# End of the Square? 

Fabien Schang
Universidade Estadual de Maringá
schangfabien@gmail.com

EBL 2017
XVIII Brazilian Conference
Pirenópolis, May 11, 2017

## Content

1 Oppositions with the square
2 Oppositions without the square
3 Oppositions with another square

# 1 <br> Oppositions <br> with the square 

## The Square of Opposition: General Structure



The Hexagon of Oppositions: General Structure


$\operatorname{sct}_{1}(y): \quad " 1^{\text {st }}$ subcontrary of $y$ "
$\operatorname{sct}_{2}(y): " 2^{\text {nd }}$ subcontrary of $y$ "
$\operatorname{sp}_{1}(y)$ : " $1^{\text {st }}$ superaltern of $y$ "
$\mathrm{sp}_{2}(y): \quad " 2{ }^{\text {nd }}$ superaltern of $y$ "
$\operatorname{cd}(y)$ : "contradictory of $y "$

## 2 <br> Oppositions without the square

## End of the Square? Costa-Leite's line segment

"Consider a question: is there a way to represent oppositions without twodimensional objects such as squares or objects of higher dimensions? The answer is yes." (Costa-Leite, "Oppositions in a line segment": 2)

Let $\mathbb{Z}^{*}$ be a set of non-null integers, $\mathbb{Z}_{+}$a set of positive integers, $\mathbb{Z}_{-}$a set of negative integers, and $\mathbb{Z}^{\prime}=\{-r,-q, q, r\} \subseteq \mathbb{Z}$
Let $\mathcal{C}$ be a set of a categorical statements $\{\mathrm{A}, \mathrm{E}, \mathrm{I}, \mathrm{O}\}$
$i$ a function on $\mathcal{C}$ s.t. $i: \mathcal{C} \mapsto \mathbb{Z}^{\prime}$
$j \in \mathbb{Z}^{*}+\operatorname{iff} j \in\{\mathrm{~A}, \mathrm{E}\}$ (universal sentences)
$j \in \mathbb{Z}^{*}$ _iff $j \in\{\mathrm{I}, \mathrm{O}\} \quad$ (particular sentences)
Then for every $\alpha, \beta \in \mathcal{C}$ :
$i(\alpha)$ and $i(\beta)$ are contraries $\quad$ iff $\quad i(\alpha), i(\beta) \in \mathbb{Z}^{*}+$
$i(\alpha)$ and $i(\beta)$ are contradictories iff $\quad i(\alpha)+i(\beta)=0$
$i(\alpha)$ and $i(\beta)$ are subcontraries $\quad$ iff $\quad i(\alpha), i(\beta) \in \mathbb{Z}^{*}$ _
$i(\beta)$ is the subaltern of $i(\alpha) \quad$ iff $\quad i(\alpha) \neq i(\beta)$ and $i(\beta) \in \mathbb{Z}^{*}$ _

Segment Line of Oppositions: Categorical statements (Costa-Leite)

| I | O | A | E |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
| -2 | -1 | 0 | +1 |
|  |  |  | +2 |
| $+2=\operatorname{ct}(+1)$ |  | $-1=\operatorname{sct}(-2)$ |  |
| $-1=\operatorname{cd}(+1)$ |  | $+2=\operatorname{cd}(-2)$ |  |
| $-2=\operatorname{sb}(+1)$ |  | $+1=\operatorname{sp}(-2)$ |  |

## End of the Square? Costa-Leite's line segment

Problem: the above definitions fail with the hexagon of oppositions.
$\mathbb{Z}^{\prime \prime}=\{-s,-r,-q, q, r, s\} \subseteq \mathbb{Z}$
$\mathcal{C}^{\prime}=\{\mathrm{A}, \mathrm{U}, \mathrm{E}, \mathrm{O}, \mathrm{Y}, \mathrm{I}\}$
$\mathrm{U}=\mathrm{A}$ or $\mathrm{E}, \mathrm{Y}=\mathrm{I}$ and O
$i(\mathrm{U})=i(\mathrm{~A})+i(\mathrm{E})$
$i(\mathrm{Y})=i(\mathrm{I})+i(\mathrm{O})$
Let $i(\mathrm{~A})=+1, i(\mathrm{U})=+3, i(\mathrm{E})=+2, i(\mathrm{O})=-1, i(\mathrm{Y})=-3, i(\mathrm{I})=-2$,
$\mathrm{Y}=\operatorname{ct}(\mathrm{A})$
now $i(\mathrm{Y})+i(\mathrm{~A})=-3+1=-2$, therefore $i(\alpha)+i(\beta) \notin \mathbb{Z}^{*}{ }_{+}$
$\mathrm{U}=\operatorname{sct}(\mathrm{I})$
now $i(\mathrm{U})+i(\mathrm{I})=+3-2=+1$, therefore $i(\alpha)+i(\beta) \notin \mathbb{Z}^{*}{ }_{-}$
$\mathrm{U}=\operatorname{sb}(\mathrm{A})$
now $i(\mathrm{U})=+3$, therefore $i(\mathrm{U}) \notin \mathbb{Z}^{*}{ }_{-}$

## End of the Square? Costa-Leite's line segment

New definitions:

