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Oppositions  
with the square 

 
 
 
 
 



 

1 with the square     2 without the square     3 another square 

The Square of Opposition: General Structure 
 
             x         ct(x)                          sp(y)               cd(y) 
 
 
     
  
 
       sb(x)         cd(x)                                         y               sct(y) 
 

ct(x): “contrary of x”      sct(y): “subcontrary of y” 
cd(x): “contradictory of x”     cd(y): “contradictory of y”    
sb(x): “subaltern of x”     sp(y): “superaltern of y” 
 

 
 
symmetrical relations         
 
non-symmetrical relations  
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The Hexagon of Oppositions: General Structure 
 

                  sb2(x)                                 sct2(y)    
            x                       ct1(x)                        sp1(y)                    cd(y) 
 
 
     
  
 
     sb1(x)                          cd(x)                     y                        sct1(y) 
                             ct2(x)                                         sp2(y) 
 
ct1(x) : “1st contrary of x”    sct1(y) :  “1st subcontrary of y” 
ct2(x) : “2nd contrary of x”    sct2(y) : “2nd subcontrary of y” 
sb1(x) : “1st subaltern of x”    sp1(y) :  “1st superaltern of y” 
sb2(x) : “2nd subaltern of x”    sp2(y) :  “2nd superaltern of y” 
cd(x) :  “contradictory of x”     cd(y) :  “contradictory of y”  
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Oppositions  
without the square 
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End of the Square? Costa-Leite’s line segment 
 
“Consider a question: is there a way to represent oppositions without two-
dimensional objects such as squares or objects of higher dimensions? The 
answer is yes.” (Costa-Leite, “Oppositions in a line segment”: 2) 
 
Let ℤ* be a set of non-null integers, ℤ+ a set of positive integers, ℤ– a set of 
negative integers, and ℤ¢ = {–r, –q, q, r} Í ℤ 
Let  𝒞 be a set of a categorical statements {A,E,I,O} 
       i a function on 𝒞 s.t. i: 𝒞 ⟼ ℤ¢ 

 jÎ	ℤ*+ iff jÎ{A,E} (universal sentences) 
jÎℤ*– iff jÎ{I,O} (particular sentences) 

Then for every a,b Î 𝒞: 
i(a) and i(b) are contraries    iff   i(a), i(b)Îℤ*+ 
i(a) and i(b) are contradictories  iff   i(a) + i(b) = 0 
i(a) and i(b) are subcontraries   iff   i(a), i(b)Îℤ*– 
i(b) is the subaltern of i(a)    iff   i(a) ≠ i(b) and i(b)Îℤ*– 
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Segment Line of Oppositions: Categorical statements (Costa-Leite) 
 
 
 
 
          I         O         A     E    
 
 
          –2       –1   0      +1    +2  
  

+2 = ct(+1)     −1 = sct(−2) 
−1 = cd(+1)     +2 = cd(−2) 
−2 = sb(+1)     +1 = sp(−2)  
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End of the Square? Costa-Leite’s line segment 
 
Problem: the above definitions fail with the hexagon of oppositions.  
ℤ¢¢ = {–s, –r, –q, q, r, s} Í	ℤ 
𝒞¢ = {A,U,E,O,Y,I} 
U = A or E, Y = I and O 
 
i(U) = i(A) + i(E) 
i(Y) = i(I) + i(O) 
Let i(A) = +1, i(U) = +3, i(E) = +2, i(O) = –1, i(Y) = –3, i(I) = –2, 
  
Y = ct(A) 
now i(Y) + i(A) = –3 + 1 = –2, therefore i(a) + i(b) Ï ℤ*+ 
U = sct(I) 
now i(U) + i(I) = +3 - 2 = +1, therefore i(a) + i(b) Ï	ℤ*– 
U = sb(A) 
now i(U) = +3, therefore i(U) Ï ℤ*– 
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End of the Square? Costa-Leite’s line segment 
 
New definitions:  
 
For every a, b, g Î 𝒞: 
i(a) and i(b) are contraries    iff   i(a) + i(b) + i(g) = 0 and i(g) Î ℤ*– 
i(a) and i(b) are contradictories  iff   i(a) + i(b) = 0 
i(a) and i(b) are subcontraries   iff   i(a) + i(b) + i(g) = 0 and i(g) Î	ℤ*+ 
i(b) is the subaltern of i(a)    iff   i(a) ≠ i(b) and i(b) Î ℤ*– 
                  or i(a) ≠ i(b) and (a) i(b) > i(a) Î ℤ*+ 
                 and (b) i(b) > i(a) Î ℤ*– 
 
