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HOMOGENEOUSLY SUSLIN SETS IN TAME MICE

FARMER SCHLUTZENBERG

Abstract. This paper studies homogeneously Suslin (hom) sets of reals in tame mice.

The following results are established: In 0¶ the hom sets are precisely the Π˜ 1
1 sets. In

Mn every hom set is correctly ∆˜ 1
n+1, and (δ + 1)-universally Baire where δ is the least

Woodin. In Mω every hom set is <λ-hom, where λ is the supremum of the Woodins.

§1. Introduction. In certain mice, the class of homogeneously Suslin (hom)
sets of reals admits analysis not available in V . The first example of this was
based on Kunen’s analysis of measures in L[U ], and is due to Steel:

L[U ] |= The hom sets are precisely the Π˜ 1
1 sets.(1)

Here we generalize (1) to various tame mice. Some of our results are exact
characterizations and some are partial. We will prove the following.

Theorem (6.1). Let N be a mouse modelling ZFC + “For all measurables
µ < κ, µ is not strong to κ”. Then in N , every hom set is Π˜ 1

1.

Therefore, 0¶ (the sharp for a strong cardinal, see §6) satisfies “the hom sets
are precisely the Π˜ 1

1 sets”. Recall that Mn is the canonical inner model for n < ω

Woodin cardinals. Let δMn
0 be its least Woodin.

1.1. Definition. (a) Let N be an inner model of ZFC which is Σ1
n+1-correct

(i.e., RN 4Σ1
n+1

R). Let Z ∈ P(R)N and z ∈ RN . Then Z is N -correctly-

∆1
n+1(z) iff there is a ∆1

n+1(z) set Z ′ such that Z = Z ′ ∩N .
(b) Let z ∈ N = Mn. The Mn-class of correctly ∆1

n+1(z) sets is the V -class of
Mn-correctly-∆1

n+1(z) sets.
The associated boldface notions allow any parameter z ∈ N .

In 1.1, the collection of Mn-correctly-∆1
n+1(z) sets is defined in V . Part (b)

makes sense because by 2.2, it is a class of Mn, defined uniformly from only z.

Theorem (3.2). In Mn, every hom set of reals is correctly ∆˜ 1
n+1.

Corollary (3.3; Steel, Sargsyan, S.). In Mn, every hom set of reals is (δ0 +
1)-universally Baire.

Thanks to John Steel, Hugh Woodin and Grigor Sargsyan for discussions on the topic of
this paper. Thanks to the referee for various suggestions, corrections and questions.
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In Mn, all Π˜ 1
n sets are hom, by [8], but an exact descriptive characterization

of the hom sets there remains elusive. However:

Corollary (3.4). In Mn, a set of reals is weakly hom iff it is Σ˜ 1
n+1.

Looking higher, Steel and Woodin observed that our argument adapts to Mω.
The author then proved a generalization for various tame mice. 1 In such cases
we obtain a precise characterization. For example:

Theorem (6.5; Steel, Woodin, S.). Let λ be the sup of the Woodins in Mω.
Then in Mω, the hom sets are precisely the <λ-hom sets, which are precisely the
correctly (∆˜ 2

1)L(R) sets (see 6.4).
Let N be the least non-tame mouse, and κ = crit(FN ). Then in N , the hom

sets are precisely the <κ-hom sets.

Finally, we do have a partial result outside the realm of tame mice:

Theorem (6.7). In Mwlim, every δ0-hom set is <λ-hom, where λ is the sup
of the Woodins.

Other related results have been known for some time (we won’t need these,
however). Woodin proved the following version of 3.4:

Fact (Woodin, [2]). (AD+DC) Suppose µ is a normal fine measure on Pω1(R).
For measure one many σ ∈ µ, if g is a generic enumeration of R ∩M1(σ) in

order-type ω
M1(σ)
1 , then “weakly hom” coincides with Σ˜ 1

2 in M1(σ)[g].

The analogous statement about Mn(σ) and Σ˜ 1
n+1 sets also holds.

Lower in the mouse order, Schindler and Koepke generalized (1) in two ways:

Fact (Schindler, Koepke, [5]). Suppose either (a) [¬∃0long];2 or (b) [¬∃0¶

and V = K and K is below a µ-measurable]. Then every hom set is Π˜ 1
1.

In fact they prove the same with a more general class than “hom”, and note
that (a) does not require that V be a premouse.

The paper proceeds as follows. In §2 we discuss some tools we’ll need: correctly
∆˜ 1
n+1 sets, finite support for iteration trees, and some fine structure. In §3 we

give a key lemma that allows us, within the mice we’re considering, to reduce the
wellfoundedness of towers of measures to the iterability of countable premice (or
something close to this). We’ll then apply this to the study of the hom sets in
Mn, proving the first clause of 3.2. In §4 we complete the proof of 3.2 by showing,
in Mn, the equivalence of “correctly ∆˜ 1

n+1” with “(δMn
0 + 1)-universally Baire”.

In §5 we extend the results of §3 a little for M1. In §6 we adapt the arguments
to the cases of 0¶, Mω and some higher tame mice.

1.1. Background, conventions and notation. Moschovakis’ book [10]
covers the descriptive set theory we use.

We assume basic familiarity with the notions of homogeneously Suslin and
universally Baire sets. Good introductions are provided either by [19, §§1,2] or
by [6, §§1.1,1.2,1.3 and the first part of §3.3].

1Thanks to John Steel for the suggestion to look into this.
2That is, 0long does not exist. 0long and a µ-measurable are both below 0¶. See [5].
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A tower (of measures) µ on P is a pair (〈µn〉n<ω ,
〈
iµm,n

〉
m≤n<ω) such that

µn ∈ P , P satisfies “µn is a countably complete ultrafilter”, and the maps
iµm,n : Ult(P, µm)→ Ult(P, µn) form a commuting system of embeddings.

We often use hom to abbreviate homogeneously Suslin.
Most inner model theory we assume is covered in [20]; familiarity with parts of

[15], and isolated elements of [14], [16], [12] and [18], is assumed at some points.
We use the definition of premouse given in [20]; in particular, all premice are
fine structural. Let P be a premouse. Then EP denotes the extender sequence
of P and FP denotes the active extender. For α ≤ ORP , P |α denotes the initial
segment of P with ordinal height α; P ||α is the passive version.

In discussing definability over P , our use of “Σn” and “Πn” is really abbrevi-
ating “rΣn” and “rΠn”. The function given by the nested Skolem term τ (i.e.
composition of a sequence of Skolem terms) and parameter q is denoted fτ,q.

Assuming P is (n − 1)-sound (or n = ω-sound), and given X ⊆ P , DefPn (X)
is the set of points in P of the form fτ,∅(a) for some n-term (or term) τ and

a ∈ X<ω. HullPn (X) is the transitive collapse of DefPn (X). An ω-(pre)mouse is
a (pre)mouse which is ω-sound and projects to ω.

Given an iteration tree T on P with a last model, iT is the main branch
embedding if this branch does not drop in model, and is undefined otherwise. A
branch b thru T is T -maximal iff ∀λ < lh(T )[b 6= {α < lh(T ) | α <T λ}]. T is
above δ if all the extenders of T have critical points ≥ δ.

If context determines a particular embedding P → Q, this is denoted iP,Q.
Given premice P,Q, a pair of trees (T ,U) is a partial comparison of P vs Q iff

T is on P , U is on Q, and the trees constitute an initial segment of a comparison
of P and Q. We similarly define (successful) comparison. Given strategies Σ,Γ,
a (partial) comparison (T ,U) is via (Σ,Γ) iff T is via Σ and U is via Γ.

If P has exactly n < ω Woodin cardinals, these are denoted δP0 < . . . < δPn−1.

If n = 1, δP = δP0 . Likewise when P has ω Woodins. When we write “Mn” we
implicitly assume that n < ω; we only refer to Mω explicitly, by “Mω”.

§2. Preliminaries.

2.1. Correctly ∆˜ 1
n+1 sets in Mn. The following is a correctness result for

Mn. 3 If δ is Woodin and κ < δ, let Bδκ denote the extender algebra at δ using
critical points ≥ κ, and xδκ a name for the generic real. Let Bδ = Bδ0 and xδ = xδ0.

2.1. Fact (Woodin). Let n ∈ ω, N be an active mouse with n Woodins > α,
and P ∈ N |α. Let G be P-generic over N . Then (a) N [G] is Σ1

n+1-correct, and

if n is even, N [G] is Σ1
n+2-correct. Moreover, (b) let ϕ(x, y, z) be Σ1

n, b ∈ RN [G],
and α < κ < δ0 < . . . < δn−1 with δi Woodin in N . If n is odd,

∃y∀zϕ(b, y, z) ⇐⇒ N [G] |= ∃p ∈ Bδ0κ
[
p

Bδ0κ
∀zϕ(b, xδ0κ , z)

]
,

and if n is even

∃y∀zϕ(b, y, z) ⇐⇒ N [G] |= ∃p ∈ Bδ0κ
[
p

Bδ0κ

[
∅

Bδ1δ0
ϕ(b, xδ0κ , x

δ1
δ0

)
]]
.

3Thanks to Grigor Sargsyan for pointing out 2.1 to the author, and its relevance to 4.1.
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See [15, 4.6] and the argument for [15, 4.10] for the proof. See also [20, 7.14,
7.15, and remarks between] for the main ideas. Another proof of (a) essentially
follows the argument for 4.1. 4

2.2. Remark. We now verify that Definition 1.1(b) makes sense. First, Mn

is Σ1
n+1-correct, by 2.1. Now, say a pair of reals (a, b) is a ∆˜ 1

n+1-code if a, b
code complementary Σ˜ 1

n+1 sets, in a standard coding of Σ˜ 1
n+1. Then the state-

ment “(x, y) is a ∆˜ 1
n+1-code” is Π1

n+2. By 2.1, Mn can compute the truth of
such statements, so the class of Mn-correctly-∆˜ 1

n+1(z) sets is definable over Mn

(uniformly from only z), so 1.1(b) does indeed define a class of Mn.
The remarks above and 2.1 show that for n even, in Mn, a set is ∆˜ 1

n+1 iff it
is correctly ∆˜ 1

n+1, and in fact, every ∆˜ 1
n+1-code is a “correct” one. However in

M1 there are correctly ∆˜ 1
2 sets (e.g. ∅) for which not every ∆˜ 1

2-code is “correct”.
This is because M1 is not Σ1

3-correct. But the contrast is stronger than this:

2.3. Fact (Folklore). In M2n+1, not all ∆˜ 1
2n+2 sets are correctly ∆˜ 1

2n+2.