For every $\alpha, \beta, \gamma \in \mathcal{C}$ :
$i(\alpha)$ and $i(\beta)$ are contraries
iff $\quad i(\alpha)+i(\beta)+\mathrm{i}(\gamma)=0$ and $\mathrm{i}(\gamma) \in \mathbb{Z}^{*}{ }_{-}$
$i(\alpha)$ and $i(\beta)$ are contradictories
iff $\quad i(\alpha)+i(\beta)=0$
$i(\alpha)$ and $i(\beta)$ are subcontraries
iff $\quad i(\alpha)+i(\beta)+\mathrm{i}(\gamma)=0$ and $\mathrm{i}(\gamma) \in \mathbb{Z}^{*}{ }_{+}$
$i(\beta)$ is the subaltern of $i(\alpha)$
iff $\quad i(\alpha) \neq i(\beta)$ and $i(\beta) \in \mathbb{Z}^{*}$ -
or $i(\alpha) \neq i(\beta)$ and (a) $i(\beta)>i(\alpha) \in \mathbb{Z}^{*}+$
and $(\mathrm{b}) i(\beta)>i(\alpha) \in \mathbb{Z}^{*}$ _

Segment Line of Oppositions: Categorical statements (Costa-Leite)


## End of the Square? Costa-Leite's line segment

Problem:
The new definitions seem to be ad hoc (hold for $\mathbb{Z}^{\prime \prime}$ only).
What of the extensions $\mathbb{Z}^{\prime \cdots \prime}$, for any set $\mathcal{C}^{\prime \cdots \prime}$ of $2^{n}$ elements?
"There are, notwithstanding, some problems which remain open: the question to determine whether the same procedure can also be applied to solids and higher dimensions, as well as to more than four oppositions, are very complicated and still have to investigated in detail." (Costa-Leite, ibid.: 9)

For any family $\mathcal{C}^{\prime \cdots \prime}$, there is a maximal number of $2^{n}$ elements
Solution:
An alternative formal semantics based on oppositions
Cf. Sommers \& Englebretsen's "Term-Functor Logic" (TFL)
3 kinds of opposition: C-oppositions, Q-oppositions, P-oppositions

## 3

## Oppositions

 with another square
## A formal semantics of oppositions

$\mathrm{L}_{o p}=\langle\mathfrak{L}, \mathbf{Q}, \mathbf{A}, \mathrm{S}, \mathrm{\cap}, \mathrm{U}, \mathrm{Op}, \mathrm{op}\rangle$
$\mathfrak{L}=\{x, y, \ldots\}$
$\mathbf{Q}$ : question-forming function on $x$, s.t. $\mathbf{Q}(x)=\left\langle\mathbf{q}_{1}(x), \ldots, \mathbf{q}_{n}(x)\right\rangle$
$\mathbf{A}$ : answer-forming function on $x$, s.t.
$\mathbf{A}(x)=\left\langle\mathbf{a}_{1}(x), \ldots, \mathbf{a}_{n}(x)\right\rangle$
$\mathbf{a}(x) \mapsto\{1,0\}$ (1: yes-answer, 0 : no-answer)
S: set of bitstrings, i.e. ordered values of $x$ s.t. $\operatorname{Card}(S)=2^{n}$ (with $n$ ordered bits)
$\mathrm{Op}(x, y)$ reads " $x$ and $y$ are opposed to each other"
$\mathrm{Op}(x, y)=\mathrm{Op}(x, \mathrm{op}(x))$

## A formal semantics of oppositions

$\mathrm{L}_{o p}=\langle\mathfrak{L}, \mathbf{Q}, \mathbf{A}, \mathbf{S}, \mathbf{\cap}, \mathbf{\cup}, \mathrm{Op}, \mathbf{o p}\rangle$
$\mathfrak{L}=\{x, y, \ldots\}$
$\mathbf{Q}$ : question-forming function on $x$, s.t. $\mathbf{Q}(x)=\left\langle\mathbf{q}_{1}(x), \ldots, \mathbf{q}_{n}(x)\right\rangle$
$\mathbf{A}$ : answer-forming function on $x$, s.t.
$\mathbf{A}(x)=\left\langle\mathbf{a}_{1}(x), \ldots, \mathbf{a}_{n}(x)\right\rangle$
$\mathbf{a}(x) \mapsto\{1,0\}$ (1: yes-answer, 0 : no-answer)
S: set of bitstrings, i.e. ordered values of $x$ s.t. $\operatorname{Card}(S)=2^{n}$ (with $n$ ordered bits)
$\mathrm{op}(x)$ reads as "opposite to $x$ " is a multifunction s.t. $\mathrm{op}(x): \mathrm{S} \longmapsto \wp(\mathrm{S})$

Multifunction: to any value of S corresponds zero, one, or several elements of S : function taking its values in the set of the subparts of $S, \wp(S)$

