-theoretic approach
also be read as a top-down structuralism? To address this, it is
important to see how the relation between abstract geometrical
concepts specified in terms of transformation groups and the
concrete geometrical figures instantiating them is understood in
his work. Arguably, the situation is not as straightforward here
as in the case of modern axiomatics. At some places in his work,
in particular regarding his discussion of the abstract types or
“essences” of particular figures, this relation seems to be con-
ceived of not in a top-down, but rather in a bottom-up manner.
Thus, figure types are constructed here in terms of transforma-
tions by means of an act of conceptual abstraction from concrete
figures. Compare, for instance, Cassirer’s discussion of Klein’s
method in his lecture notes “The Concept of Group and the
Theory of Perception” (1944):

Every particular triangle, every particular circle is to be considered
as something in and by itself. Its location in space, the lengths of the
sides of the triangle or of the radii etc. belong to its “nature”, which
latter cannot be defined except with reference to particular local
circumstances. Our geometrical concepts ignore these individual
differences—or, as we usually say, they abstract from them. But
the term “abstraction” itself is not very clear; it needs a sharper
and more precise determination. This determination is easily to be
found if we look at Klein[’]s theory of geometry, based upon his
conception of transformation-group. There we find immediately
that there are various degrees of abstraction that lead us to higher
and higher universality. (Cassirer 1944, 191)

Notice Cassirer’s use of the term “degrees of abstraction” in this
context: geometrical concepts are induced by abstraction from
the concrete figures in a given space. This transformations-based
method of abstraction is described as a gradual process: given
Klein’s approach, there is the possibility to gain higher levels of
abstraction by considering groups of more general transforma-
tions. This characterization of Klein’s method does indeed seem
related to modern versions of in re structuralism. According to

this approach, mathematical structures cannot be thought of in-
dependently of their instances. Rather, they exist only in so far
as they can be instantiated by concrete mathematical systems or
objects.44 Applied to the context of geometry, this is to say that
figure types are not to be thought of as “bona fide” objects, but
are ontologically dependent on their concrete instances.

In spite of passages such as the above one, there are con-
vincing reasons to believe that Cassirer also understood Klein’s
group-theoretic approach as supporting a top-down structural-
ism about geometrical knowledge, similar to the case of modern
axiomatics. First, recall from Section 3.1 that the general logic
of concept formation in modern mathematics is described as a
top-down process in Cassirer (1910). In particular, it is argued
there that mathematical concepts are not constructed by means
of conceptual abstraction from concrete instances but rather by
the specification of abstract conditions that can be satisfied by
concrete objects. Given this, it seems plausible that Cassirer’s
reference to abstraction in his discussion of Klein’s method is
not understood in a logical sense, but rather in a weaker, psy-
chological sense. Compare again Cassirer on this distinction
between a psychological and a logical dependency relation be-
tween abstract concepts and intuitive objects:

It is true that, in the psychological sense, we can only present
the meaning of a certain relation to ourselves in connection with
some given terms, that serve as its“foundations.” But these terms,
which we owe to sensuous intuition, have no absolute, but rather a
changeable existence. We take them only as hypothetical starting-
points; but we look for all closer determination from their suc-
cessive insertion into various relational complexes. It is by this
intellectual process that the provisional content first becomes a
fixed logical object. (Cassirer 1923, 94)

In turn, Cassirer leaves no doubt that in the logic of concept for-
mation, abstract concepts are “logically prior” to their concrete
instances:

44See again Shapiro (1997) for closer discussions of in re structuralism.
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Concept and judgment know the individual only as a member, as a
point in a systematic manifold; here as in arithmetic, the manifold,
as opposed to all particular stipulations [Setzungen], appears as
the real logical prius . . . The determination of the individuality of
the elements is not the beginning but the end of the conceptual
development; it is the logical goal, which we approach by the
progressive connection of universal relations. (Cassirer 1923, 94)

Besides these general remarks, there is also textual evidence
in the book that Cassirer viewed the transformation-based ap-
proach in geometry as a top-down method of concept formation.
In the context of nineteenth-century projective geometry, this be-
comes particularly clear in his discussion of Poncelet’s work and
the central idea of a transfer of relational structure exemplified
in his principle of continuity:

Above all, [Poncelet] is concerned to guard the transference of rela-
tions, which he assumes as basic, from any confusion with merely
analogical or inductive inference. Induction proceeds from the par-
ticular to the universal; it attempts to unite hypothetically into a
whole a plurality of individual facts observed as particulars with-
out necessary connection. Here, however, the law of connection is
not subsequently disclosed, but forms the original basis by virtue
of which the individual case can be determined in its meaning.
The conditions of the whole system are predetermined, and all
specialization can only be reached by adding a new factor as a lim-
iting determination while maintaining these conditions. From the
beginning, we do not consider the metrical and projective relations
in the manner in which they are embodied in any particular figure,
but take them with a certain breadth and indefiniteness, which
gives them room for development. (Cassirer 1923, 81)