Proof. Deny. Work in N = M2n+1. By 4.1, all ∆˜ 1
2n+2 sets are (δN0 + 1)-

universally Baire. So by Neeman [11, 6.17] they’re determined, and by Martin
[4, 30.10], Π˜ 1

2n+2 determinacy follows. So all Σ˜ 1
2n+3 sets have the Baire property,

contradicting the existence of a ∆˜ 1
2n+3 good wellorder (from [15, §3]). 2

2.2. Some fine structure. In a few places, we will use hulls of the form
M = HullPω (∅), where P |= ZF− is a premouse. We now explore this a little.

2.4. Lemma. Let P be a passive premouse.
If P is ω-sound, then ω-maximal (putative) trees T on P correspond exactly

to 0-maximal (putative) trees U on J1(P ), as the proof describes.

Suppose P |= ZF−. Then P 41 J1(P ). Let M = HullPω (∅) and H =

Hull
J1(P )
1 ({ORP }). Then H = J1(M), ρH1 = ω, pH1 = {ORM}, pH1 is 1-solid,

and H is fully sound.

Proof. For the first claim, let T be on P . By induction, build U on J1(P ),
identical to T , except that when [0, α]T does not drop, MUα = J1(MTα ). Both
trees use the same functions in forming ultrapowers. We omit further details.

Now assume P |= ZF−. We show P 41 J1(P ). Let ϕ be a Σ1 formula in the
premouse language L. Let z ∈ P and J1(P ) |= ϕ(z). Let ϕn ∈ L be such that
for all passive premice Q and x ∈ Q, Q |= ϕn(x) iff Sn(Q) |= ϕ(x). (By [3, 1.2]
this is a Σ0 relation of (Q, x). So ϕn exists.) Now P |= ZF−, so if P |= ϕn(z), so
does some passive P ′ � P , implying J1(P ′) |= ϕ(z), so P |= ϕ(z), as required.

Now we consider H. Clearly ρH1 = ω. Let η = ORP and η̄ be the collapse

of η to H; so H = J1(H|η̄). By the first claim, H|η̄ 41 H. So ThH1 (η̄) ∈ H.

Since H = DefH1 ({η̄}), it follows that pH1 = {η̄}, H is 1-solid, 1-sound, and since
ρH1 = ω, H is fully sound. To complete the proof, H = J1(M) because

DefPω (∅) = Def
J1(P )
1 ({η}) ∩ P.(2)

The ⊆ direction is clear; the ⊇ direction requires a Σ
J1(P )
1 ({η}) definition to be

converted to Σ
P∪{P}
0 (∅), which is similar to the argument that P 41 J1(P ). 2

4A third proof for M2 uses uniformization for Π1
3, but one must first establish ∆˜ 1

2 determi-

nacy and Σ1
3-correctness of M2.
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2.3. Finite support for iteration trees. The analysis of homogeneously
Suslin sets will depend on understanding the component measures of a homo-
geneity system. We now prove a lemma toward this.

Given a normal iteration T on a premouse N and a measure over N derivable
from iT , we will need to replace T with a finite tree, from which the same
measure is derivable. This idea is straightforward and similar constructions have
been given elsewhere, but here we need a little more (2.9), and we explicitly deal
with the issues with type 3 extenders considered in [20] and [14, §7].

Let T have length θ + 1 and let F ⊆ MTθ be finite (F could generate the
measure we’re interested in). We will capture F by defining a finite normal
tree S and liftup maps to T , with F in the range of the ultimate liftup map.
The method is straightforward: find a subset of T sufficient to generate F , then
perform a reverse copying construction to produce S.

2.5. Remark. The following tool will help us handle objects in P − C0(P ),
when P is a type 3 premouse. The issue was ignored in the copying construction
of [9]. Here it is not hard to deal with; a more general discussion is given in
[14, §7].

2.6. Definition. Let P be a premouse. Define the representation projection
function rprjP : P → C0(P ) as follows. If x ∈ C0(P ), rprjP (x) = x. If x /∈ C0(P ),
rprjP (x) is the <P -least pair (a, f) such that x = [a, f ]PFP .

Given an iteration tree U and β < lh(U), let rprjUβ = rprjM
U
β .

2.7. Definition (Finite Support). Let N , T , θ and F be as above. A finite
set S supports F , relative to T , given the following properties (a)-(g). Let
Nα = MTα and rprjα = rprjTα for α ≤ θ.

(a) S ⊆ {(α, x) | α ≤ θ & x ∈ C0(Nα)}.
Let Sα denote the section of S at α. Let I ⊆ θ+ 1 be the projection of S on the
first co-ordinate. Then

(b) θ ∈ I; and
(c) rprjθ“F ⊆ Sθ.

Let α ∈ I, α > 0. There are two cases.

Case 1. α is a successor ordinal.

Let α = β + 1 and γ = T −pred(β + 1).
(d)β+1 β, γ, γ + 1 ∈ I.

Let n = degT (β + 1) and N∗ = N∗β+1 = M∗,Tβ+1 �Nγ . Let x ∈ Sβ+1.

(e)β+1,x There’s a nested n-Skolem term τx, parameter qx ∈ C0(N∗) and

ax ∈ lh(ETβ )<ω such that (β, rprjβ(ax)), (γ, rprjγ(qx)) ∈ S and x = [ax, fτx,qx ]N
∗

ETβ
.

(f1)β+1 If ETβ ∈ Nβ then rprjβ(ETβ ) ∈ Sβ .

(f2)β+1 If Nβ is type 3 and ETβ = FNβ , then rprj(νNβ ) ∈ Sβ .

Case 2. α is a limit ordinal.

(g)α I ∩ α 6= ∅, and if β = max(I ∩ α) then:

(i) 0 <T β <T α

(ii) iTβ,α exists and degT (β) = degT (α)
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(iii) Sα ⊆ iTβ,α“Sβ
(iv) β = γ + 1 for some γ, and crit(iTβ,α) > ν(ETγ ).

This completes the definition of finite support. Condition (g)α(iv) helps ensure
the normality of the finite tree we build.

2.8. Lemma. Let N , T , θ and F be as in 2.7. Then there is a finite support
for F relative to T .

Proof. Assume 0 ∈ F . We recursively define finite sets I ′i,S′i approximating
the desired I,S, with I ′i ⊆ I ′i+1 and S′i ⊆ S′i+1. We also define ordinals αi ∈ I ′i.

Let I ′0 = {θ}, S′0 = {θ} × rprjθ“F and α0 = θ. Given αn, I
′
n,S′n with αn > 0,

we process αn, attempting to meet the requirements of 2.7 for α = αn.
If α = αn = β + 1 is a successor, let I ′n+1 = I ′n ∪ {β, γ, γ + 1} (notation

as in 2.7(d)β+1). Extend S′n to S′n+1 by adding (finitely many) appropriate
(β, rprjβ(ax)), (γ, rprjγ(qx)), etc., to satisfy (e)β+1,x, (f1)β+1 and (f2)β+1. If
γ + 1 < αn, also put (γ + 1, 0) ∈ S′n+1.

If αn is a limit, let β be least such that β ≥ max(I ′n∩αn), and (i),(ii) and (iv)
of (g)αn are satisfied, and (S′n)αn ⊆ rg(iTβ,αn). (If no sufficiently large β <T αn
satisfied condition (iv), then MTαn would be illfounded; this is because no ETγ is

of superstrong type, so if β′ = T −pred(γ + 1) then iTβ′,γ+1(crit(ETγ )) > ν(ETγ ).)

Let I ′n+1 = I ′n ∪ {β}. Extend S′n to S′n+1 by adding all (β, x) such that

iTβ,αn(x) ∈ (S′n)αn .

In either case, set αn+1 = β = max(I ′n+1 ∩ αn), completing this stage.
For some n, α0 > α1 > . . . > αn = 0. Note {α0, . . . , αn} = I ′n and every

αi > 0 got processed at some stage. Note for i ≤ n, (S′i)αi = (S′n)αi . With these
facts, one can check S′n supports F , and has projection I ′n. 2(Lemma 2.8)

2.9. Lemma. Let N , T , θ and F be as in 2.7. Then there is a normal iteration
tree S on N with lh(S) = n + 1 < ω, degS(n) = degT (θ), and a near degT (θ)-
embedding %̄ : MSn →MTθ , with rprjTθ “F ⊆ rg(%̄). Moreover, if iT exists then so
does iS , and the embeddings commute: iT = %̄ ◦ iS .

Suppose further that σ0 = σ : N → N ′ is elementary, and σT consists of
wellfounded models. Let 〈σα〉α≤θ be the liftup maps from T to σT . Let 〈σ̄i〉i≤n
be the liftup maps from S to σS (σ̄0 = σ). Then %̄ may be chosen such that there

is a near degT (θ)-embedding % : MσS
n → MσT

θ such that σθ ◦ %̄ = % ◦ σ̄n, and if
iT (and therefore also iS , iσT and iσS) exists then iσT = % ◦ iσS .

Proof. Let S support F relative to T . We will perform a “reverse copying
construction”, copying down the parts of T appearing in S. We use I as the
index set for S. Let (<S , D

S ,degS) = (<T , D
T ,degT ) � I. Denote the models

of S by Mα. The tree S we literally define will be padded. Padding occurs just
at ordinals β = max(I ∩ λ), where λ ∈ I is a limit ordinal: for such β, λ we set
ESβ = ∅, Mλ = Mβ and iSβ,λ = id. (We plan for S to be normal. If λ ∈ I is a
limit ordinal and α+ 1 ∈ I, we adopt the “padding convention” that normality
requires that S−pred(α+ 1) 6= max(I ∩ λ).)