## A Boolean calculus of oppositions (with binary P-oppositions)

For every $\mathbf{a}_{i}(x)$ and $\mathbf{a}_{i}(y)$ and every opposite-forming operator $\operatorname{op}(x)$ on $x$ :

$$
\begin{array}{lll}
\operatorname{ct}(x)=y & \text { iff } & \mathbf{a}_{i}(x)=1 \Rightarrow \mathbf{a}_{i}(y)=0 \\
\operatorname{cd}(x)=y & \text { iff } & \mathbf{a}_{i}(x)=1 \Leftrightarrow \mathbf{a}_{i}(y)=0 \\
\operatorname{sct}(x)=y & \text { iff } & \mathbf{a}_{i}(x)=0 \Rightarrow \mathbf{a}_{i}(y)=1 \\
\operatorname{sb}(x)=y & \text { iff } & \mathbf{a}_{i}(x)=1 \Rightarrow \mathbf{a}_{i}(y)=1 \\
\operatorname{sp}(x)=y & \text { iff } & \mathbf{a}_{i}(x)=0 \Rightarrow \mathbf{a}_{i}(y)=0
\end{array}
$$

$$
\begin{aligned}
& \text { Examples: } \\
& \operatorname{ct}(\mathbf{1} 000)=\mathbf{0} 001 \\
& \operatorname{cd}(\mathbf{1 0 0 0})=\mathbf{0 1 1 1} \\
& \operatorname{sct}(1110)=011 \mathbf{1} \\
& \operatorname{sb}(\mathbf{1} 000)=\mathbf{1} 110 \\
& \operatorname{sp}(1110)=1000
\end{aligned}
$$

Questions about categorical statements $\Theta=\mathrm{SxP}$

$$
\mathbf{Q}(\Theta)=\left\langle\mathbf{q}_{1}(\Theta), \mathbf{q}_{2}(\Theta), \mathbf{q}_{3}(\Theta)\right\rangle
$$

$$
\begin{aligned}
& \mathbf{q}_{1}(\Theta)=S \boldsymbol{S} P \\
& \mathbf{q}_{2}(\Theta)=\overline{S \boldsymbol{S} P} \cap \overline{S \boldsymbol{e} P} \\
& \mathbf{q}_{3}(\Theta)=S \boldsymbol{e} \mathrm{P}
\end{aligned}
$$

Answers to questions about categorical statements $\Theta=\mathrm{S} x \mathrm{P}$

$$
\mathbf{A}(\Theta)=\left\langle\mathbf{a}_{1}(\Theta), \mathbf{a}_{2}(\Theta), \mathbf{a}_{3}(\Theta)\right\rangle
$$

$\mathbf{A}(\mathrm{SaP})=100$
$\mathbf{A}(\mathrm{SaP}$ or SeP$)=100 \cup 001=101$
$\mathbf{A}(\mathrm{SeP})=001$
$\mathbf{A}(\mathrm{SoP})=011$
$\mathbf{A}($ SiP and SoP$)=110 \cap 011=010$
$\mathbf{A}(\mathrm{SiP})=110$

The Hexagon of Opposition: Categorical Statements (Aristotle)



$$
\begin{aligned}
& \operatorname{sct}_{1}(110)=011 \\
& \operatorname{sct}_{2}(110)=100 \cup 001=10 \\
& \operatorname{sp}_{1}(110)=100 \\
& \operatorname{sp}_{2}(110)=110 \cap 011=010 \\
& \operatorname{cd}(110)=001
\end{aligned}
$$

Questions about modal sentences $\Pi=\square \varphi$
$\mathbf{Q}(\Pi)=\left\langle\mathbf{q}_{1}(\Pi), \mathbf{q}_{2}(\Pi), \mathbf{q}_{3}(\Pi)\right\rangle$

$$
\begin{aligned}
& \mathbf{q}_{1}(\Pi)=\square \varphi \\
& \mathbf{q}_{2}(\Pi)=\square \varphi \cap \overline{\square \bar{\varphi}} \\
& \mathbf{q}_{3}(\Pi)=\square \bar{\varphi}
\end{aligned}
$$

Answers to questions about S5 modal statements $\Pi=\square \varphi$
$\mathbf{A}(\Pi)=\left\langle\mathbf{a}_{1}(\Pi), \mathbf{a}_{2}(\Pi), \mathbf{a}_{3}(\Pi)\right\rangle$
$\mathbf{A}(\square \varphi)=100$
$\mathbf{A}(\square \varphi \vee \square \neg \varphi)=100 \cup 001=101$

$$
\mathbf{A}(\square \neg \varphi)=001
$$

$\mathbf{A}(\neg \square \varphi)=011$ $\mathbf{A}(\neg \square \neg \varphi \wedge \neg \square \varphi)=110 \cap 011=010$
$\mathbf{A}(\neg \square \neg \varphi)=110$

The Hexagon of Opposition: Modal sentences (Blanché)

$\mathrm{ct}_{1}(100)=001$
$\operatorname{ct}_{2}(100)=110 \cap 011=010$
$\mathrm{sb}(100)=110$
$\mathrm{sb}_{2}(110)=100 \cup 001=101$
$\operatorname{cd}(100)=011$


$$
\begin{aligned}
& \operatorname{sct}_{1}(110)=011 \\
& \operatorname{sct}_{2}(110)=100 \cup 001=101 \\
& \operatorname{sp}_{1}(110)=100 \\
& \operatorname{sp}_{2}(110)=110 \cap 011=010 \\
& \operatorname{cd}(110)=001
\end{aligned}
$$