 
 
 
 
 



 

1 with the square     2 without the square     3 another square 
 

Segment Line of Oppositions: Categorical statements (Costa-Leite) 
 
 
 
 
     Y      I           O          A      E         U    
 
 

      –3     –2       –1    0        +1    +2       +3  
  

+2 = ct(+1)      –1 = sct(–2) 
–1 = cd(+1)      +2 = cd(–2) 
–2 = sb(+1)      +1 = sp(–2)  
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End of the Square? Costa-Leite’s line segment 
 
Problem:  
The new definitions seem to be ad hoc (hold for ℤ¢¢ only).  
What of the extensions	ℤ¢…¢, for any set 𝒞¢…¢ of 2n elements?  
 
“There are, notwithstanding, some problems which remain open: the question 
to determine whether the same procedure can also be applied to solids and 
higher dimensions, as well as to more than four oppositions, are very 
complicated and still have to investigated in detail.” (Costa-Leite, ibid.: 9) 
 
For any family 𝒞¢…¢, there is a maximal number of 2n elements 
 
Solution:  
An alternative formal semantics based on oppositions 
Cf. Sommers & Englebretsen’s “Term-Functor Logic” (TFL) 

3 kinds of opposition: C-oppositions, Q-oppositions, P-oppositions 
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Oppositions  
with another square 
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A formal semantics of oppositions 
 
Lop = á𝔏,Q,A,S,∩,∪,Op,opñ 
 
𝔏 = {x, y, …} 
Q: question-forming function on x, s.t. Q(x) = áq1(x), …, qn(x)ñ 
A: answer-forming function on x, s.t.  
A(x) = áa1(x), …, an(x)ñ  
a(x) ⟼ {1,0} (1: yes-answer, 0: no-answer) 
 
S: set of bitstrings, i.e. ordered values of x s.t. Card(S) = 2n (with n ordered bits) 
 
Op(x,y) reads “x and y are opposed to each other” 
Op(x,y) = Op(x,op(x)) 
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A formal semantics of oppositions 
 
Lop = á𝔏,Q,A,S,∩,∪,Op,opñ 
 
𝔏 = {x, y, …} 
Q: question-forming function on x, s.t. Q(x) = áq1(x), …, qn(x)ñ 
A: answer-forming function on x, s.t.  
A(x) = áa1(x), …, an(x)ñ  
a(x) ⟼ {1,0} (1: yes-answer, 0: no-answer) 
 
S: set of bitstrings, i.e. ordered values of x s.t. Card(S) = 2n (with n ordered bits) 
 
op(x) reads as “opposite to x”  
         is a multifunction s.t. op(x): S ⟼Ã(S)   
 
Multifunction: to any value of S corresponds zero, one, or several elements of S 
      : function taking its values in the set of the subparts of S, Ã(S) 
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A Boolean calculus of oppositions (with binary P-oppositions) 
 
For every ai(x) and ai(y) and every opposite-forming operator op(x) on x:  
ct(x) = y iff  ai(x) = 1 Þ ai(y) = 0 
cd(x) = y iff  ai(x) = 1 Û ai(y) = 0 
sct(x) = y iff  ai(x) = 0 Þ ai(y) = 1 
sb(x) = y iff  ai(x) = 1 Þ ai(y) = 1 
sp(x) = y iff  ai(x) = 0 Þ ai(y) = 0 
 
Examples:  
ct(1000) = 0001 
cd(1000) = 0111 
sct(1110) = 0111 
sb(1000) = 1110   
sp(1110) = 1000   
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Questions about categorical statements Q = SxP 
Q(Q) = áq1(Q), q2(Q), q3(Q)ñ 
 
q1(Q) = S𝒂P 
q2(Q) = S𝒂P ∩ S𝒆P 
q3(Q) = S𝒆P 
 
Answers to questions about categorical statements Q = SxP 
A(Q) = áa1(Q), a2(Q), a3(Q)ñ 
 
A(SaP) = 100       A(SoP) = 011 
A(SaP or SeP) = 100 ∪ 001 = 101  A(SiP and SoP) = 110 ∩ 011 = 010  
A(SeP) = 001       A(SiP) = 110 
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The Hexagon of Opposition: Categorical Statements (Aristotle) 
 

               SaP or SeP                                SaP or SeP    
   x = SaP                        SeP                              SaP                     SeP 
 
 
     
  
 
