Skip to main content
Log in

Decoherent Histories of Spin Networks

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The decoherent histories formalism, developed by Griffiths, Gell-Mann, and Hartle (in Phys. Rev. A 76:022104, 2007; arXiv:1106.0767v3 [quant-ph], 2011; Consistent Quantum Theory, Cambridge University Press, 2003; arXiv:gr-qc/9304006v2, 1992) is a general framework in which to formulate a timeless, ‘generalised’ quantum theory and extract predictions from it. Recent advances in spin foam models allow for loop gravity to be cast in this framework. In this paper, I propose a decoherence functional for loop gravity and interpret existing results (Bianchi et al. in Phys. Rev. D 83:104015, 2011; Phys. Rev. D 82:084035, 2010) as showing that coarse grained histories follow quasiclassical trajectories in the appropriate limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. See [28] for a description of this formalism.

  2. Notwithstanding Savvidou [30].

  3. In the following, I only consider the case where the cosmological constant is zero. The non-vanishing case is largely similar; details can be found in [2].

References

  1. Anderson, E.: Problem of time in quantum gravity (2012). doi:10.1002/andp.201200147

  2. Bianchi, E., Krajewski, T., Rovelli, C., Vidotto, F.: Cosmological constant in spinfoam cosmology. Phys. Rev. D 83, 104015 (2011)

    Article  ADS  Google Scholar 

  3. Bianchi, E., Magliaro, E., Perini, C.: Coherent spin-networks. Phys. Rev. D 82, 024012 (2010)

    Article  ADS  Google Scholar 

  4. Bianchi, E., Rovelli, C., Vidotto, F.: Towards spinfoam cosmology. Phys. Rev. D 82, 084035 (2010)

    Article  ADS  Google Scholar 

  5. Craig, D., Singh, P.: Consistent histories in quantum cosmology. Found. Phys. 41, 371–379 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Dona, P., Speziale, S.: Introductory lectures to loop quantum gravity (2010). arXiv:1007.0402v2 [gr-qc]

  7. Engle, J., Livine, E., Pereira, R., Rovelli, C.: Lqg vertex with finite immirzi parameter. Nucl. Phys. B 799, 136–149 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Freidel, L., Speziale, S.: Twisted geometries: a geometric parametrisation of su(2) phase space. Phys. Rev. D 82, 084040 (2010)

    Article  ADS  Google Scholar 

  9. Gambini, R., Porto, R., Pullin, J.: Fundamental decoherence in quantum gravity. Braz. J. Phys. 35, 266–270 (2005)

    Article  ADS  Google Scholar 

  10. Gell-Mann, M., Hartle, J.: Quasiclassical coarse graining and thermodynamic entropy. Phys. Rev. A 76, 022104 (2007)

    Article  ADS  Google Scholar 

  11. Gell-Mann, M., Hartle, J.B.: Decoherent histories quantum mechanics with one ‘real’ fine-grained history (2011). arXiv:1106.0767v3 [quant-ph]

  12. Griffiths, R.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  13. Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36(1–2), 219–272 (1984)

    Article  ADS  MATH  Google Scholar 

  14. Griffiths, R.B.: Bohmian mechanics and consistent histories. Phys. Lett. A 261(5–6), 10 (1995)

    Google Scholar 

  15. Halliwell, J.: Probabilities in quantum cosmological models: a decoherent histories analysis using a complex potential. Phys. Rev. D 80(12), 124032 (2009)

    Article  ADS  Google Scholar 

  16. Halliwell, J.: Macroscopic superpositions, decoherence, and the emergence of hydrodynamic behaviour. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory, & Reality, Chap. 3, pp. 99–120. Oxford University Press, London (2010)

    Google Scholar 

  17. Halliwell, J., Yearsley, J.: Arrival times, complex potentials, and decoherent histories. Phys. Rev. A 79(6), 062101 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  18. Halliwell, J., Yearsley, J.: On the relationship between complex potentials and strings of projection operators. J. Phys. A, Math. Gen. 43, 5303 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  19. Halliwell, J., Yearsley, J.: Pitfalls of path integrals: amplitudes for spacetime regions and the quantum Zeno effect (2012). doi:10.1103/PhysRevD.86.024016

  20. Halliwell, J., Zafiris, E.: Decoherent histories approach to the arrival time problem. Phys. Rev. D 57, 3351–3364 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  21. Hartle, J.: Quasiclassical realms. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory, & Reality, Chap. 2, pp. 73–98. Oxford University Press, London (2010)

    Google Scholar 

  22. Hartle, J.B.: Space-time quantum mechanics and the quantum mechanics of space-time. Lectures given at the 1992 Les Houches École d’été, Gravitation et Quantifications (1992). arXiv:gr-qc/9304006v2

  23. Kaminski, W., Kisielowski, M., Lewandowski, J.: Spin-foams for all loop quantum gravity. Class. Quantum Gravity 27, 095006 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  24. Oriti, D.: Space-time geometry from algebra: spin foam models for nonperturbative quantum gravity. Rep. Prog. Phys. 64, 1703–1756 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  25. Perez, A.: The spin foam representation of loop quantum gravity. In: Oriti, D. (ed.) Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter, vol. 15, pp. 272–289. Cambridge University Press, Cambridge (2009)

    Chapter  Google Scholar 

  26. Perini, C., Rovelli, C., Speziale, S.: Self-energy and vertex radiative corrections in lqg. Phys. Lett. B 682, 78–84 (2009)

    Article  ADS  Google Scholar 

  27. Rovelli, C.: Quantum gravity. In: Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  28. Rovelli, C.: Zakopane lectures on loop gravity (2011). arXiv:1102.3660v5 [gr-qc]

  29. Rovelli, C., Smerlak, M.: In quantum gravity, summing is refining. Class. Quantum Gravity 29, 055004 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  30. Savvidou, N.: General relativity histories theory. Braz. J. Phys. 35, 307–315 (2005)

    Article  ADS  Google Scholar 

  31. Schroeren, D.P.B.: On the quantum Zeno effect in loop gravity (2013, in preparation)

  32. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  33. Vidotto, F.: Many-nodes/many-links spinfoam: the homogeneous and isotropic case. Class. Quantum Gravity 28, 245005 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  34. Wallace, D.: Decoherence and ontology. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory, & Reality, Chap. 1, pp. 53–72. Oxford University Press, London (2010)

    Google Scholar 

  35. Wallden, P.: Spacetime coarse grainings and the problem of time in the decoherent histories approach to quantum theory. Int. J. Theor. Phys. 47, 1512–1532 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yearsley, J.: Aspects of time in quantum theory. PhD thesis, Imperial College London (2011). arXiv:1110.5790v1 [quant-ph]

Download references

Acknowledgements

I am indebted to my supervisor Carlo Rovelli, without whom this work would not have been possible. In addition, I would like to thank James Yearsley, Jonathan Halliwell, Edward Anderson, Petros Wallden, Kinjalk Lochan, Ed Wilson-Ewing, Simone Speziale, Aldo Riello, Wolfgang Wieland, as well as Leonard Cottrell for helpful comments and discussions. I am supported by the German National Academic Foundation (Studienstiftung des deutschen Volkes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. B. Schroeren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroeren, D.P.B. Decoherent Histories of Spin Networks. Found Phys 43, 310–328 (2013). https://doi.org/10.1007/s10701-013-9698-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9698-4

Keywords

Navigation