We’ll define near degT (α)-embeddings πα : Mα → Nα by recursion on α ∈ I.
Suppose some πα has been defined. If Nα is active, let ψα : Ult0(Mα, F

Mα) →
Ult0(Nα, F

Nα) be the canonical map induced by πα. Otherwise let ψα = πα. In
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either case we therefore have πα ⊆ ψα. During the recursion, we will maintain
an induction hypothesis on α, which we call ϕα. We will establish ϕα while
defining S � (I ∩ α + 1) and πα (and therefore ψα). The hypothesis ϕα states:
For all δ, γ and ξ + 1 in I ∩ (α+ 1), the following conditions hold:

• S’s extenders: either ψξ(E
S
ξ ) = ETξ or else ESξ and ETξ are the active

extenders of Mξ and Nξ respectively,
• ν-lh-preservation: ψξ(ν(ESξ )) = ν(ETξ ) and ψξ(lh(ESξ )) = lh(ETξ ),

• Strong Closeness at ξ, as in [12, 1.3],

• Elementarity: πγ : Mγ → Nγ is a near degT (γ)-embedding,
• Range: rg(πγ) ⊇ Sγ ,
• Agreement: if ξ < γ then ψξ agrees with πγ below lh(ESξ ) + 1,

• Commutativity: if δ <S γ and iSδ,γ is defined then πγ ◦ iSδ,γ = iTδ,γ ◦ πδ.
Now we begin. Set M0 = N0 = N and π0 = id; clearly ϕ0 holds.
Suppose we have defined S � (I ∩ β + 1), πγ has been defined for γ ≤ β, ϕβ

holds and β + 1 ∈ I. We must define S �(I ∩ β + 2) and πβ+1, and verify ϕβ+1.
First we define ESβ and show that it is indexed above S’s earlier extenders.

If ETβ ∈ rg(πβ), set ESβ = π−1
β (ETβ ). If ETβ = FNβ , set ESβ = FMβ .

Otherwise, since Sβ ⊆ rg(πβ), 2.7(f1)β+1 implies Nβ is type 3 and νNβ <

lh(ETβ ) < ORNβ , and letting E = ETβ , rprjβ(E) = (aE , fE) ∈ rg(πβ). Let

(āE , f̄E) = π−1
β ((aE , fE)) and Ē = [āE , f̄E ]

Mβ

FMβ
. So ψβ(Ē) = E and Ē is on the

sequence of Ult0(Mβ , F
Mβ ). To set ESβ = Ē we need to verify that Ē is on EMβ .

For this, let ν = νNβ and ν̄ = νMβ . Then ψβ“ν̄ ⊆ ν; and ψβ(ν̄) ≥ ν since
“[a, f ] represents a cardinal not in my OR” is Π1 and πβ is at least that elemen-
tary. But lh(E) ∈ rg(ψβ) and ψβ preserves cardinality, so in fact ψβ(ν̄) = ν and

ψβ(ORMβ ) = ORNβ , which implies ν̄ < lh(Ē) < ORMβ , as required.
The agreement condition ensures ESβ is indexed above S’s earlier extenders.

The ν-lh-preservation for ξ = β is as usual unless Nβ is type 3 and ETβ = FNβ .

In this case (f2)β+1 gives a, f ∈ C0(Mβ) such that πβ(a, f) = rprjβ(νNβ ). By

Σ1-elementarity, νMβ = [a, f ]FMβ . This implies “ν-preservation” and thus, “lh-
preservation”.

One can now verify the tree, drop and degree structure required for the nor-
mality of S � (I ∩ β + 2) matches that of T � (I ∩ β + 2). Just a couple of
remarks. Let γ = T −pred(β + 1). We have γ, γ + 1 ∈ I by 2.7(d)β+1. There-
fore setting S−pred(β + 1) = γ upholds our padding convention: For any limit
λ ∈ I, γ 6= max(I ∩ λ). If there is a model-drop, we get ψγ(M∗β+1) = N∗β+1

by the usual argument but with ψγ replacing πγ ; in particular this works when

M∗β+1 /∈ C0(Mγ). As for degrees, πγ being a near degT (γ)-embedding implies

that setting degS(β + 1) = degT (β + 1) is also as required for normality. 5

We have that ψγ agrees with ψβ below (κ+)Mβ |lh(ESβ ). Strong closeness at β
now follows by inspection of the proof of closeness ([9, 6.1.5]). (In the proof

5If πγ were only a weak k = degT (γ)-embedding then it would be possible to have M∗β+1 =

Mγ , crit(ESβ ) = κ ≥ ρ
Mγ
k and πγ(κ) < ρ

Nγ
k . This would require setting degS(β + 1) < k =

degT (β + 1), which would break the construction. See [14, §7] for an example.
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of Claim 2 of that lemma, one must show that various maps πδ preserve Σ1

definitions of measures, working backwards through ordinals δ. One uses the
inductive commutativity hypothesis in propagating this preservation through a
padded stage of S.)

So the hypotheses for the Shift Lemma hold (with the appropriate initial

segments M∗β+1, N
∗
β+1 of Mγ , Nγ and degree m = degT (β + 1) = degS(β + 1)),

yielding πβ+1 in the usual way:

πβ+1([a, fτ,q]
M∗β+1

ESβ
) = [ψβ(a), fτ,ψγ(q)]

N∗β+1

ETβ
(3)

We use ψβ , ψγ here instead of πβ , πγ in case we have ETβ ∈ Nβ − C0(Nβ), or

N∗β+1 ∈ Nγ − C0(Nγ). As πγ is a near degS(γ)-embedding, the Shift Lemma,

strong closeness at β and the argument from [12, 1.3] give that πβ+1 is a near

degS(β + 1)-embedding. The Shift Lemma gives commutativity, and its proof
shows πβ+1 agrees with ψβ below lh(ESβ ) + 1, implying the agreement condition.

Finally we show rg(πβ+1) ⊇ Sβ+1. Let x ∈ Sβ+1, and let ax, qx, τx be as in
2.7(e)β+1,x. By ϕβ , we have rprjβ(ax) ∈ rg(πβ) and rprjγ(qx) ∈ rg(πγ). This
implies that ax ∈ rg(ψβ) and qx ∈ rg(ψγ); denote the preimages ā, q̄. Note

q̄ ∈M∗β+1 and ā ⊆ lh(ESβ ) and degS(β+ 1) = m = degT (β+ 1). So x̄ = [ā, fτx,q̄]

is an element of Mβ+1 = Ultm(M∗β+1, E
S
β ). By (3), πβ+1(x̄) = x, as required.

This establishes ϕβ+1.
Now suppose we have S �(I ∩ β + 1) for some β ∈ I, β < θ, and ϕβ holds, but

β + 1 /∈ I. So inf(I − (β + 1)) is a limit α. Thus we set ESβ = ∅ and Mα = Mβ .

Let πα = iTβ,α ◦πβ . This yields a near degT (α) = degS(α)-embedding since there

is no dropping of any kind in (β, α]T . Its range is large enough since rg(πβ) ⊇ Sβ
and iTβ,α“Sβ ⊇ Sα. By 2.7(g)α(iv), β is a successor, and

πβ(ν(ESβ−1)) = ν(ETβ−1) < crit(iTβ,α).

(The equality is by ν-lh-preservation and agreement.) Therefore iTβ,α ◦πβ agrees

with πβ below lh(ESβ−1) + 1, giving agreement. Commutativity is clear. This
shows ϕα, completing the induction.

Setting %̄ = πθ, the first part of the theorem has been proven. With this choice
of %̄, we just sketch the second part.

First, for P,Q type 3 premice and σ′ : C0(P ) → C0(Q) a weak 0-embedding,
let ψσ′ : Ult0(P, FP ) → Ult0(Q,FQ) be induced by σ′. Suppose ψσ′(ν

P ) = νQ.
Then if x ∈ P , then ψσ′(x) ∈ Q and

ψσ′(rprjP (x)) = rprjQ(ψσ′(x)).(4)

Now σT has exactly the same structure (nodes, drops and degrees) as T .
(I.e., the problems with type 3 extenders and degree differences discussed in
[14, §7] and [20, §4.1] don’t occur.) For [14, 7.1] and [12, 1.3] apply since σ is

fully elementary. In particular, for α ≤ θ, σα is a near degT (α)-embedding (cf.

footnote 5), and if MTα is type 3, then ψσα(νM
T
α ) = νM

σT
α . Therefore (4) applies

when σ′ = σα. We have an analogous situation with σS and S. Let σ̄α be the
maps lifting S to σS (for α ∈ I).
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Now if (S′)β = σβ“Sβ for all β ≤ θ, then S′ supports F ′ = σθ“(rprjTθ “F). (In
fact, S′ is produced by the algorithm of Lemma 2.8, applied to σT and F ′. To
see this use the facts from the previous two paragraphs.)

Let S ′ be the finite tree obtained by the method of the first part of the theorem,
applied to σT and S′, and let π′α : MS

′

α →MσT
α be the lifting maps (for α ∈ I).

One shows inductively that S ′ � (α + 1) = σS � (α + 1) and the commutativity
σα ◦ πα = π′α ◦ σ̄α. The desired % is π′θ. 2(Lemma 2.9)

2.10. Definition. Let T ,F ,S be as in 2.7. The finite support tree T S
F for F ,

relative to T ,S, is the tree S as defined in the proof of 2.9. If S∗ is the support
for F defined in the proof of 2.8, the finite support tree TF is T S∗

F .

§3. Homogeneously Suslin sets in Mn. We are now ready for the main
argument. Let N be a mouse modelling ZF−. Suppose that in N , T is a ho-
mogeneous tree and we want to bound the descriptive complexity of p[T ]. Let
ν = 〈νs〉s∈<ωω ∈ N be an homogeneity system for T . For x ∈ R, let νx be the

tower
〈
νx�n; iνx�n,x�m

〉
n≤m<ω. For any tower µ on N , let

UNµ = Ult(N,µ) = dirlimm≤n<ω(Ult(N,µn); iµm,n).

Let Ux = UNνx . So if x ∈ N then N |= “x ∈ p[T ] iff Ux is wellfounded”. We would
like to replace “Ux is wellfounded” in this statement with some formula ϕ(x),
where (in the case of Mn) ϕ is projective. We will have ϕ assert the iterability
of an associated countable premouse. So suppose π : M → N is elementary with
ν ∈ rg(π). Let π(ν̄) = ν. Let Ūx = UMν̄x . Our plan will be to show that for reals

x ∈ N , Ux is wellfounded iff Ūx is iterable. Given that, the complexity of “Ūx is
iterable” will bound the complexity of p[T ]. The main issue is to show that the
iterability of Ūx implies the wellfoundedness of Ux. We deal with that now.

3.1. Lemma. Let N be a mouse modelling ZF− and π : M → N be elementary.
Let Σ be the iteration strategy for M induced by π and some fixed strategy for
N . Let µ̄ ⊆M be a tower of measures on M and let Ū = Ult(M, µ̄).