Questions about bivalent binary propositions $\Phi=p \bullet q$
$\mathbf{Q}(\Phi)=\left\langle\mathbf{q}_{1}(\Phi), \mathbf{q}_{2}(\Phi), \mathbf{q}_{3}(\Phi), \mathbf{q}_{4}(\Phi)\right\rangle$

$$
\begin{aligned}
& \mathbf{q}_{1}(\Phi)=p \cap q \\
& \mathbf{q}_{2}(\Phi)=\bar{p} \cap q \\
& \mathbf{q}_{3}(\Phi)=p \cap \bar{q} \\
& \mathbf{q}_{4}(\Phi)=\bar{p} \cap \bar{q}
\end{aligned}
$$

Answers to questions about bivalent binary propositions $\Phi=p \bullet q$

$$
\mathbf{A}(\Phi)=\left\langle\mathbf{a}_{1}(\Phi), \mathbf{a}_{2}(\Phi), \mathbf{a}_{3}(\Phi), \mathbf{a}_{4}(\Phi)\right\rangle
$$

$\mathbf{A}(\mathrm{p} \wedge \mathrm{q})=1000$
$\mathbf{A}((\mathrm{p} \wedge \mathrm{q}) \vee(\neg \mathrm{p} \wedge \neg \mathrm{q}))=1000 \cup 0001$ $=1001$
$\mathbf{A}(\neg \mathrm{p} \wedge \neg \mathrm{q})=0001$

$$
\begin{aligned}
& \mathbf{A ( \neg ( \mathrm { p } \wedge \mathrm { q } ) ) = 0 1 1 1} \begin{aligned}
\mathbf{A}((\mathrm{p} \wedge \mathrm{q}) \wedge(\neg \mathrm{p} \wedge \neg \mathrm{q})) & =1000 \cap 0001 \\
& =0110
\end{aligned}
\end{aligned}
$$

$$
\mathbf{A}(\neg(\neg \mathrm{p} \wedge \neg \mathrm{q}))=1110
$$

## The Hexagon of Opposition: Binary sentences (Piaget)



$$
\begin{aligned}
& \mathrm{ct}_{1}(1000)=0001 \\
& \operatorname{ct}_{2}(1000)=1110 \cap 0111=1001 \\
& \operatorname{sb}_{1}(1000)=1110 \\
& \operatorname{sb}_{2}(1110)=0110 \\
& \operatorname{cd}(1000)=0111
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{sct}_{1}(1110)=0111 \\
& \operatorname{sct}_{2}(1110)=1000 \cup 0001 \\
& \operatorname{sp}_{1}(1110)=1000 \\
& \operatorname{sp}_{2}(1110)=1110 \cap 0111=0110 \\
& \operatorname{cd}(1110)=0001
\end{aligned}
$$

Questions about singular terms $\Omega=\mathrm{S}$ is/is not $\mathrm{P} /$ not- P
$\mathbf{Q}(\Omega)=\left\langle\mathbf{q}_{1}(\Omega), \mathbf{q}_{2}(\Omega), \mathbf{q}_{3}(\Omega), \mathbf{q}_{4}(\Omega)\right\rangle$
$\mathbf{q}_{1}(\Omega)=S$ is absolutely P
$\mathbf{q}_{2}(\Omega)=\overline{\mathrm{S} \text { is absolutely } \mathrm{P}} \cap \overline{\mathrm{S} \text { is absolutely } \overline{\mathrm{P}}}$
$\mathbf{q}_{3}(\Omega)=S$ is absolutely not $\bar{P}$

Answers to questions about singular terms $\Omega=\mathrm{S}$ is/is not $\mathrm{P} /$ not- P
$\mathbf{A}(\Omega)=\left\langle\mathbf{a}_{1}(\Omega), \mathbf{a}_{2}(\Omega), \mathbf{a}_{3}(\Omega)\right\rangle$
$\mathbf{A}(\mathrm{S}$ is P$)=100$
$\mathbf{A}(\mathrm{S}$ is P or not-P $)=100 \cup 001$

$$
=101
$$

$\mathbf{A}(\mathrm{S}$ is not-P $)=001$
$\mathbf{A}(\mathrm{S}$ is $\operatorname{not} \mathrm{P})=011$
$\mathbf{A}(\mathrm{S}$ is not P and not not- P$)=110 \cap 011$
$=010$
$\mathbf{A}(\mathrm{S}$ is not not- P$)=110$

## The Hexagon of Opposition: Term logic (Aristotle, Englebretsen)



$$
\begin{aligned}
& \operatorname{ct}_{1}(100)=0001 \\
& \operatorname{ct}_{2}(100)=110 \cap 011=101 \\
& \operatorname{sb}_{1}(100)=110 \\
& \operatorname{sb}_{2}(110)=010 \\
& \operatorname{cd}(100)=011
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{sct}_{1}(110)=011 \\
& \operatorname{sct}_{2}(110)=100 \cup 001 \\
& \operatorname{sp}_{1}(110)=100 \\
& \operatorname{sp}_{2}(110)=110 \cap 011=010 \\
& \operatorname{cd}(110)=001
\end{aligned}
$$

Graphs: how to determine the values(s) of the multifunction op?