        SiP                           SoP                   y = SiP                         SoP 
                       SiP and SoP                             SiP and SoP 

 
ct1(100) = 001       sct1(110) = 011 
ct2(100) = 110 ∩ 011 = 010     sct2(110) = 100 ∪ 001 = 10 
sb1(100) = 110       sp1(110) = 100 
sb2(110) = 010       sp2(110) = 110 ∩ 011 = 010 
cd(100) = 011       cd(110) = 001 
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Questions about modal sentences P = ¢j 
Q(P) = áq1(P), q2(P), q3(P)ñ 
 
q1(P) = £j 
q2(P) = £j ∩ £j 
q3(P) = £j 
 
Answers to questions about S5 modal statements P = ¢j 
A(P) = áa1(P), a2(P), a3(P)ñ 
 
A(£j) = 100       A(¬£j) = 011 
A(£j Ú £¬j) = 100 ∪ 001 = 101  A(¬£¬j Ù ¬£j) = 110 ∩ 011 = 010 
A(£¬j) = 001       A(¬£¬j) = 110 
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The Hexagon of Opposition: Modal sentences (Blanché) 
       

                £j Ú £¬j                                £j Ú £¬j 
   x = £j                        £¬j                      £j                        £¬j      
 
 
     
  
 
   ¬£¬j                           ¬£j                    y = ¬£¬j                          ¬£j 
                    ¬£¬j Ù ¬£j                      ¬£¬j Ù ¬£j 
 

ct1(100) = 001       sct1(110) = 011 
ct2(100) = 110 ∩ 011 = 010     sct2(110) = 100 ∪ 001 = 101 
sb1(100) = 110       sp1(110) = 100 
sb2(110) = 100 ∪ 001 = 101    sp2(110) = 110 ∩ 011 = 010 
cd(100) = 011       cd(110) = 001 
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Questions about bivalent binary propositions F = p•q 
Q(F) = áq1(F), q2(F), q3(F), q4(F)ñ 
 
q1(F) = 	𝑝 ∩ 𝑞 
q2(F) = 	𝑝 ∩ 𝑞    
q3(F) = 	𝑝 ∩ 𝑞 
q4(F) = 	𝑝 ∩ 𝑞 
 
Answers to questions about bivalent binary propositions F = p•q 
A(F) = áa1(F), a2(F), a3(F), a4(F)ñ 
 
A(pÙq) = 1000       A(¬(pÙq)) = 0111 
A((pÙq) Ú (¬pÙ¬q)) = 1000 ∪ 0001 A((pÙq) Ù (¬pÙ¬q)) = 1000 ∩ 0001  
        = 1001           = 0110 
A(¬pÙ¬q) = 0001      A(¬(¬pÙ¬q)) = 1110 
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The Hexagon of Opposition: Binary sentences (Piaget) 
 

     (pÙq) Ú (¬pÙ¬q)                     (pÙq) Ú (¬pÙ¬q) 
   x = pÙq                        ¬pÙ¬q                     pÙq                       ¬pÙ¬q      
 
 
     
  
 
¬(¬pÙ¬q)                          ¬(pÙq)                   y = ¬(¬pÙ¬q)                         ¬(pÙq) 
            ¬(¬pÙ¬q) Ù ¬(pÙq)                ¬(¬pÙ¬q) Ù ¬(pÙq) 
 

ct1(1000) = 0001       sct1(1110) = 0111 
ct2(1000) = 1110 ∩ 0111 = 1001    sct2(1110) = 1000 ∪ 0001  
sb1(1000) = 1110       sp1(1110) = 1000 
sb2(1110) = 0110       sp2(1110) = 1110 ∩ 0111 = 0110 
cd(1000) = 0111       cd(1110) = 0001 
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Questions about singular terms W = S is/is not P/not-P 
Q(W) = áq1(W), q2(W), q3(W), q4(W)ñ 
 
q1(W) = S	is	absolutely	P 

q2(W) = S	is	absolutely	P ∩ S	is	absolutely	P 
q3(W) = S	is	absolutely	not	P 
 
Answers to questions about singular terms W = S is/is not P/not-P 
A(W) = áa1(W), a2(W), a3(W)ñ 
 
A(S is P) = 100      A(S is not P) = 011 
A(S is P or not-P) = 100 ∪ 001  A(S is not P and not not-P) = 110 ∩ 011  
     = 101                = 010 
A(S is not-P) = 001     A(S is not not-P) = 110 
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The Hexagon of Opposition: Term logic (Aristotle, Englebretsen) 
                 

          S is P or S is not-P                    S is P or S is not-P 
x = S is P                        S is not-P              pÙq                       ¬pÙ¬q      
 
 
     
  
 
S is not not-P                  S is not P          y = S is not not-P                         S is not P 
            S is not not-P and S is not P     S is not not-P and S is not P 
 

ct1(100) = 0001       sct1(110) = 011 
ct2(100) = 110 ∩ 011 = 101     sct2(110) = 100 ∪ 001  
sb1(100) = 110       sp1(110) = 100 
sb2(110) = 010       sp2(110) = 110 ∩ 011 = 010 
cd(100) = 011       cd(110) = 001 
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Graphs: how to determine the values(s) of the multifunction op? 
 