Suppose T̄ is a normal tree on M , via Σ, with last model Q̄, iT̄ exists, and
σ : Ū → Q is elementary and such that σ ◦ iMµ̄ = iT̄ .

Then U = Ult(N, π“µ̄) is wellfounded; in fact there is ψ : U → Q, with ψ
elementary, and Q the last model of πT̄ .

Proof. We first give the proof assuming that (∗) if M has a largest cardinal
θ, then cof(θ)M isn’t measurable in M .

Let’s set up notation for various natural maps. See Figure 1 for the main ones.
We assume µ0 is trivial. Let jn,∞ : Ult(N,µn)→ U be the canonical map and

j = j0,∞ : N → U . Define j̄n,∞ and j̄ analogously at the M level. The Shift
Lemma applied to π and µ̄n gives π � Ult(M, µ̄n) : Ult(M, µ̄n) → Ult(N,µn)
(this uses (∗)). Let π∞ : Ū → U be the unique embedding commuting with
these maps.

Let T = πT̄ be the copied tree on N . Let πQ̄ be the final copy map. Then
ignoring ψ, Figure 1 shows a commuting diagram of elementary maps.

We now want to define ψ : U → Q in the only elementary, commuting way:

ψ
(
j(f)(π∞(b))

)
= iT (f)

(
πQ̄ ◦ σ(b)

)
.(5)
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M

Ū Q̄

N

U Q

Z
Z

Z
Z}

j̄
�
�
�
�>

iT̄

-σ

Z
Z
Z
Z}

j
�
�
�
�>

iT

-ψ

6

π

6

π∞

6

πQ̄

Figure 1. Commuting diagram.

(For all x ∈ U there is f ∈ N and b ∈ Ū such that x = j(f)(π∞(b)). For there
is f ∈ N and n < ω such that x = j(f)(jn,∞(a′)), where a′ is the generator
for µn. But π(µ̄n) = µn, so if a is the generator for µ̄n then π(a) = a′. By
commutativity, f and b = j̄n,∞(a) work.)

We need to see that ψ is well-defined and elementary. This requires certain
measures derived from j and iT to be identical.

Conventions & Notation. Let k : P → R be elementary between premice,
and x ∈ (k(α))<ω, with α least such. Then µkx denotes the P -ultrafilter on α|x|

derived from k with generator x. Also let µWx = µkx whenW is a normal iteration
and k = iW .

To see that (5) defines an elementary embedding, it suffices to show that

µTπQ̄(σ(b)) = µjπ∞(b).(6)

We may assume that b = j̄n,∞(a), where a is the generator of µ̄n. This means

µjπ∞(b) = π(µ̄n) = µn.(7)

Now since the bottom triangle of Figure 1 commutes, µ̄n = µT̄σ(b). Let R̄ be the

last model of T̄σ(b) (the finite support tree, as in 2.10) and %̄ : R̄→ Q̄ a map as

given by 2.9. So iT̄σ(b) exists and %̄ ◦ iT̄σ(b) = iT̄ , and therefore

µ̄n = µ
T̄σ(b)

%̄−1(σ(b)).(8)

Since T̄σ(b) is a finite tree onM , it is a definable class of M , and π(T̄σ(b)) = πT̄σ(b),

and the copy maps lifting T̄σ(b) to πT̄σ(b) are all restrictions of π. Let R be the

last model of πT̄σ(b). The second part of 2.9 gives an elementary % : R → Q
commuting with all maps (given a good %̄). Combining this with (8) gives

µTπQ̄(σ(b)) = µ
πT̄σ(b)

%−1(πQ̄(σ(b))) = µ
π(T̄σ(b))

π(%̄−1(σ(b))) = π(µ
T̄σ(b)

%̄−1(σ(b))) = π(µ̄n) = µn.(9)

So (9) and (7) yield (6), completing the proof assuming (∗).
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Without (∗), T̄σ(b) needn’t be a class of M ; in fact, its models might have

height > ORM . Moreover, the copy maps (from T̄σ(b) to πT̄σ(b)) needn’t be
restrictions of π. In this case we simply take the various ultrapowers at the
“representation level”, without transitivizing; e.g., the first ultrapower in T̄σ(b)

consists of pairs (a, f) ∈M . This version of T̄σ(b) is a class of M . Likewise with
Ult(M, µ̄n). The proof adapts in a straightforward way. 2

3.2. Theorem. In Mn, every homogeneously Suslin set of reals is correctly
∆˜ 1
n+1.

Before giving the proof, we state some corollaries:

3.3. Corollary (Steel, Sargsyan, S.). In Mn, every hom set of reals is (δMn
0 +

1)-universally Baire.

Proof. By 3.2 and 4.1. 2

3.4. Corollary. In Mn, the weakly homogeneously Suslin sets of reals are
precisely the Σ˜ 1

n+1 sets.

Proof. Weakly hom sets are just projections of hom sets. So 3.2 implies that
in Mn, all weakly hom sets are Σ˜ 1

n+1. The converse follows Martin-Steel [8]: by
this, in Mn all Π˜ 1

n sets are hom. 2

Proof of Theorem 3.2. If (a) is false, then in Mn, let A be <Mn -least such
that A is hom but not correctly ∆˜ 1

n+1. Let η be the first indiscernible of Mn

and let M = HullMn|η
ω (∅). So M ∈Mn. We will show that in Mn, A is correctly

∆1
n+1(M), a contradiction.
Let π : M →Mn|η be the inverse of the collapse map. Then π is elementary,

so M is (ω, ω1 + 1)-iterable, via the strategy Σ induced by lifting trees to Mn|η.
By 2.4, we can consider Σ a (0, ω1 + 1)-strategy for J1(M). Also by 2.4, J1(M)
is an ω-mouse with ρ1 = ω, so Σ is the unique such strategy for J1(M).

Note A ∈ rg(π), so there are T, ν ∈ rg(π) such that in Mn, p[T ] = A and ν
is a homogeneity system for T . Let π(ν̄) = ν. Applying the following claim to
µ̄ = ν̄x shows that if x ∈ RMn , then x ∈ p[T ] iff Ult(M, ν̄x) is (ω1 + 1)-iterable.

Claim 1. Let µ̄ ⊆M be a tower of measures on M . Let µ = π“µ̄. If µ̄ ∈Mn,
the following are equivalent in V : 6

(a) U = Ult(Mn, µ) is wellfounded;
(b) There is an elementary ψ : Ū →Mn|η;
(c) Ū = Ult(M, µ̄) is (ω1 + 1)-iterable;
(d) There is a countable Σ-iterate Q of M , and an elementary σ : Ū → Q.

Moreover, conditions (c) and (d) are equivalent for any tower µ̄ on M , µ̄ ∈ V .

Proof. We adopt the notation introduced prior to and during 3.1.
For “(a) ⇒ (b)”, note j(η) = η (as µ̄ ∈Mn). So π∞ : Ū → U |η is elementary.

But j(Ū) = Ū ∈ U , so by absoluteness, in U there is an elementary π′ : Ū → U |η.
Pulling back under j, in Mn there is an elementary ψ : Ū →Mn|η. 7

“(b) ⇒ (c)” is clear. For any µ̄ ∈ V , we show “(c)⇒ (d)”. Condition (c)
and 2.4 yield a successful comparison (T̄ , Ū) of (J1(M),J1(Ū)), with 0-maximal

6The argument shows they’re also equivalent inside Mn.
7Thanks to the referee for providing a correction to our original argument here.
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trees, and T̄ via “Σ”. Now J1(M) is an ω-mouse with ρ1 = ω and is the core
of J1(Ū), and J1(Ū) is 1-solid. Standard fine structure therefore shows that T̄
and Ū have a common final model, iT̄ and iŪ exist and iT̄ = iŪ ◦ iµ̄. Therefore

σ = iŪ � Ū witnesses (d).

“(d) ⇒ (a)” is by 3.1 (σ ◦ j̄ = iT̄ because M = HullMω (∅)).
For any µ̄ ∈ V , “(d) ⇒ (c)” is because the uniqueness of Σ implies that it

actually follows the first round of an (ω, ω1, ω1 + 1)-strategy. 2 (Claim 1)

We now discuss the descriptive complexity of conditions (c) and (d) of Claim
1. The analysis is taken from [15], with some simple adaptations. We start with
Mn = M1. In this case, (d) is Σ1

2(M), since by 1-smallness and Q-structure
arguments, Σ always chooses the unique cofinal wellfounded branch. We will
now observe that (c) is Π1

2(M).
The following is essentially the ΠHC

1 -iterability of [15, 1.6], but we allow un-
sound premice P , and have dropped the clause concerning iterates of MTb .

3.5. Definition. A countable premouse P is Π1
2-iterable above δ iff for every

triple (α, T , x) with α a countable ordinal, T a countable putative normal iter-
ation tree on P , and T above δ: either (1) there is a T -maximal branch b such
that MTb is α-wellfounded; or (2) T has a final model, which is α-wellfounded.
P is Π1

2-iterable iff it is Π1
2-iterable above 0.

Π1
2-iterability above δ is Π1

2(δ) when coded over R. Note that in the proof of
the following claim, all Q-structures here have form Lγ [M(T )], by 1-smallness.

Claim 2. Let n = 1. For all towers µ̄ on M , Ū = Ult(M, µ̄) is (i) (ω1 + 1)-
iterable iff (ii) Π1

2-iterable.

Proof. As in [7, 6.13] or [15, 2.2(3)]. To prepare for discussing M2 though,
we give the main ideas for “(ii)⇒ (i)”. It suffices to successfully compare J1(M)
with J1(Ū). We leave the reader to synthesize the following terse remarks into
such a comparison.

Let Γ be the partial strategy for J1(Ū) defined by “Given U on J1(Ū) of limit
length, let Γ(U) be the unique c with Q(c,U) wellfounded”. Let (T ,U) be a
partial comparison of (J1(M),J1(Ū)) via (Σ,Γ), of limit length λ ≤ ω1.

If λ < ω1, let b = Σ(T ) and Q = Q(b, T ). Let α, α′ ≥ ORQ and c, c′ be
branches witnessing the Π1

2-iterability of Ū with respect to U , α and U , α′ re-
spectively. By the uniqueness of Γ’s branch choices, c and c′ are cofinal in U .