$$
\begin{aligned}
& y=f(x) \\
& z=g(y)=g(f(x)) \\
& x=h(z)=h(g(f(x)))
\end{aligned}
$$

Graphs: how to determine the values(s) of the multifunction op?


$$
\begin{aligned}
& \mathbf{A}(y)=0111=\operatorname{sb}(0001) \\
& \mathbf{A}(z)=1110=\operatorname{sct}(0111)=\operatorname{sct}(\operatorname{sb}(0001)) \\
& \mathbf{A}(x)=0001=\operatorname{cd}(1110)=\operatorname{cd}(\operatorname{sct}(\operatorname{sb}(0001)))
\end{aligned}
$$

Definitions. For every $x$ :

$$
\begin{aligned}
& \operatorname{op}(x) \neq x \\
& \operatorname{cd}(\operatorname{cd}(x))=x \\
& \operatorname{op}(x)=\operatorname{op}_{i}\left(\operatorname{op}_{j}(x)\right) \operatorname{iff} \operatorname{op}^{-1}(x)=\operatorname{op}_{j}\left(\operatorname{op}_{i}(x)\right) \\
& \operatorname{op}_{i}\left(\operatorname{op}_{j}^{-1}(x)\right)=\operatorname{op}_{j}\left(\operatorname{op}_{i}(x)\right) \\
& \operatorname{sp}(y)=x \operatorname{iff} x=\operatorname{sb}(y) \\
& \operatorname{cd}(x)=\operatorname{sb}(\operatorname{ct}(x))=\operatorname{ct}(\operatorname{sp}(x)) \\
& \operatorname{ct}(x)=\operatorname{cd}(\operatorname{sb}(x))=\operatorname{sp}(\operatorname{cd}(x)) \\
& \operatorname{sct}(x)=\operatorname{cd}(\operatorname{sp}(x))=\operatorname{sb}(\operatorname{cd}(x)) \\
& \operatorname{sb}(x)=\operatorname{cd}(\operatorname{ct}(x))
\end{aligned}
$$

(non self-difference)
(contradictoriness)
(converse)
(converses: sb/sp)
(contradictoriness)
(contrariety)
(subcontrariety)
(subalternation)

For every bitstring $\mathbf{A}(x)$ of length $\lambda(x)=\mu(x)+v(x)=n$
Let $v(x)$ and $\mu(x)$ be the number of yes- and no-answers in any $\mathbf{A}(x)$. Then:

## Proposition 1

The number of contraries of $x$ is
$\operatorname{Card}(\operatorname{ct}(x))=2^{\mu(x)}-1$.
Examples: let $\mathbf{A}(x)=1001$
$\mu(x)=2$
Hence $\operatorname{Card}(\operatorname{ct}(x))=2^{2}-1=3$

$$
\text { let } \mathbf{A}(y)=111111
$$

$\mu(x)=0$
Hence $\operatorname{Card}(\operatorname{ct}(x))=2^{0}-1=0$
Proof: See Schang, F.: "Logic in Opposition".

For every bitstring $\mathbf{A}(x)$ of length $\lambda(x)=\mu(x)+v(x)=n$
Let $v(x)$ and $\mu(x)$ be the number of yes- and no-answers in any $\mathbf{A}(x)$. Then:

## Proposition 2

The number of subalterns of $x$ is
$\operatorname{Card}(\operatorname{sb}(x))=2^{\mu(x)}-1$.
Example: let $\mathbf{A}(x)=1001$
$\mu(x)=2$
Hence $\operatorname{Card}(\operatorname{sb}(x))=2^{2}-1=3$
Proof: $\operatorname{sb}(x)=\operatorname{cd}(\operatorname{ct}(x))$
For every $x, \operatorname{Card}(\operatorname{cd}(x))=\operatorname{Card}(x)=1$
Hence $\operatorname{Card}(\operatorname{sb}(x))=\operatorname{Card}\left(\operatorname{cd}(\operatorname{ct}(x))=\operatorname{Card}(\operatorname{ct}(x))=2^{\mu(x)}-1\right.$

For every bitstring $\mathbf{A}(x)$ of length $\lambda(x)=\mu(x)+v(x)=n$
Let $v(x)$ and $\mu(x)$ be the number of yes- and no-answers in any $\mathbf{A}(x)$. Then:

## Proposition 3

The number of superalterns of $x$ is
$\operatorname{Card}(\operatorname{sp}(x))=2^{v(x)}-1$.

Example: let $\mathbf{A}(x)=1001$
$v(x)=2$
Hence $\operatorname{Card}(\operatorname{sp}(x))=2^{2}-1=3$
Proof: $\operatorname{sp}(x)=\operatorname{ct}(\operatorname{cd}(x))$
For every $x, \operatorname{Card}(\operatorname{cd}(x))=n-\mu(x)=v(x)$
Hence $\operatorname{Card}(\operatorname{sp}(x))=\operatorname{Card}\left(\operatorname{ctt}(\operatorname{cd}(x))=2^{v(x)}-1\right.$.