              • x 
 
                             
       
 

z •   • y 
                
y = f(x) 
z = g(y) = g(f(x)) 
x = h(z) = h(g(f(x))) 
 
 
 

h f 

g 
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Graphs: how to determine the values(s) of the multifunction op? 
 
              • x 
 
                             
       
 

z •   • y 
                
A(y) = 0111 = sb(0001) 
A(z) = 1110 = sct(0111) = sct(sb(0001)) 
A(x) = 0001 = cd(1110) = cd(sct(sb(0001))) 
 
 
 

cd sb 

sct 
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Definitions. For every x: 
 
op(x) ≠ x           (non self-difference) 
cd(cd(x)) = x          (contradictoriness) 
 
op(x) = opi(opj(x)) iff op–1(x) = opj(opi(x))     (converse) 
opi(opj

–1(x)) = opj(opi(x))       (converses: sb/sp) 
sp(y) = x iff x = sb(y)         
 
cd(x) = sb(ct(x)) = ct(sp(x))       (contradictoriness) 
 
ct(x) = cd(sb(x)) = sp(cd(x))       (contrariety) 
 
sct(x) = cd(sp(x)) = sb(cd(x))      (subcontrariety) 
 
sb(x) = cd(ct(x))         (subalternation) 
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For every bitstring A(x) of length l(x) = µ(x) + n(x) = n 
Let n(x) and µ(x) be the number of yes- and no-answers in any A(x). Then:  
 
Proposition 1 
The number of contraries of x is 
Card(ct(x)) = 2µ(x) – 1. 
 
Examples: let A(x) = 1001 
µ(x) = 2 
Hence Card(ct(x)) = 22 – 1 = 3        
 
       let A(y) = 111111 
µ(x) = 0 
Hence Card(ct(x)) = 20 – 1 = 0                
 
Proof: See Schang, F.: “Logic in Opposition”. 
 



 

1 with the square     2 without the square     3 another square 
 

For every bitstring A(x) of length l(x) = µ(x) + n(x) = n 
Let n(x) and µ(x) be the number of yes- and no-answers in any A(x). Then:  
 
Proposition 2 
The number of subalterns of x is 
Card(sb(x)) = 2µ(x) – 1. 
 
Example: let A(x) = 1001 
µ(x) = 2 
Hence Card(sb(x)) = 22 – 1 = 3          
 
Proof: sb(x) = cd(ct(x))  
For every x, Card(cd(x)) = Card(x) = 1 
Hence Card(sb(x)) = Card(cd(ct(x)) = Card(ct(x)) = 2µ(x) – 1       ¨ 
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For every bitstring A(x) of length l(x) = µ(x) + n(x) = n 
Let n(x) and µ(x) be the number of yes- and no-answers in any A(x). Then:  
 
Proposition 3 
The number of superalterns of x is 
Card(sp(x)) = 2n(x) – 1. 
 
Example: let A(x) = 1001 
n(x) = 2 
Hence Card(sp(x)) = 22 – 1 = 3  
 
Proof: sp(x) = ct(cd(x))  
For every x, Card(cd(x)) =  n – µ(x) = n(x) 
Hence Card(sp(x)) =  Card(ct(cd(x)) = 2n(x) – 1.         ¨  
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For every bitstring A(x) of length l(x) = µ(x) + n(x) = n 
Let n(x) and µ(x) be the number of yes- and no-answers in any A(x). Then:  
 
Proposition 4 
The number of subcontraries of x is 
Card(sct(x)) = 2n(x) – 1. 
 
Example: let A(x) = 1001 
n(x) = 2 
Hence Card(sct(x)) = 22 – 1 = 3  
 
Proof: sct(x) = cd(sp(x))  
For every x, n(cd(x)) = n(x). 
Hence Card(sct(x)) = Card(cd(sp(x)) = Card(sp(x)) = 2µ(x) – 1.     ¨ 
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For every bitstring A(x) of length l(x) = µ(x) + n(x) = n 
Let n(x) and µ(x) be the number of yes- and no-answers in any A(x). Then:  
 
Proposition 5 
The number of indeterminates of x is 
Card(id(x)) = (2n – 1) – Card(d(x)). 
 