If Q is ω-sound, 1-smallness implies Q�MUc and Q�MUc′ . So c = c′ as Q is a
Q-structure. The Π1

2-iterability of Ū then implies MUc is wellfounded (by letting
α→ ω1). So U ̂ c is via Γ. If Q is unsound, then (T ̂ b,U ̂ c) is successful. 8

If λ = ω1, similar arguments, and the homogeneity of Col(ω, α), show (T ,U) ∈
L[M, µ̄]. But ω

L[M,µ̄]
1 < lh(T ,U), contradicting comparison. 2 (Claim 2)

Since the map x 7→ µ̄ = ν̄x is continuous, conditions (c) and (d) provide an
M1-correctly-∆1

2(M) definition of p[T ]M1 , by Claims 1 and 2 and the comments
following Claim 1. 9 This completes the M1 case.

8An argument like for Claim 3 below shows that c = c′, even if Q is unsound, but we don’t

need that. Moreover, if µ̄ is bounded in δM , then Q is always ω-sound, like in 5.1(b).
9Conditions (a)-(d) are also equivalent in M1. So the ∆1

2(M) definition we gave has the

same interpretation in M1 as in V .
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Now consider M2. The analysis below is also from [15]. The definition of
Π1

3-iterability is a simplification of the ΠHC
2 -iterability of [15, 1.4], except that

we will need to apply it to unsound structures.
Let P be a 2-small ω-mouse and let ΣP be its unique (ω, ω1 + 1)-strategy.

Given a limit length T via ΣP , b = ΣP (T ) is the unique T -cofinal branch b′ such
that Q(b′, T ) is Π1

2-iterable above δ(T ). For let b′ 6= b be such. By 2-smallness,
any partial comparison of Q(b, T ) vs Q(b′, T ) is above δ(T ). So by the proof of
Claim 2, there is a successful comparison. Since the Q-structures are δ(T )-sound,
fine structure then shows they’re equal, and therefore that b = b′.

Therefore the statement “T is a normal tree on P via ΣP ” is Π1
2(P ), and

ΣP (T ) is ∆1
3(T ). Applying this to M,Σ, we have that condition (d) is Σ1

3(M).
We now observe, in two ways, that condition (c) is Π1

3(M).
If T is a putative normal iteration tree on a 2-small premouse and b is a

T -cofinal branch, let’s say b is T -good iff MTb is wellfounded and Q(b, T ) is Π1
2-

iterable above δ(T ). Also, T is good if for each limit λ < lh(T ), the branch
[0, λ]T is T �λ-good. Likewise for a (putative, partial) comparison.

3.6. Definition. Assume ∆˜ 1
2-determinacy and let P be a 2-small, k-sound

premouse, with ρPk+1 ≤ δ. P is Π1
3-iterable above δ iff for each countable good

k-maximal above-δ putative tree T on P : either (1) T has a wellfounded last
model; or (2) T has limit length and there is a T -good branch b in ∆1

3(T ).
P is Π1

3-iterable iff it is Π1
3-iterable above 0.

By [10], ∆˜ 1
2-determinacy implies that Π1

3(x) is closed under “∃b ∈ ∆1
3(x)”.

Therefore “Π1
3-iterability above δ” is indeed a Π1

3(δ) condition. Note we haven’t
required P be δ-sound. The fine-structural assumptions on P do imply that
the Q-structure Q(b, T ) exists for any b (but may be illfounded). The following
notion provides an alternative Π1

3(M) description of condition (c).

3.7. Definition. Let µ̄ be a tower on M and Ū = UMµ̄ . Then Ū is Π1
3-M -

comparable iff for each countable good putative partial comparison (T ,U) of
J1(M) vs J1(Ū): either (1) U has a wellfounded last model; or (2) (T ,U) has
limit length and there are b, c ∈ ∆1

3(T ) such that either (2a) c is U-good, or
(2b) b is T -good and there is a normal tree T ′ on Q(b, T ), above δ(T ), with last
model Q, and there is a Σ1-elementary σ : J1(Ū)→ Q.

Our original proof just used Π1
3-M -comparability, which is ostensibly weaker

than Π1
3-iterability. Steel noticed that if Ult(M, µ̄) is iterable, then it is in fact

Π1
3-iterable, and provided the proof of this, for which, the next fact is the key.

10

3.8. Fact (Martin-Steel). Let T be a normal iteration tree of limit length on
a premouse P , with cofinal branches b 6= c (maybe illfounded). Let β ∈ b, γ ∈ c
be such that iTβ,b and iTγ,c exist. Then rg(iTβ,b)∩rg(iTγ,c)∩δ(T ) is bounded in δ(T ).

Proof. Use the zipper diagram of the Branch Uniqueness proof, [20, §6]. 2

10Claim 3 (in particular, Π1
3-iterability) gives a little more information than we need to

prove 3.2. If µ̄ is bounded in δM0 , as it is if µ̄ = ν̄x, then the proof of 5.1 shows that the

situation in which the lemma is needed never occurs in comparing M with Ū .
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Claim 3. Let n = 2, let µ̄ be a tower on M , and Ū = Ult(M, µ̄). Then Ū is
(i) (ω1 + 1)-iterable iff (ii) Π1

3-iterable iff (iii) Π1
3-M -comparable.

Proof. We just prove “(i)⇔ (ii)”. Since J1(Ū) is not 1-sound, we can’t quite
quote [15]. The following proves “(i) ⇒ (ii)”.

Subclaim 1. Assume that Γ is an (ω1 + 1)-strategy for J1(Ū). Let U be a
normal tree of limit length on J1(Ū), via Γ, and c = Γ(U). Then c ∈ ∆1

3(U); in
fact, c is the unique c′ such that Q(c′,U) is Π1

2-iterable above δ(U).

Proof. Everything works as in the discussion preceding 3.6, except when c
does not drop, and iUc (δŪi ) = δ(U) with i = 0 or i = 1. In this case, Q =
Q(c,U) = MUc is ω1 + 1-iterable above δ(U). Suppose c 6= c′ and Q′ = Q(c′,U)
is Π1

2-iterable above δ(U). As before, there’s a successful comparison (V,W) of
Q vs Q′, above δ(U), with common last model R, and iV and iW exist. This
implies c′ did not drop (since c didn’t). Let j̄ : J1(M) → J1(Ū) be the unique
Σ1-elementary map. We get a Σ1-elementary k : J1(M)→ R defined two ways:

k = iV ◦ iUc ◦ j̄ = iW ◦ iUc′ ◦ j̄.
Note k is continuous at δMi since it’s composed of ultrapower embeddings of
degree 0 and δMi is regular in J1(M). But iV and iW have critical points > δ(U).
So k“δMi is cofinal in k(δMi ) = δ(U) and k“δMi ⊆ rg(iUc ) ∩ rg(iUc′), contradicting
3.8. 2(Subclaim 1)

The proof of “(ii) ⇒ (i)” is essentially as in [15, 2.2(3)], with one very small
addition. Note that Π1

3-iterability defines an iteration quasi-strategy Γ for Ū .
Define a comparison of M vs Ū , via (Σ,Γ). Given a resulting partial stage (T ,U),
attempt to show that if b = Σ(T ) and c is a U-good branch then Q(c,U) =
Q(b, T ), so c ∈ ∆1

3(T ,U), uniformly in (T ,U). If this fails, show b is non-
dropping and iT (δMi ) = δ(U) (i = 0 or 1), 11 choose any U-good c and note that
MTb and MUc can be successfully compared above δ(T ). If it never fails, and the
comparison lasts through ω1 stages, obtain a contradiction like at the end of the
proof of Claim 2, by applying 2.1 to show (T ,U) ∈M1(M, µ̄). 2 (Claim 3)

By Claim 3, condition (c) is Π1
3(M). We saw that (d) is Σ1

3(M) (just prior to
3.6). By 2.1, the hom set is correctly ∆˜ 1

3 in M2.
For M3, the argument is like that for M2, except that the definition of Π1

4-
iterability is significantly different to that of Π1

3-iterability because of periodicity.
See [15] for the elegant solution. The arguments for higher M2n and M2n+1 are
modelled on those for M2 and M3, respectively. 2(Theorem 3.2)

Theorem 3.2 leaves the following questions unanswered. As far as the author
knows, the answers might both be “no”, simultaneously.

3.9. Question.

• In Mn, are all homogeneously Suslin sets Π˜ 1
n?

• In Mn, are all correctly ∆˜ 1
n+1 sets homogeneously Suslin?

11Even in this case, there is a unique U-good branch c. For suppose c 6= c′ are both U-
good. Compare Q(c,U), Q(c′,U) and Q(b, T ) simultaneously. This comparison succeeds, and

all three trees lead to the same final model, with no drops on main branches. A contradiction
results as in the proof of Subclaim 1.
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3.10. Remark. In Mn, all (δMn
0 +1)-universally Baire sets are determined, by

[11, 6.17]. The Wadge game for comparing two such sets has (δMn
0 +1)-universally

Baire payoff. Therefore all such sets are Wadge comparable, so either all hom
sets are Π˜ 1

n, or all Σ˜ 1
n sets are hom. (Moreover, let A be the set of towers µ̄

on M = HullMn
ω (∅) such that Ult(M, µ̄) is iterable, and let B be complete Π1

n.
Then all hom sets are Π˜ 1

n iff A ≤W B.) To prove that all hom sets are Π˜ 1
n, it

therefore suffices to prove that all hom co-hom sets are Π˜ 1
n.

Also, by the determinacy mentioned above, Mn has well-defined hom thresh-
olds (at any ordinal λ). So a problem related to 3.9 is to determine these. By
(relativized versions of) 3.2, combined with [8], certainly the hom threshold of

Mn at δMn
i+1 is > δMn

i , but that is all that is known to the author.
Other related questions arise from the proof of 3.2. For instance, in the case

of M1, are conditions (a)-(d) of Claim 1 equivalent to “Ū is wellfounded”, or to
“Ū is a normal iterate of M”? If so, then certainly all hom sets of M1 would
be Π˜ 1

1. In §5 we will discuss a related result. But first, we establish the lemma
invoked in the proof of 3.2(b).

§4. Universally Baire sets in Mn. The following lemma has most likely
been observed previously by others, but it appears that it’s not in print. John
Steel provided the proof for n > 1. 12 The proof uses the extender algebra and
genericity iterations; see [20, §7.2] and 2.1.

4.1. Lemma (Folklore). In Mn, a set of reals is Col(ω, δMn
0 )-universally Baire

iff it is correctly ∆˜ 1
n+1.