For every bitstring $\mathbf{A}(x)$ of length $\lambda(x)=\mu(x)+v(x)=n$
Let $v(x)$ and $\mu(x)$ be the number of yes- and no-answers in any $\mathbf{A}(x)$. Then:

## Proposition 4

The number of subcontraries of $x$ is
$\operatorname{Card}(\operatorname{sct}(x))=2^{v(x)}-1$.
Example: let $\mathbf{A}(x)=1001$
$v(x)=2$
Hence $\operatorname{Card}(\operatorname{sct}(x))=2^{2}-1=3$
Proof: $\operatorname{sct}(x)=\operatorname{cd}(\operatorname{sp}(x))$
For every $x, v(\operatorname{cd}(x))=v(x)$.
Hence $\operatorname{Card}(\operatorname{sct}(x))=\operatorname{Card}\left(\operatorname{cd}(\operatorname{sp}(x))=\operatorname{Card}(\operatorname{sp}(x))=2^{\mu(x)}-1\right.$.

For every bitstring $\mathbf{A}(x)$ of length $\lambda(x)=\mu(x)+v(x)=n$
Let $v(x)$ and $\mu(x)$ be the number of yes- and no-answers in any $\mathbf{A}(x)$. Then:

## Proposition 5

The number of indeterminates of $x$ is
$\operatorname{Card}(\operatorname{id}(x))=\left(2^{n}-1\right)-\operatorname{Card}(\mathrm{d}(x))$.
Examples: let $\mathbf{A}(x)=1001$
$\operatorname{Card}(\mathrm{d}(x))=\operatorname{Card}(\operatorname{ct}(x)+\operatorname{cd}(x)+\operatorname{sct}(x)+\operatorname{sb}(x)+\operatorname{sp}(x))=11$
Hence $\operatorname{Card}(\operatorname{id}(x))=2^{4}-1-11=4$
Proof: Determinates are the disjoint union of $\operatorname{ct}(x), \operatorname{cd}(x), \operatorname{sct}(x), \operatorname{sb}(x), \operatorname{sp}(x)$. For every $x, \operatorname{Card}(\operatorname{ct}(x) \cap \operatorname{sp}(x))=\operatorname{Card}(\operatorname{sct}(x) \cap \operatorname{sb}(x))=1$.
Hence $\operatorname{Card}(\mathrm{d}(x))=\operatorname{Card}(\operatorname{ct}(x)+\operatorname{cd}(x)+\operatorname{sct}(x)+\operatorname{sb}(x)+\operatorname{sp}(x))-2$.

## Vector theory

How to determine the values(s) of op?


$$
\begin{aligned}
& \overrightarrow{u v}+\overrightarrow{v w}=\overrightarrow{u w} \\
& \overrightarrow{v w}+\overrightarrow{w u}=\overrightarrow{v u} \\
& \overrightarrow{w u}+\overrightarrow{u v}=\overrightarrow{w v}
\end{aligned}
$$

## An arithmetization of oppositions: bitstrings as base-2 integers

- base-2 integers are turned into base-10 integers with a function $\sigma: S \mapsto \mathbb{N}$
- bitstrings are turned into integers, s.t.:

$$
\begin{aligned}
& \sum(x)=\left\langle\sigma_{1}(x)+\ldots+\sigma_{n}(x)\right\rangle, \text { with } \sigma_{k}(x)=2^{n-k} \times \mathbf{a}_{k}(x) \\
& \text { Example: } \sum(1101)=8+4+0+1=13
\end{aligned}
$$

- opposite-forming operators are turned into arithmetic operators $\pm \sigma$, s.t.:

$$
\pm\left(\sum(x)\right)=\sum(y)
$$

For every $x, y$ :
$x$ and $y$ are contradictories iff $\sigma(x) \neq 0 \Leftrightarrow \sigma(y)=0$
$x$ and $y$ are contraries iff $\sigma(x) \neq 0 \Rightarrow \sigma(y)=0$
$x$ and $y$ are subcontraries iff $\sigma(x)=0 \Rightarrow \sigma(y) \neq 0$
$x$ is subaltern of $y \quad$ iff $\sigma(x) \neq 0 \Rightarrow \sigma(y) \neq 0$

Example: $\mathbf{A}(x)=0111, \mathbf{A}(y)=0001$
$\sigma(y) \neq 0 \Rightarrow \sigma(x) \neq 0$, therefore $\mathrm{Op}(x, y)=\mathrm{SB}(x, y)$

How to determine the value(s) of op?


$$
\begin{aligned}
& +6(1)=7 \\
& +13(1)=+7(+6(1))=14 \\
& \pm 0(1)=+7(+6-13(1)))=1
\end{aligned}
$$

## The Hexagon of Oppositions: General Structure



$7=(-7) 14=14-7$
$9=(-5) 14=14-5$
$8=(-6) 14=14-6$
$6=(-8) 14=14-8$
$1=(-13) 14=14-13$

## PROBLEMS:

- Costa Leite's segments hold for limited diagrams only
- the vectorial behavior of oppositions holds with 2D diagrams only it is lost with, e.g., hypercubes $(n=3)$, tetraicosahedrons $(n=4)$, etc.