Examples: let A(x) = 1001 
Card(d(x)) = Card(ct(x) + cd(x) + sct(x) + sb(x) + sp(x)) = 11 
Hence Card(id(x)) = 24 – 1 – 11 = 4         
 
Proof: Determinates are the disjoint union of ct(x), cd(x), sct(x), sb(x), sp(x). 
For every x, Card(ct(x) ∩ sp(x)) = Card(sct(x) ∩ sb(x)) = 1.  
Hence Card(d(x)) = Card(ct(x) + cd(x) + sct(x) + sb(x) + sp(x)) – 2.    ¨ 
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Vector theory 
How to determine the values(s) of op? 
 
              • u 
 
                             
       
 

    
                
𝑢𝑣 + 𝑣𝑤 = 𝑢𝑤  
𝑣𝑤 + 𝑤𝑢 = 𝑣𝑢  
𝑤𝑢 + 𝑢𝑣 = 𝑤𝑣  
 
 
 

𝑤𝑢
>? 

  

w •  

 

• v  

𝑢𝑣
→ 

𝑣𝑤
>? 
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An arithmetization of oppositions: bitstrings as base-2 integers 
- base-2 integers are turned into base-10 integers with a function s: S ⟼ ℕ 
- bitstrings are turned into integers, s.t.:  
∑(x) = ás1(x) + … + sn(x)ñ, with sk(x) = 2n–k ´ ak(x) 
Example: ∑(1101) = 8 + 4 + 0 + 1 = 13 

- opposite-forming operators are turned into arithmetic operators ±s, s.t.:  
±(∑(x)) = ∑(y) 
 

For every x,y:  
x and y are contradictories  iff  s(x) ≠ 0 Û s(y) = 0 

x and y are contraries   iff   s(x) ≠ 0 Þ s(y) = 0 
x and y are subcontraries  iff  s(x) = 0 Þ s(y) ¹ 0 
x is subaltern of y    iff  s(x) ¹ 0 Þ s(y) ¹ 0  
 
 
Example: A(x) = 0111, A(y) = 0001 
s(y) ¹ 0 Þ s(x) ¹ 0, therefore Op(x,y) = SB(x,y) 
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How to determine the value(s) of op? 
 
              • 1  
                    
      
 
 

    
                
+6(1) = 7 
+13(1) = +7(+6(1)) = 14 
±0(1) = +7(+6−13(1))) = 1 
 
 
 

								−13 
+6 

+7 
      14 •  • 7  
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The Hexagon of Oppositions: General Structure 
                 

                       9                          9 
       x = 8                        1                8                       1      
 
 
     
  
 
           14                          7                                                 y = 14                         7 
                                6              6 
 

1 = (−7)8 = 8 − 7      7 = (−7)14 = 14 − 7 
6 = (−2)8 = 8 − 2     9 = (−5)14 = 14 − 5 
14 = (+6)8 = 8 + 6     8 = (−6)14 = 14 − 6 
9 = (+1)8 = 8 + 1     6 = (−8)14 = 14 − 8 
7 = (−1)8 = 8 − 1     1 = (−13)14 = 14− 13   
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PROBLEMS:  

- Costa Leite’s segments hold for limited diagrams only  
- the vectorial behavior of oppositions holds with 2D diagrams only 

it is lost with, e.g., hypercubes (n = 3), tetraicosahedrons (n = 4), etc. 
 

SOLUTION:  
- a general diagram for oppositions of any structural complexity 
- replacing vertices with areas in a diagram of n-chotomies  
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Diagrams with areas (rather than vertices) of n-bitstrings (n = length) 
 
 
 
 
       L 
 
 
S is a square 
if L = l 
                 
S is a rectangle 
if L ≠ l 
 
 
               l 
 

11…1 
    
    n bits 

00…0 
 
   n bits 
 

2n/2 boxes (when n is even) 
2(n+1)/2 boxes (when n is odd) 
 

2n/2 boxes (when n is even) 
2(n–1)/2 boxes (when n is odd) 
 

• 
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Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

1 0 
n = 1 
 
L = 2(1+1)/2 = 22/2 = 21 = 2    
l = 2(1–1)/2 = 20/2 = 20 = 1    
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Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 
11 01 
10 00 

n = 2 
 
L = 22/2 = 21 = 2    
l = 22/2 = 22/2 = 21 = 2    
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Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 
111 110 011 010 

