ERRATUM

to: *How Far Can Hume's Is-Ought Thesis be Generalized*, JPL 20, 1991, 37–95 by: Gerhard Schurz.

(1.) In the proof of Theorem 2, direction \Leftarrow , p. 74, I introduce the isought separated frame-double $F^* = \langle W^*, R^*, S^* \rangle$ with $W^* = W \cup W'$, and the model M based on F* such that $\pi^0 A$ is false at α in M. I forgot to mention that I presuppose that the world $\alpha \in W^*$ belongs to the subset W (cf. the 6th line from bottom). To guarantee this, one has to ensure – contrary to what is said in the 8th line from the beginning of the third paragraph – that M is an is-ought separated double. This can be done in two steps: (i) one takes any model M' based on a frame for L which makes $\pi^0 A$ false at some α in M', and (ii) one lets M be the is-ought separated double of M' : $\pi^0 A$ will then be false at α in M by Lemma 10, M will be based on a frame for L by the assumption that L is characterized by **Sep**(**F**_L), and $\alpha \in W$ will hold (by the construction of M out of M', see def. 10).

On p. 75, last paragraph, I claim that the proof of Theorem 2, direction \Leftarrow , presupposes only the weaker condition that the frame F* is any is-ought separated frame (not necessarily a 'double'). This claim is wrong, because of what was said above. Therefore, also my claim that "if L is characterized by a class of is-ought separated frames, then GH holds in L" is wrong; it is correct only if the class consists of is-ought separated frame-doubles.

(2.) The proof of Proposition 2 has to be modified as follows. In step (B), instead of the formulat P_{SAT} one has to take the infinite formula set $P_{SAT} := \{A \in \mathcal{L}^a 1 | \Re(A) \subseteq \Re(P_N), \varepsilon A \in \mathbf{aXd} \otimes 1\}$, where ε is the substitution function from step (1.). Assume that P_{SAT} is satisfied in a given a.1-model M at some world α . Then:

(*) For every $\beta \in W^M$ which is R-reachable from α there exists an a.d.1-model M' (based on an **aXd** \otimes **1**-frame) and a world β' in M' such that for each *substitution instance* At_i[y/x](x, y $\in \mathcal{V}$) of any of the atomic sentences At₁,...,At_n the following holds: (M, β) \models At_i[y/x] iff (M', β') $\models \varepsilon$ At_i[y/x] := OA_i[y/x].

For otherwise, there exists a finite conjunction Π of substitution instances of At_i-formulas which is true at β in M, although $\varepsilon \Pi$ is **aXd** \emptyset **1**-insatisfiable

and hence (by completeness) $\mathbf{aXd} \otimes \mathbf{1}$ -inconsistent. This contradicts the assumption that $\mathbf{P_{SAT}}$ is satisfied at α in M and hence (because $\mathbf{P_{SAT}}$ is closed under necessitation) satisfied at every β in M which is R-reachable from α .

The claim (*) is stronger than that in step (B) on p. 80; it covers not only all At_i -formulas but also all of their substitution instances. This is needed for getting the induction step on quantifiers (1.3) on page 82 through – in the original version, without the stronger claim (*), it would not hold.

The two cases of step (C) are spelled out with P_{SAT} similar as before: (C1): $P_{SAT} \vdash_{aX1} (D \rightarrow P_N)$ or (C2): $P_{SAT} \nvDash_{aX1} (D \rightarrow P_N)$. If case 1 were true, then $\vdash_{aX1} P_{SAT} \rightarrow (D \rightarrow P_N)$ would hold for a conjunction P_{SAT} of finitely many elements of P_{SAT} . We argue as in the last paragraph of p. 80 that this is impossible. Hence by frame-completeness of aX1 there exists a frame-based model and a world in it verifying P_{SAT} and D and falsifying P_N – and we continue as in case (C2) on p. 81.

(3.) On p. 84, line 5 from bottom, the semantic condition for the logic **aT(B \lor 4)0** is slightly mistaken. The right condition is this: for all α, β, γ and $\delta \in W$: either $(R\alpha\beta \to R\beta\alpha)$ or $(R\alpha\gamma \land R\gamma\delta \to R\alpha\delta)$.