Thus, whereas in inductive reasoning one infers from concrete
instances to general laws, this direction is reversed in modern
geometrical demonstrations. Universal geometrical relations are
specified independently of their instantiations.45 In Cassirer’s
discussion of Klein’s group-theoretic account, a similar picture

45Cassirer, in fact, draws an explicit connection here between Poncelet’s

of the logical priority of the groups of transformations over the
particular figures is drawn. Consider, for instance, the following
remark on the group-theoretic approach in geometry:

This process has come to its logical conclusion and systematic com-
pletion in the development of modern group theory. Geometrical
figures are no longer regarded as fundamental, as date of percep-
tion or immediate intuition. The “nature” or “essence” of a figure
is defined in terms of the operations which may be said to generate
the figure. (Cassirer 1944, 24)

This clearly suggests a top-down understanding of Klein’s al-
gebraic method of concept formation in geometry. A group of
transformations is conceived here in an abstract way, usually
expressed analytically in terms of some linear equations, and
is thus independent of a particular manifold. It encodes a par-
ticular geometrical structure, for the instance the structure of
Euclidean of projective geometry, which can be instantiated in
different manifolds. Thus, closely analogous to the discussion
of formal axiomatics, Cassirer held that Klein’s group-theoretic
approach gives an abstract specification of geometrical struc-
tures independently of their concrete instantiations or represen-
tations.

new method of reasoning in projective geometry and the general logic of
mathematical concept formation outlined in the first chapter of his book.
Compare again Cassirer on this point:

Between the “universal” and “particular” there subsists the relation which
characterizes all true mathematical construction of concepts; the general
case does not absolutely neglect the particular determinations, but it reveals
the capacity to evolve the particulars in their concrete totality entirely
from a principle . . . As Poncelet emphasizes, it is never the mere properties
of the particular kind but the properties of the genus, from which the
projective treatment of a figure takes its start; the “genus,” however, here
signifies merely a connection of conditions by which everything individual
is ordered, not a separated whole of attributes which uniformly recur in the
individuals. The inference proceeds from the properties of the connection
to those of the objects connected, from the serial principles to the members
of the series. (Cassirer 1910, 82)
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5. Conclusion

The focus of this paper was on Cassirer’s philosophical analy-
sis of the “structural turn” in nineteenth-century geometry. This
turn is frequently characterized as the transition to a new under-
standing of geometry as a pure science of abstract structures. We
argued in Section 2, based on the example of duality in projective
geometry, that this new conception was largely a consequence
of several methodological innovations in the field, in particular
the development of modern axiomatics and the systematic use
of transformations in geometrical reasoning.

A closer discussion of Substanzbegriff und Funktionsbegriff
(1910) has shown that Cassirer was not only a perceptive reader
of work of relevant mathematicians such as Poncelet, von Staudt,
Klein, Pasch, and Hilbert, among others, his philosophical dis-
cussion of these methodological developments also led him
to formulate a genuinely structuralist account of geometrical
knowledge. Thus, Cassirer rightly deserves the title as one of
the early structuralist philosophers whose work shows several
interesting points of contact with contemporary philosophy of
mathematics. It was argued here that Cassirer’s position is best
viewed as a version of “methodological structuralism” given
that it is less concerned with the metaphysical nature of ab-
stract structures than with mathematical practice. Regarding
modern geometry, we saw that Cassirer’s discussion focused on
two structural methods. The first one is Hilbert’s use of formal
axiomatics presented in Grundlagen der Geometrie (1899). The sec-
ond one is Klein’s group-theoretic approach of his Erlangen pro-
gram which, in Cassirer’s view, presents a generalization of the
transformation-based approach in modern projective geometry.
As we saw, Cassirer gave a decidedly structuralist interpretation
of these two approaches to geometry. In particular, he viewed
Hilbert’s and Klein’s methods—that is, the axiomatic definition
of spaces and the study of invariants relative to transformation

groups—as alternative ways to specify the structural content of
a geometry.

In the paper, we focused on two aspects of Cassirer’s geomet-
rical structuralism. It was first argued that his discussion of both
geometrical methods supports a kind of top-down view accord-
ing to which the relational structure specified by a geometry is
“logically prior” to the intuitive and concrete objects or systems
instantiating it. The second point considered here concerns Cas-
sirer’s notion of “transfer” of relational structure. As was shown,
this concept plays a crucial role in his understanding of modern
geometry. In particular, Cassirer described the transformation-
based reasoning in projective geometry as a form of transfer of
the relevant geometrical properties between configurations. In
his discussion of modern axiomatics, a comparable notion of
transfer occurs in the form of the semantic interpretation of an
axiom system in different geometrical systems.

It would be worthwhile to investigate in further detail not only
how Cassirer’s account is related to modern structuralism, but
also to compare it with other philosophers of geometry working
in the early twentieth-century. One of Cassirer’s contemporaries
whose contributions to formal axiomatics are particularly rel-
evant in this respect is Rudolf Carnap.46 A closer comparative
study of their respective structuralist accounts of pure geometry
will be work for another day.
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