101 100 001 000 

n = 3 
 
L = 2(3+1)/2 = 24/2 = 22 = 4    
l = 2(3–1)/2 = 22/2 = 21 = 2    
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Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 
1111 1101 0111 0101 

1110 1100 0110 0100 

1011 1001 0011 0001 

1010 1000 0010 0000 

n = 4 
 
L = 24/2 = 22 = 4    
l = 24/2 = 22 = 4    

 
 
 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

11111 11110 10111 10110 01111 01110 00111 00110 

11101 11100 10101 10100 01101 01100 00101 00100 

11011 11010 10011 10010 01011 01010 00011 00010 

11001 11000 10001 10000 01001 01000 00001 00000 

n = 5 
 
L = 2(5+1)/2 = 26/2 = 23 = 8    
l = 2(5–1)/2 = 24/2 = 22 = 4    
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Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

111111 111101 101111 101101 011111 011101 001111 001101 

111110 111100 101110 101100 011110 011100 001110 001100 

111011 111001 101011 101001 011011 011001 001011 001001 

111010 111000 101010 101000 011010 011000 001010 001000 

110111 110101 100111 100101 010111 010101 000111 000101 

110110 110100 100110 100100 010110 010100 000110 000100 

110011 110001 100011 100001 010011 010001 000011 000001 

110010 110000 100010 100000 010010 010000 000010 000000 

n = 6 
 
L = 26/2 = 23 = 8    
l = 26/2 = 23 = 8 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 
ct(x)        

        

        

        

        

        

        

       sp(x) 

n = 6 
 
A(x) = 101001 
d(x) = {ct(x),cd(x),sct(x),sp(x),sb(x)} 
 

Card(ct(x)) = 23 – 1 = 7 
 
Card(cd(x)) = 1 
 
Card(sct(x)) = 23 – 1 = 7 
 
Card(sb(x)) = 23 – 1 = 7 
 
Card(sp(x)) = 23 – 1 = 7 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

        

        

      001011  

        

        

        

        

        

n = 6 
 
A(x) = 101001 
ct(x) = {000000, 010000, 000100, 000010, 010100, 010010, 000110} 

Card(ct(x)) = 23 – 1 = 7 
 
Card(cd(x)) = 1 
 
Card(sct(x)) = 23 – 1 = 7 
 
Card(sb(x)) = 23 – 1 = 7 
 
Card(sp(x)) = 23 – 1 = 7 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

        

        

        

        

         

        

        

          

n = 6 
 
A(x) = 101001 
cd(x) = {010110} 

Card(ct(x)) = 23 – 1 = 7 
 
Card(cd(x)) = 1 
 
Card(sct(x)) = 23 – 1 = 7 
 
Card(sb(x)) = 23 – 1 = 7 
 
Card(sp(x)) = 23 – 1 = 7 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

               

            

            

            

             

            

           

         

n = 6 
 
A(x) = 101001 
sp(x) = {000000, 100000, 001000, 000001, 101000, 100001, 001001} 

Card(ct(x)) = 23 – 1 = 7 
 
Card(cd(x)) = 1 
 
Card(sct(x)) = 23 – 1 = 7 
 
Card(sb(x)) = 23 – 1 = 7 
 
Card(sp(x)) = 23 – 1 = 7 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

        

        

        

        

        

        

        

        

n = 6 
 
A(x) = 101001 
sb(x) = {111111, 101111, 111011, 111101, 101011, 101101, 111001} 

Card(ct(x)) = 23 – 1 = 7 
 
Card(cd(x)) = 1 
 
Card(sct(x)) = 23 – 1 = 7 
 
Card(sb(x)) = 23 – 1 = 7 
 
Card(sp(x)) = 23 – 1 = 7 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

              

            

             

             

             

           000100 

           

110010   100010   010010 010000 000010  

n = 6 
 
A(x) = 101001 
sct(x) = {111111, 011111, 110111, 111110, 010111, 011110, 110110} 

Card(ct(x)) = 23 – 1 = 7 
 
Card(cd(x)) = 1 
 
Card(sct(x)) = 23 – 1 = 7 
 
Card(sb(x)) = 23 – 1 = 7 
 
Card(sp(x)) = 23 – 1 = 7 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

 )       

        

        

        

        

        

        

        

n = 6 
 
111111 = sb(x) 
 

Card(ct(x)) = 23 – 1 = 7 
 
Card(cd(x)) = 1 
 
Card(sct(x) Ç sb(x)) = 1  
 
Card(sp(x)) = 23 – 1 = 7 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

        