## SOLUTION:

- a general diagram for oppositions of any structural complexity
- replacing vertices with areas in a diagram of $n$-chotomies

Diagrams with areas (rather than vertices) of $n$-bitstrings ( $n=$ length)

S is a square if $L=l$

S is a rectangle if $L \neq l$


Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$$
\begin{aligned}
& \hline 1
\end{aligned} \left\lvert\, \begin{aligned}
& \hline 1 \\
& \hline n=1 \\
& L=2^{(1+1) / 2}=2^{2 / 2}=2^{1}=2 \\
& l=2^{(1-1) / 2}=2^{0 / 2}=2^{0}=1
\end{aligned}\right.
$$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

| 11 | 01 |
| :--- | :--- |
| 10 | 00 |
| $n=2$ |  |

$$
L=2^{2 / 2}=2^{1}=2
$$

$$
l=2^{2 / 2}=2^{2 / 2}=2^{1}=2
$$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

| 111 | 110 | 011 | 010 |
| :--- | :--- | :--- | :--- |
| 101 | 100 | 001 | 000 |

$n=3$
$L=2^{(3+1) / 2}=2^{4 / 2}=2^{2}=4$
$l=2^{(3-1) / 2}=2^{2 / 2}=2^{1}=2$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

| 1111 | 1101 | 0111 | 0101 |
| :--- | :--- | :--- | :--- |
| 1110 | 1100 | 0110 | 0100 |
| 1011 | 1001 | 0011 | 0001 |
| 1010 | 1000 | 0010 | 0000 |

$$
n=4
$$

$$
L=2^{4 / 2}=2^{2}=4
$$

$$
l=2^{4 / 2}=2^{2}=4
$$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

| 11111 | 11110 | 10111 | 10110 | 01111 | 01110 | 00111 | 00110 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 11101 | 11100 | 10101 | 10100 | 01101 | 01100 | 00101 | 00100 |
| 11011 | 11010 | 10011 | 10010 | 01011 | 01010 | 00011 | 00010 |
| 11001 | 11000 | 10001 | 10000 | 01001 | 01000 | 00001 | 00000 |

$n=5$

$$
\begin{aligned}
& L=2^{(5+1) / 2}=2^{6 / 2}=2^{3}=8 \\
& l=2^{(5-1) / 2}=2^{4 / 2}=2^{2}=4
\end{aligned}
$$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

| 11111 | 111101 | 101111 | 101101 | 011111 | 011101 | 001111 | 001101 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 11110 | 111100 | 101110 | 101100 | 011110 | 011100 | 001110 | 001100 |
| 111011 | 111001 | 101011 | 101001 | 011011 | 011001 | 001011 | 001001 |
| 111010 | 111000 | 101010 | 101000 | 011010 | 011000 | 001010 | 001000 |
| 110111 | 110101 | 100111 | 100101 | 010111 | 010101 | 000111 | 000101 |
| 110110 | 110100 | 100110 | 100100 | 010110 | 010100 | 000110 | 000100 |
| 110011 | 110001 | 100011 | 100001 | 010011 | 010001 | 000011 | 000001 |
| $\boldsymbol{n}=6$ |  |  |  |  |  |  |  |
| 110010 | 110000 | 100010 | 100000 | 010010 | 010000 | 000010 | 000000 |
| $\boldsymbol{y}$ |  |  |  |  |  |  |  |

$$
\begin{aligned}
& L=2^{6 / 2}=2^{3}=8 \\
& l=2^{6 / 2}=2^{3}=8
\end{aligned}
$$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|l}
\hline \operatorname{ct}(x) & & & & & & & \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$\mathbf{A}(x)=101001$
$\operatorname{ct}(x)=\{000000,010000,000100,000010,010100,010010,000110\}$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$n=6$
$\mathbf{A}(x)=101001$
$\operatorname{cd}(x)=\{010110\}$
$\operatorname{Card}(\operatorname{cd}(x))=1$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$$
n=6
$$

$$
\operatorname{Card}(\operatorname{sp}(x))=2^{3}-1=7
$$

$\mathbf{A}(x)=101001$
$\operatorname{sp}(x)=\{000000,100000,001000,000001,101000,100001,001001\}$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$\operatorname{Card}(\mathrm{sb}(x))=2^{3}-1=7$
$\mathbf{A}(x)=101001$
$\operatorname{sb}(x)=\{111111,101111,111011,111101,101011,101101,111001\}$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$\mathbf{A}(x)=101001$
$\operatorname{sct}(x)=\{111111,011111,110111,111110,010111,011110,110110\}$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$n=6$
$111111=\operatorname{sb}(x)$
$\operatorname{Card}(\operatorname{sct}(x) \cap \operatorname{sb}(x))=1$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$n=6$
$111111=\operatorname{sct}(x)$
$\operatorname{Card}(\operatorname{sct}(x) \cap \operatorname{sb}(x))=1$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$n=6$
$000000=\operatorname{sp}(x)$
$\operatorname{Card}(\operatorname{ct}(x) \cap \operatorname{sp}(x))=1$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$n=6$
$000000=\operatorname{ct}(x)$
$\operatorname{Card}(\operatorname{ct}(x) \cap \operatorname{sp}(x))=1$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$n=6$

$$
\operatorname{Card}(\operatorname{ct}(x))=2^{3}-1=7
$$

$\operatorname{Card}(\operatorname{sb}(x))=2^{3}-1=7$

Subalterns are contradictories of contraries.
$\operatorname{sb}(x)=\operatorname{cd}(\operatorname{ct}(x))$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$n=6$

$$
\operatorname{Card}(\operatorname{ct}(x))=2^{3}-1=7
$$

$\operatorname{Card}(\operatorname{sb}(x))=2^{3}-1=7$

Subalterns are contradictories of contraries.
$\operatorname{sb}(x)=\operatorname{cd}(\operatorname{ct}(x))$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$n=6$
$\operatorname{Card}(\operatorname{ct}(x))=2^{3}-1=7$
$\operatorname{Card}(\operatorname{sb}(x))=2^{3}-1=7$