Proof of Lemma 4.1. The forward direction is a standard argument; we
just sketch it. See [17, 1.2] and [18, 3.0.1] for related arguments.

In Mn, let T, S be the <Mn
-least (δ0 + 1)-absolutely complementing trees

whose projections are not correctly ∆˜ 1
n+1, and η an Mn-indiscernible. Let M =

HullMn|η
ω (∅). We’ll show p[T ] is correctly ∆1

n+1(M) in Mn, a contradiction.

Let T̄ , S̄ be the collapses of T, S. So in M , Col(ω, δM0 ) forces “T̄ , S̄ project to
complements”. Let Σ be M ’s unique iteration strategy.

In V , define complementary sets AT , AS ⊆ R as follows. Let x ∈ AT iff there’s
a tree U on M via Σ, iU exists, and x ∈ p[iU (T̄ )]. Define AS likewise. Use
genericity iterations to see AT ∪ AS = R. To see AT ∩ AS = ∅: if y ∈ AT ∩ AS ,
witnessed by U ,W, compare their last models P,Q, and reach a contradiction as
in the last paragraph of the proof of [18, 3.0.1] (with N = M , Ψ = P , Γ = Q).

Now as in the comments preceding 3.5, AT and AS are Σ1
n+1(M). And if

x ∈ AT ∩Mn, as witnessed by U , then x ∈ p[T ]: argue like in the proof of “(a)
⇒ (b)” of Claim 1 of 3.2, with U ’s last model replacing Ūx. Likewise with AS .
So in Mn, p[T ] is correctly ∆1

n+1(M), as required.
Now we prove the converse. Consider first M1. In M1, if A is correctly ∆˜ 1

2,
then Shoenfield trees for A and its complement witness the (δ0 + 1)-universal
Baireness of A.

12In [15, 4.1], Steel gives another argument which can be used to prove 4.1 for odd n > 1.
This uses the homogeneous tree construction from [8].
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Now consider M2. If G is M2-generic for Col(ω, δM2
0 ), M2[G] computes (Π1

3)V

truth with its extender algebra at δM2
1 , as in 2.1(b). This leads to a tree T ∈M2

projecting to (Π1
3)V ∩M2[G] as follows. Let ϕ(u, v) be Σ1

2. Fix η > δM2
1 such

that M2|η |= ZF−. Let T be the tree building (x,N, π, g), where π : N → M2|η
is elementary, g is N -generic for Col(ω, δN0 ), and x ∈ RN [g], and

N [g] |= ∅
Bδ
N
1
ϕ(x, xδ

N
1 ).(10)

(See before Fact 2.1 for the notation.) Using genericity iterations one can show

p[T ] ∩M2[G] = {x ∈ RM2[G] | V |= ∀yϕ(x, y)}.

Now if A in M2 is (correctly) ∆˜ 1
3, then we get such trees for A and its com-

plement, so A is (δM2
0 + 1)-universally Baire in M2.

In M3, one defines a tree T such that in M3[G], T projects to (Σ1
4)V ∩M3[G]

(when G is M3-generic for Col(ω, δM3
0 )). Let ϕ(u, v, w) be Σ1

2 and η > δM3
2 such

that M3|η |= ZF−. The definition of T is as in the previous case, except that
“M3” replaces “M2”, “ϕ(u, v, w)” replaces “ϕ(u, v)”, and

N [g] |= ∃p1 ∈ Bδ
N
1

[
p1

Bδ
N
1

[
∅

Bδ
N
2
ϕ(x, xδ

N
1 , xδ

N
2 )
]]

(11)

replaces (10). One can check that this works.13 2

§5. Towers of measures on M1. In this section we extract a little more
from the proof of 3.2 in the n = 1 case. Here and in the next section, we use 2.4
implicitly, dispensing with the “J1”s. We also use some notation from §3.

Let P be a 1-small premouse, either proper class or with ρP1 = ω. Let T be a
normal iteration tree on P . Recall that T is maximal iff T has limit length and
L[M(T )] satisfies “δ(T ) is Woodin”, or the Q-structure Lγ [M(T )] is unsound,
or T has length λ+ 1 for some limit λ and T �λ is maximal. In the latter case,
note that iT exists and there is no normal extension of T .

5.1. Theorem. Suppose M1 satisfies “C is a countable set of measures”, µ
is a wellfounded tower on M1 and µn ∈ C for all n (possibly µ /∈M1). Then

(a) Ult(M1, µ) is fully iterable.
(b) The comparison between Ult(M1, µ) and M1 is non-maximal.
(c) If µ ∈ M1[G] for some M1-generic G, then M1[G] satisfies “there is a

countable non-maximal normal iteration tree T on L[E] and an embedding
ψ from Ult(L[E], µ) to T ’s last model”.

Proof. Because the statement of the theorem isn’t first order over M1, we

can’t reduce to a minimal counter-example. So let M = HullM1|η
ω ({C}) where η

is an M1-indiscernible. Let π : M →M1|η be the uncollapse and π“µ̄ = µ.

Claim 1. Ū = Ult(M, µ̄) is Π1
2-iterable.

13This method also provides a proof of 2.1(a) that avoids using the stationary tower. For
example, to prove that M3[G] is Σ1

4-correct, suppose b ∈ M3[G] and ∃y∀zϕ(b, y, z). Let

(b,N, π, g) ∈ M3[G] be a branch through T . Let p1 ∈ N [g] witness (11) and in M3[G], let h

be N [g]-generic for Bδ
N
1 with p1 ∈ h. Then y = (xδ

N
1 )h ∈M3[G] and ∀zϕ(b, y, z).
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Proof. The Shift Lemma gives an elementary

π′ : Ult(M, µ̄)→ Ult(M1|η, µ) = Ult(M1, µ)|iµ(η).

NowM1 satisfies “In V Col(ω,η), every countable elementary substructure of L[E]|η
is Π1

2-iterable”. Therefore the same thing holds in Ult(M1, µ) about iµ(η). But
if G is generic for Col(ω, iµ(η)), then Ult(M1, µ)[G] is Σ1

2-correct, so Ū is indeed
Π1

2-iterable. 2(Claim 1)

Let Σ be any ω1-iteration strategy for M . 14 By Claim 1 and the proof of the
n = 1 case of 3.2, there’s a successful comparison (T ,U) of M vs Ū , with T via
Σ, producing a common final model Q, and iT and iU exist.

Claim 2. iT = iU ◦ iµ̄.

Proof. Let π(A) = C and AQ = iT (A). It suffices to see AQ = iU (iµ̄(A)).

Let T = ThMω ({A}). We claim that 15 there is no B <Q AQ such that

ThQω ({B}) = T . Otherwise let V = T{B} be the finite support tree, with last
model R and % : R → Q given by 2.9. Let %(B′) = B. So there is a (unique)
elementary π′ : M → R such that π′(A) = B′. But by 2.9, %(iV(A)) = AQ,
so π′(A) <R iV(A). But a Dodd-Jensen argument shows this is impossible.
(Because V is finite, we just need M sufficiently iterable for this - it’s irrelevant
what properties Σ has.) 16

So iU (iµ̄(A)) ≥Q AQ. Assume it’s “>Q”. Let V1 on Ū be the finite support
tree U{AQ}. Then V1 ∈ Ū ; let n and V ′1 be such that V1 = j̄n,∞(V ′1). By [14, 4.8],

there is 17 a finite normal tree S on M , with final model MSk = Ult(M, µ̄n), and
no dropping on the main branch, and such that iS = iµ̄n . Let V = S ̂ V ′1. So V
is a stack of 2 finite normal trees, with base model M and last model MVk , and
there is a π : M →MVk with π(A) <MVk iV(A). Again a Dodd-Jensen argument

provides a contradiction. 2(Claim 2)

We now assume that Σ is the strategy given by lifting to M1 via π. (For this
reason, we didn’t assume the weak Dodd-Jensen property for Σ earlier.) Now
by 3.1 and Claim 2, Ult(M1, µ) embeds into the final model of πT . Also since

14See footnote 16.
15A direct argument shows there is no A1 <M A such that T = ThMω ({A1}): Since M =

DefMω ({A}), the existence of such an A1 would be coded into T , so we could define an infinite

decreasing sequence An+1 <M An. Nor is there any A1 > A definable from A and with the

same theory. For otherwise let A0 = A, and let An+1 be defined from An just as A1 is from
A0. Let γn be the least ordinal from which An is definable. Then γn+1 < γn for all n.

16This argument shows M has a unique ω1-iteration strategy. Given a tree T with “strate-
gic” branches b 6= c, T must be maximal. Use 3.8 to show that iTb 6= iTc and then use the proof
just given for a contradiction. However, this doesn’t seem to rule out the possibility of having

multiple embeddings from M to some iterate, if they’re not branch embeddings.
17For our use of S, it suffices to just show that M satisfies “For every measure λ, there’s a

finite normal tree S on me, with no dropping on the main branch, and l ∈ OR<ω , such that
λ is the measure derived from iS and l”. (Given this, if S has these properties with respect

to µ̄n, the rest of the proof goes through with slight adjustment.) If M thinks otherwise, then

M1 and N = HullM1
ω (∅) agree. But given a measure λ ∈ N generated by a ∈ (ORN )<ω ,

earlier arguments show Ult(N,λ) is iterable. Let (T ,U) be the successful comparison of N vs
Ult(N,λ), producing a common model Q. Then iT and iU exist, and the embeddings commute.

Let S be the finite support tree TiU (a) and l = %̄−1(iU (a)), where %̄ is as in 2.9. Then S, l
witness the truth of the statement in N , a contradiction.
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π : M → M1 is bounded in δM1 , πT is a non-maximal tree. If µ ∈ M1[G], then
everything has taken place there. This proves (a) and (c).

By (a), we have a successful comparison (T ,U) of M1 vs Ult(M1, µ). We now
show this is non-maximal. Let Q be the final model and b, c be the main branches
of T ,U respectively. Let ν(µ) be the sup of generators of µ. Then ν(µ) < δM1

since C is countable in M1. Now assume the trees are maximal. Then there’s a
least α ∈ c such that iU0,α“ν(µ) ⊆ crit(iUα,c). Let κ = crit(iUα,c). We will use the
hull property argument (cf [16, §4]). Let Γ be the class of uncountable cardinals.