        

        

        

        

        

        

        

n = 6 
 
111111 = sct(x)  
 

Card(ct(x)) = 23 – 1 = 7 
 
Card(cd(x)) = 1 
 
Card(sct(x) Ç sb(x)) = 1  
 
Card(sp(x)) = 23 – 1 = 7 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

        

        

       x) 

        

        

        

        

        

n = 6 
 
000000 = sp(x) 
 

Card(ct(x) Ç sp(x)) = 1 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

        

        

        

        

        

        

        

        

n = 6 
 
000000 = ct(x) 
 
 

Card(ct(x) Ç sp(x)) = 1 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 

 
        

        

        

        

        

        

        

        

n = 6 
 
Subalterns are contradictories of contraries.  
sb(x) = cd(ct(x)) 

Card(ct(x)) = 23 – 1 = 7 
 
Card(cd(x)) = 1 
 
Card(sct(x)) = 23 – 1 = 7 
 
Card(sb(x)) = 23 – 1 = 7 
 
Card(sp(x)) = 23 – 1 = 7 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 

 
        

        

        

        

        

        

        

        

n = 6 
 
Subalterns are contradictories of contraries.  
sb(x) = cd(ct(x)) 
 

Card(ct(x)) = 23 – 1 = 7 
 
Card(cd(x)) = 1 
 
Card(sct(x)) = 23 – 1 = 7 
 
Card(sb(x)) = 23 – 1 = 7 
 
Card(sp(x)) = 23 – 1 = 7 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

   
     

        

    

    

        

        

        

        

        

n = 6 
 
Subalterns are contradictories of contraries.  
sb(x) = cd(ct(x)) 

Card(ct(x)) = 23 – 1 = 7 
 
Card(cd(x)) = 1 
 
Card(sct(x)) = 23 – 1 = 7 
 
Card(sb(x)) = 23 – 1 = 7 
 
Card(sp(x)) = 23 – 1 = 7 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

       1 

        

        

        

        

        

        

        

n = 6 
 
Superalterns are contradictories of subcontraries.  
sp(x) = cd(sct(x)) 

Card(ct(x)) = 23 – 1 = 7 
 
Card(cd(x)) = 1 
 
Card(sct(x)) = 23 – 1 = 7 
 
Card(sb(x)) = 23 – 1 = 7 
 
Card(sp(x)) = 23 – 1 = 7 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

 
       

        

 
       

   

  

   

   

 

    

        

        

        

n = 6 
 
Superalterns are contradictories of subcontraries.  
sp(x) = cd(sct(x)) 

Card(ct(x)) = 23 – 1 = 7 
 
Card(cd(x)) = 1 
 
Card(sct(x)) = 23 – 1 = 7 
 
Card(sb(x)) = 23 – 1 = 7 
 
Card(sp(x)) = 23 – 1 = 7 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

        

        

         

        

        

         

         

         

n = 6 
 
Indeterminates with respect to x 
id(x) 

Card(ct(x)) = 23 – 1 = 7 
 
Card(cd(x)) = 1 
 
Card(sct(x)) = 23 – 1 = 7 
 
Card(sb(x)) = 23 – 1 = 7 
 
Card(sp(x)) = 23 – 1 = 7 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

        

        

        

        

        

        

        

         

n = 6 
 
Indeterminates are contradictories of determinates d(x)  
d(x) = {cd(x),ct(x),sct(x),sb(x),sp(x)} 

Card(ct(x)) = 23 – 1 = 7 
 
Card(cd(x)) = 1 
 
Card(sct(x)) = 23 – 1 = 7 
 
Card(sb(x)) = 23 – 1 = 7 
 
Card(sp(x)) = 23 – 1 = 7 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 



 

1 with the square     2 without the square     3 another square 
 

Diagrams with areas (rather than vertices) of n-bitstring (n = length) 
 

 

       

      

  

 

      

 

 

  

        

 

   

  

 

  

        

         

         

n = 6 
 
Indeterminates are contradictories of determinates d(x)  
id(x) = cd(d(x)) 

Card(ct(x)) = 23 – 1 = 7 
 
Card(cd(x)) = 1 
 
Card(sct(x)) = 23 – 1 = 7 
 
Card(sb(x)) = 23 – 1 = 7 
 
Card(sp(x)) = 23 – 1 = 7 
 
Card(d(x)) = 29 – 2 = 27 
 
Card(id(x)) = 64 – 1– 27 = 36 
 
 



 

1 with the square     2 without the square     3 another square 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 sct(x) sct(x) sct(x) 

sct(x) sct(x) sct(x) sp(x) 