Subalterns are contradictories of contraries.
$\operatorname{sb}(x)=\operatorname{cd}(\operatorname{ct}(x))$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)
$n=6$

$\operatorname{Card}(\operatorname{sct}(x))=2^{3}-1=7$
$\operatorname{Card}(\operatorname{sp}(x))=2^{3}-1=7$
$\operatorname{Card}(\operatorname{sp}(x))=2-1=7$

Superalterns are contradictories of subcontraries.
$\mathrm{sp}(x)=\operatorname{cd}(\operatorname{sct}(x))$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$\operatorname{Card}(\operatorname{sct}(x))=2^{3}-1=7$
$\operatorname{Card}(\operatorname{sp}(x))=2^{3}-1=7$
$n=6$

Superalterns are contradictories of subcontraries.
$\operatorname{sp}(x)=\operatorname{cd}(\operatorname{sct}(x))$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$n=6$

Indeterminates with respect to $x$
$\mathrm{id}(x)$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$\operatorname{Card}(\mathrm{d}(x))=29-2=27$
$\operatorname{Card}(\mathrm{id}(x))=64-1-27=36$
$n=6$
Indeterminates are contradictories of determinates $\mathrm{d}(x)$ $\mathrm{d}(x)=\{\operatorname{cd}(x), \operatorname{ct}(x), \operatorname{sct}(x), \operatorname{sb}(x), \operatorname{sp}(x)\}$

Diagrams with areas (rather than vertices) of $n$-bitstring ( $n=$ length)

$\operatorname{Card}(\mathrm{d}(x))=29-2=27$
$\operatorname{Card}(\mathrm{id}(x))=64-1-27=36$
$n=6$

Indeterminates are contradictories of determinates $\mathrm{d}(x)$ $\mathrm{id}(x)=\operatorname{cd}(\mathrm{d}(x))$


| 111 | 110 | 011 | 010 |
| :--- | :--- | :--- | :--- |
| 101 | 100 | 001 | 000 |





| 1111 | 1110 | 0111 | 0110 |
| :--- | :--- | :--- | :--- |
| 1101 | 1100 | 0101 | 0100 |
| 1011 | 1010 | 0011 | 0010 |
| 1001 | 1000 | 0001 | 0000 |



## End of the square?

Standard diagrams are diagrams with vertices + oriented graphs (sb/sp)
Open questions: how many diagrams/kinds of oppositions can there be?

## Towards another square

A functional calculus of opposites helps to:

- determine complete structures of oppositions with $2^{n}$ elements ( $n$-bitstrings)
- deal with logical oppositions as opposite-forming multifunctions
- device new diagrams of oppositions with areas + colored diagrams


## Extended works

Towards a 3-dimensional theory of meaning though 3 kinds of oppositions:

- C-opposition: individual objects $x$ are sets of sets of properties
- Q-opposition: quantified properties over time, space, individuals
- P-opposition: answers to ordered questions (cf. Schang 2017)

Towards a generalized theory of logical values: Partition Semantics.

## References

Béziau, J.-Y. "New light on the square of oppositions and its nameless corner", Logical Investigations, Vol. 10, 2003: 218-233.

Blanché, R. Les structures intellectuelles. Essai sur l'organisation systématique des concepts. Vrin: Paris, 1966.

Costa-Leite, A. "Oppositions in a line segment", Cornell: arXiv:1604.03054:110.

Demey, L. \& Smessaert, H. "Combinatorial bitstring semantics for arbitrary logical fragments", forthcoming in Journal of Philosophical Logic.

Englebretsen, G. \& Sommers, F. An invitation to formal reasoning, Routledge, 2000.

Moretti, A. "Geometry of modalities? Yes: through $n$-opposition theory", in Aspects of Universal Logic, J-Y. Béziau, A. Costa-Leite, A. Facchini (ed.), Travaux de Logique, Vol. 17, 2004: 102-145.

Piaget, J. Traité de logique (Essai de logistique opératoire). A. Colin, 1949.
Schang, F. "Logic in opposition", Studia Humana, Vol. 2, 2013: 31-45.
Schang, F. "An arithmetization of logical oppositions", in The Square of Opposition: A Cornerstone of Thought, J.-Y. Béziau \& G. Basti (ed.), Birkhäusel: Basel, 2016: 215-237.

Schang, F. "Epistemic pluralism", forthcoming in Logique et Analyse, 2017.
Slater, H. "Paraconsistent logics?", Journal of Philosophical Logic, Vol. 24(4), 1995: 451-454.

Muito obrigado.