So Γ is fixed point-wise by iT , iU , and iµ. Since δM1 ⊆ DefM1
ω (Γ), we have

MUα |δM
U
α ⊆ DefM

U
α

ω (Γ ∪ κ) ∼= DefQω (Γ ∪ κ),(12)

with iUα,c exhibiting the isomorphism. So P(κ)Q ⊆ HullQω (Γ∪κ), so as in [16, 4.3],
there’s no E used along b overlapping κ. So let β ∈ b be least such that κ ≤
crit(iTβ,b). Then (12) holds with “MTγ ” replacing “MUα ”, and this leads to MUα =

MTγ = Q, contradicting the choice of α. 2(Theorem 5.1)

The assumption of countability of the set of measures, or something like it, is
necessary for the preceding theorem, as the next example shows. For a premouse
R with a least Woodin δ, let PR be the δ-generated extender algebra of R at δ.

5.2. Example. There is an M1-generic G for PM1 and a µ ∈ M1[G], µ ⊆ M1,
such that µ is a tower on M1 and Ult(M1, µ) is wellfounded, but not iterable.
Moreover, µ may be taken to form an extender whose generators have ordertype
ω, and such that (M1||lh(µ), µ) is a sound mouse.

To see this, let E be the first total type 3 extender on EM1 . Let N1 be the final
model of the linear iteration T1 on M1 given by hitting E and its images δM1

times. Let T2 be the genericity iteration on N1 (which is above iT1(crit(E) + 1)),
making M1|δM1 ̂ 〈0, 0, 0, . . . 〉 generic for PP where P is the last model of T2. It
is a standard fact that T2 = T ′2 ̂ b is a maximal iteration, with T ′2 ∈ M1 and
b /∈M1, and the universe of P [M1|δM1 ] is that of M1.

Now T = T1 ̂ T ′2 ∈ M1 is a normal tree on M1, M(T ) ∈ M1, and P =
L(M(T )). Clearly ν(E) = (crit(E)++)P , lh(E) = (crit(E)+++)P , (P |lh(E), E) =
M1|lh(E) is a sound premouse, and in P , the least total type 3 extender on E
has critical point > crit(E). Moreover, Ult(P,E) is wellfounded since P ⊆ M1.
These and other facts (which we’ll add later) are forced by some iM1,P (p) in PP .

Let iM1,P (Ḟ ) be a name for E.

Now let H be M1-generic over PM1 with p ∈ H, and let F = ḞH . So
Ult(M1, F ) is wellfounded. We claim that Ult(M1, F ) is not iterable. Other-
wise, let (T ,U) be the successful comparison of M1 vs Ult(M1, F ), with final
model Q; iT and iU exist. Since E cohered P ’s sequence, we know F coheres
M1’s sequence below lh(F ), so the least difference between M1 and Ult(M1, F )
is ≥ lh(F ). But lh(F ) = (crit(F )+++)M1 is a cutpoint of M1 (the first ex-
tender overlapping lh(F ) would be total type 3, but crit(F ) < crit(E)). So

crit(iT ) > lh(F ). But M1 = HullM1
ω (Card), and all cardinals are fixed by iT , iU

and iM1

F . It follows that iT = iU ◦ iM1

F , so crit(iT ) ≤ crit(F ), a contradiction.
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Now (M1|lh(F ), F ) is a sound premouse, since this was true of (P |lh(E), E).
It is iterable because P [M1|δM1 ] has an embedding M1|lh(E) → iT (M1|lh(E)),
so M1[H] has an embedding (M1|lh(F ), F )→M1|lh(E). 18

§6. Homogeneously Suslin sets in 0¶ and Mω. In this section we turn to
some mice below, and some above, the Mn’s. Recall that 0¶ is the least active
mouse N such that N |crit(FN ) satisfies “there is a strong cardinal”. For mice
modelling ZFC in the region of 0¶ or below, we get an exact characterization of
homness.

6.1. Theorem. Let N |= ZFC be an (ω, ω1, ω1 + 1)-iterable mouse satisfying
“For all measurables κ and all µ < κ, µ is not strong to κ” (call this statement
ψ). Then in N , all homogeneously Suslin sets are Π˜ 1

1. Therefore 0¶ satisfies
“the homogeneously Suslin sets are precisely the Π˜ 1

1 sets”.

Proof. 19 This is essentially a corollary of the proof of 3.2 and the fact,
probably due to Jensen (cf [13, §0]) that below 0¶, every mouse is an iterate of
its core. We use notation like that in 3.1, 3.2 and their proofs, but “N” here
replaces “Mn” in 3.2. Let T be the <N -least contrary homogeneous tree and ν
be its <N -least homogeneity system. Here we don’t have indiscernibles, so let
η = (θ+)N where θ is sufficiently large and reflective. (E.g. T, ν ∈ N |θ and
N |θ 45 N .) In particular, θ is a limit cardinal of N , and N |θ is correct about
“hom”, etc. For all z ∈ RN , Ult(N, νz) is wellfounded iff Ult(N |θ, νz) is.

Now let M = HullN |ηω (∅) and π : M → N |η be elementary; note that M |= ψ
and T, ν ∈ rg(π). Let Σ be M ’s unique strategy (M could have proper segments
with Woodin cardinals); this is given by lifting to N |η. Let µ̄ ∈ N by a tower on
M , and µ = π“µ̄. By 3.1 and the proof of Claim 1 of 3.2, Ult(N,µ) is wellfounded
iff Ū = UMµ̄ is iterable in V . We will show that the statement “UMµ̄ is iterable”

is Π1
1(M), completing the proof.

For any µ̄ (maybe µ̄ /∈ N) such that Ū = UMµ̄ is iterable, let (T ,U) be the

comparison of M vs Ū . This produces a common last model Q, with non-
dropping main branches b, c, respectively. We claim U is trivial; i.e. Ū = Q.
(This is essentially Jensen’s fact, since the “core” of Ū is M . However, our mice
aren’t literally below 0¶.)

Suppose U is non-trivial. Let κ = crit(iU ). Then κ is measurable in Ū . Since
Ū |= ψ, no µ < κ is < κ-strong in Ū , or therefore in Q. So for all α, (∗) if
crit(ETα ) < κ then lh(ETα ) < κ. Now we get a contradiction via the definability
and hull properties: There is ETα used along b of which κ is a generator, since

κ /∈ DefQω (κ). By (∗), crit(ETα ) = κ. So if γ = T −pred(α+ 1) then

rg(iTγ,b) = DefQω (κ) ⊆ rg(iU ),

and P(κ)Ū = P(κ)Q = P(κ)M
T
γ . This leads to ETα being compatible with the

first extender used along c, a contradiction.

18In fact, iT (M1|lh(E)) is a linear iterate of M1|lh(E) by iterating its top extender. For if

κ = crit(E), then (κ+)M1 is the largest cardinal of M1|ν(E), and ν(E) has cofinality ω in M1.
Therefore this iteration uses the same functions to form ultrapowers as those used in forming

iT (M1|lh(E)).
19Thanks to the referee for questions leading to corrections to our original argument.



20 FARMER SCHLUTZENBERG

Now if T ′ is any normal tree on M with a non-dropping main branch, then
for every limit λ < lh(T ′), M(T ′ �λ) is the Q-structure for itself, since M |= ψ
and δ(T ′ � λ) is a cardinal of the last model of T ′. Therefore, any such tree is
via Σ. But Ū is iterable iff Ū is a non-dropping Σ-iterate of M , and the latter
condition is therefore Π1

1(M). 20 2

John Steel and Hugh Woodin observed that the arguments from earlier sections
adapt to Mω. The author then generalized this to certain tame mice. Recall
that a premouse N is tame iff for all active P �N , if crit(FP ) ≤ δ < ORP then
P 6|= “δ is Woodin”. We work with tame mice N |= ZFC + “I have a sufficiently
absolute iteration strategy for L[E]|ω1 which lifts well to segments of L[E]”.

6.2. Lemma. Let N be a tame premouse satisfying ZFC, “my levels satisfy
condensation” and “λ is a limit cardinal”. Let S ∈ N be a tree on ω × λ.
Suppose that whenever G is <λ-generic over N ,

N [G] |= “p[S] codes an (ω, ω1)-iteration strategy ΣS for N |ωN1 ”.

Suppose that for all α < ωN1 and θ ∈ ORN such that N |α = HullN |(θ
+)N

ω (∅), if
π : N |α→ N |(θ+)N is elementary, and if G is <λ-generic over N , then

N [G] |= “For any T on N |α via ΣS, the models of πT are wellfounded”.

Then in N , every hom set is λ-universally Baire. 21

Proof. We start by establishing some basic claims. The first is standard.

Claim 1. Let G be < λ-generic over N . Then N [G] satisfies “N |ωN1 is λ-
iterable, via a strategy extending ΣS”.

Proof. N [G] uniformly computes Σ
N [G][H]
S �N [G], for any <λ-generic H. 2

Claim 2. Let γ ∈ ORN , H ∈ HCN and π ∈ N be such that π : H → N |γ is
elementary. Let µ̄ ∈ N be a tower on H, such that µ = π“µ̄ is a wellfounded
tower on N . Then there is α < ωN1 and an elementary τ : Ult(H, µ̄) → N |α
with τ ∈ N .

Proof. Suppose not. Let (γ, π, µ̄) be the <N -least counterexample. Let

N |θ 45 N and η = (θ+)N . Let M = HullN |ηω (∅) and π′ : M → N |η be elemen-
tary. So (γ, π, µ̄) ∈ rg(π′), and by 2.4 and Σ1-condensation, J1(M) �N |ωN1 .

As in the proof of 3.2, there’s an elementary σ : Ult(H, µ̄) → N |γ with σ ∈
N |η, and we may take σ ∈ rg(π′). Let π′(γ̄) = γ. Since π′ fixes H, µ̄, in M
there’s

τ : Ult(H, µ̄)→M |γ̄ �M �N |ωN1 ,
with τ elementary, as required. 2

Now let θ, η,M and π be defined as in 6.1. The <N -least λ, S and homogeneity
system contrary to the theorem will be in rg(π). So to prove 3.2, it suffices to
find λ-absolutely complementing trees W , I (well, ill) in N , such that N satisfies
“p[W ] is the set of towers µ̄ on M such that Ult(N, π“µ̄) is wellfounded”.

20One clause of the condition is the assertion “Ū is wellfounded”, so it’s not Σ1
1(M).