 

sct(x)    

   sp(x) 

 

sct(x)     

   sp(x) 

 

sct(x)    

   sp(x) 

 

sb(x)    

   ct(x) 

 

sb(x)    

   ct(x) 

 

sb(x)    

   ct(x) 

 

sb(x) sb(x) sb(x) sb(x) 

sb(x) sb(x) sb(x)  

 

111 110 011 010 

101 100 001 000 

 



 

1 with the square     2 without the square     3 another square 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sct(x)    

   sp(x) 

 

sct(x)     

   sp(x) 

 

sct(x)    

   sp(x) 

 

sb(x)    

   ct(x) 

 

sb(x)    

   ct(x) 

 

sb(x)    

   ct(x) 

 

sb(x) sb(x) sb(x) sb(x) 

sb(x) sb(x) sb(x)  

 

111 110 011 010 

101 100 001 000 

 

 sct(x) sct(x) sct(x) 

sct(x) sct(x) sct(x) sp(x) 

 



 

1 with the square     2 without the square     3 another square 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 sct(x) sct(x) sct(x) 
sct(x) sct(x) sct(x) sct(x) 
sct(x) sct(x) sct(x) sct(x) 
sct(x) sct(x) sct(x) sp(x) 

 
sct(x)    
    
    
   sp(x) 

 
sb(x)    
    
    
   ct(x) 

 
sb(x)    
    
    
   ct(x) 

 

sct(x)    
    
    
   sp(x) 

 

sct(x)    
    
    
   sp(x) 

 

sct(x)    
    
    
   sp(x) 

 
sct(x)    
    
    
   sp(x) 

 

sct(x)    
    
    
   sp(x) 

 

sct(x)    
    
    
   sp(x) 

 
sb(x)    
    
    
   ct(x) 

 

sb(x)    
    
    
   ct(x) 

 

sb(x)    
    
    
   ct(x) 

 
sb(x)    
    
    
   ct(x) 

 

sb(x)    
    
    
   ct(x) 

 

sb(x) sb(x) sb(x) sb(x) 
sb(x) sb(x) sb(x) sb(x) 
sb(x) sb(x) sb(x) sb(x) 
sb(x) sb(x) sb(x)  

 

1111 1110 0111 0110 

1101 1100 0101 0100 

1011 1010 0011 0010 

1001 1000 0001 0000 

 



 

1 with the square     2 without the square     3 another square 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 sct(x) sct(x) sct(x) 
sct(x) sct(x) sct(x) sct(x) 
sct(x) sct(x) sct(x) sct(x) 
sct(x) sct(x) sct(x) sp(x) 

 
sct(x)    
    
    
   sp(x) 

 
sb(x)    
    
    
   ct(x) 

 
sb(x)    
    
    
   ct(x) 

 

sct(x)    
    
    
   sp(x) 

 

sct(x)    
    
    
   sp(x) 

 

sct(x)    
    
    
   sp(x) 

 
sct(x)    
    
    
   sp(x) 

 

sct(x)    
    
    
   sp(x) 

 

sct(x)    
    
    
   sp(x) 

 
sb(x)    
    
    
   ct(x) 

 

sb(x)    
    
    
   ct(x) 

 

sb(x)    
    
    
   ct(x) 

 
sb(x)    
    
    
   ct(x) 

 

sb(x)    
    
    
   ct(x) 

 

sb(x) sb(x) sb(x) sb(x) 
sb(x) sb(x) sb(x) sb(x) 
sb(x) sb(x) sb(x) sb(x) 
sb(x) sb(x) sb(x)  

 

1111 1110 0111 0110 

1101 1100 0101 0100 

1011 1010 0011 0010 

1001 1000 0001 0000 

 



 

End of the square? 
Standard diagrams are diagrams with vertices + oriented graphs (sb/sp) 
Open questions: how many diagrams/kinds of oppositions can there be? 

 
Towards another square 
A functional calculus of opposites helps to: 

- determine complete structures of oppositions with 2n elements (n-bitstrings) 
- deal with logical oppositions as opposite-forming multifunctions  
- device new diagrams of oppositions with areas + colored diagrams 

 
Extended works  
Towards a 3-dimensional theory of meaning though 3 kinds of oppositions: 

- C-opposition: individual objects x are sets of sets of properties  
- Q-opposition: quantified properties over time, space, individuals  
- P-opposition: answers to ordered questions (cf. Schang 2017) 

 
Towards a generalized theory of logical values: Partition Semantics. 
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