21By “via ΣS” we mean via the canonical strategy induced by ΣS on N |α. By 2.4, J1(N |α)
projects to ω, so ΣS acts directly on J1(N |α), which amounts to acting directly on N |α anyway.
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Claim 3. Let µ ∈ N be a tower on M . The following are equivalent in N :

(i) Ult(N,µ) is wellfounded, where µ = π“µ̄;
(ii) Ult(M, µ̄) is λ-iterable;

(iii) there is a successful comparison (T ,U) of M vs Ult(M, µ̄), with T via ΣS.

Proof. For “(iii)⇒ (i)”: Our hypotheses ensure πT has wellfounded models.
So by 3.1, Ult(N |η, µ) is wellfounded, so Ult(N,µ) is also, by choice of θ. For
“(i) ⇒ (ii)” and “(ii) ⇒ (iii)”, use Claims 2 and 1. 2

The main idea for the remainder of the proof is similar to that used in [1,
2.1,2.8]; [1, 2.1] is attributed there to folklore.

Motivated by Claim 3, we define W such that whenever G is <λ-generic over
N , N [G] satisfies “For all towers µ̄ on M , µ̄ ∈ p[W ] iff condition (iii) of Claim
3 holds”. One uses S to define W with this property. We omit the details, but
they’re essentially contained in the definition of I below.

We will define I to be a tree of attempts to build (a) a tower µ̄, and (b) a proof
that there’s no comparison as in (iii) of Claim 3. To see what (b) should consist
of, assume that (T ,U) is a successful comparison of M vs Ū = Ult(M, µ̄). This
gives a common final model Q, and iT , iU exist. We will analyze branch choices
in U . We take T and U to be padded as usual. If γ < lh(U) is a limit ordinal,
we’ll say it’s an actual limit stage of U if U has non-padded stages cofinally in γ.
Let γ < lh(U) be an actual limit stage of U and δ = δ(U �γ). We now describe
how to identify [0, γ]U from T �γ + 1 and U �γ. There are two cases.

Case 1. δ is Woodin in MTγ .

Then U = (U � γ + 1) ̂ U ′, with U ′ a normal tree on MUγ , above δ. (So

both U � γ + 1 and U ′ have non-dropping main branches.) If Q = MUγ this is

immediate, and otherwise it follows from tameness: if γ′ ≥ γ and EUγ′ 6= ∅ then

δ is Woodin in MTγ′ |lh(EUγ′) = MUγ′ |lh(EUγ′), so crit(EUγ′) ≥ δ.
An analogous claim applies to T . Note δ is Woodin in Q also.
Now, whether or not γ is an actual limit stage of T , let α < γ be least such

that δ ∈ rg(iTα,γ), and let iTα,γ(δ̄) = δ. If α = 0 let ν = 0. Otherwise α = β + 1;

then let ν = ν(ETβ ). Either way ν is least such that MTα = HullM
T
α

ω (ν).

Let H = δ ∩ rg(iTα,γ). By the previous three paragraphs, H = δ ∩ DefRω (ν),

where R is any of the models MTγ , Q or MUγ . Note ν < δ̄ by tameness, and iTα,γ
is continuous at δ̄, since δ̄ is regular in MTα and MTα |= ZF−. Therefore H is
cofinal in δ.

Now if β ∈ [0, γ]U and crit(iUβ,γ) ≥ ν then H ⊆ rg(iUβ,γ). By 3.8 then, [0, γ]U is

the unique U �γ-cofinal branch b such that for some β ∈ b, H ⊆ rg(iUβ,b).
Note also that γ is an actual limit stage of T , since otherwise δ ⊆ H, but this

is impossible as δ 6⊆ rg(iUβ,γ) for any β <U γ.

Case 2. δ is not Woodin in MTγ .

Let MTγ |ξ�MTγ be the Q-structure for δ(U). Then MTγ |ξ�MUγ . (Otherwise,
use tameness as in Case 1 to show that (γ,Q]T drops, a contradiction.) So [0, γ]U
is the unique branch b through U �γ with MTγ |ξ �MUb . This completes Case 2.



22 FARMER SCHLUTZENBERG

Given a putative partial comparison (T ,U) of M vs Ū in N [G], we say (T ,U)
is via ΣS iff T is via ΣS , and U is formed according to the prescription given by
Cases 1 and 2, including that for any γ < lh(T ,U) which is an actual limit stage
of U , if [0, γ]T drops then δ(U �γ) is not Woodin in MTγ . 22

Now we define I. It is the tree on ω×η, building (µ̄, (P, σ, g, T ,U)), such that:

• µ̄ is a tower on M ,
• σ : P → N |η is elementary; let λP , SP = σ−1(λ, S),
• g is <λP -generic over P and µ̄ ∈ P [g],
• P [g] satisfies “(T ,U) is a countable putative partial comparison of M vs
Ū , via ΣSP , with no proper extension via ΣSP .”

We claim that W and I are λ-absolutely complementing. Let us first verify
that p[W ] ∩ p[I] = ∅; it suffices to do this in N . If µ̄ ∈ p[I] ∩ N , as witnessed
by P, σ, g, T ,U , then (T ,U) is via ΣS , since σ“SP ⊆ S. Moreover, b = ΣS(T ) ∈
P , so P has the tree R of attempts to build a U-cofinal branch c such that
(T ̂ b,U ̂ c) is via ΣS . (R refers to b, not to S.) So R is wellfounded in P , and
so also in N . So N has no such branch c. But a successful comparison via ΣS
would have to extend (T ,U), by the analysis above. So µ̄ /∈ p[W ], as required.

Now let G be <λ-generic and µ̄ ∈ N [G]; suppose µ̄ /∈ p[W ]∪ p[I]. Then N [G]

computes a partial comparison (T ,U) of M vs Ū , via ΣS , of length ω
N [G]
1 < λ.

Let b = Σ(T ); b ∈ N [G] as in Claim 1. By standard arguments, ω
N [G]
1 is the

critical point of an extender on the sequence of MTb , so by tameness, ω
N [G]
1 is

not Woodin in MTb . Let MTb |ξ ∈ N [G] be the Q-structure. If there is a U-cofinal
branch c such that MTb |ξ�MUc , then c ∈ N [G] by uniqueness and the homogene-

ity of Col(ω, ω
N [G]
1 ). But then (T ̂ b,U ̂ c) contradicts comparison termination

in N [G]. So there is no such c, which implies µ̄ ∈ p[I], a contradiction. 2

We can apply 6.2 to tame mice N with a limit cardinal λ, such that all <λ-
generic extensions N [G] correctly iterate N |ωN1 by choosing branches guided by
Q-structures built by an L[E] construction above G, below λ. For example:

6.3. Lemma. Let N be (a) Mω, (b) the sharp for a proper class of Woodins,
or (c) the least non-tame mouse. In cases (a), (b) let λ be the sup of the Woodins
in N . In case (c) let λ = crit(FN ). Then N,λ meet the requirements of 6.2.

Proof. The method is standard (cf. the proof of “(b) ⇒ (c)” of [18, 5.1]),
but (c) involves a slight variation, so we just sketch this case.

Let Γ be V ’s iteration strategy for N |ωN1 . Let κ = crit(FN ). N can compute
Γ�V Nκ , as follows. Let T ∈ N be a normal tree onN |ωN1 , of limit length< κ. We
inductively assume T is via Γ, and compute b = Γ(T ). Let 〈Nα〉 be the models of
the maximal fully backgrounded L[E] construction, as computed in N |κ, starting
with N0 = M(T ). Then there is some Nα such that the δ(T )-core 23 of Nα is a
Q-structure Q for M(T ), and moreover, if α is least such, then Q�MTb , which
uniquely identifies b. Here is an outline: Otherwise, let N∗ = iFN (Nκ)|ν(FN ),
and attempt to define a squashed premouse Rsq = (N∗, FN �N∗). Then [9, §11]

22The arguments given show that if there’s no successful comparison between M and Ū , for
any α there’s still at most one partial comparison (T ,U) of (M, Ū) via ΣS of length α.

23I.e. HullN
′

n+1(δ(T ) ∪ pN′n+1 ∪ uN
′

n ), where N ′ = Cn(Nα), and ρN
′

n+1 ≤ δ(T ) < ρN
′

n .
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shows that R is a premouse, and that ν(FN ) is Woodin in R, so R is non-tame. A
slight variation of [9, §12] shows R is iterable. Also R satisfies “δ(T ) is Woodin”
and M(T ) �R. Comparing R with MTb leads to a contradiction. 24

The foregoing generalizes to N [G] if G is N -generic for some P ∈ N |κ, using
L[E] constructions with critical points > rank(G).

One now defines a tree S on ω×κ in the usual way. (Have S build ((T , b), P, g),
where T is an iteration tree on N |ωN1 , P 4 N |κ, g is P -generic, T , b ∈ P [g],
and P [g] satisfies “T ̂ b is via Γ, verified by background constructions”. The
iterability of P [g] above rank(g) ensures the iterability of the Q-structures that
P [g] builds to verify T ̂ b (above the relevant δ’s). Therefore T ̂ b is via Γ.)

So in N [G], ΣS = Γ �HCN [G], as required. For the final hypothesis of 6.2, if

α is as there, ρ
N |α+ω
1 = ω by 2.4. So let M �N |ωN1 with ρ

J1(M)
1 = ω. Then Γ

follows the unique (0, ω1+1)-strategy for J1(M). So by 2.4, Γ induces the unique

(ω, ω1 + 1)-strategy for M . So if γ ∈ ORN and π : M → N |γ is elementary, Γ
induces the strategy induced by π. The final hypothesis of 6.2 follows. 2

6.4. Definition. Let Z ∈ P(R)Mω and z ∈ RMω . Then Z is correctly
(∆2

1(z))L(R) iff there is a (∆2
1(z))L(R) set Z ′ such that Z = Z ′ ∩Mω.

If z ∈ RMω , then by [20, 7.15], Mω can compute L(R) truth about z, and
therefore “correctly (∆2

1(z))L(R)” is definable over Mω, uniformly from only z.

Moreover, by [20, 7.20], if ϕ is Σ
L(R)
1 and L(R) |= ϕ(z), then L(R)Mω |= ϕ(z).

So 6.4 is a reasonable analogue of 1.1.
The following was observed by Steel and Woodin in the case of N = Mω; the

author then generalized this result to the other cases.

6.5. Theorem (Steel, Woodin, S.). Let N,λ be as in 6.3. In N , the classes
(a) homogeneously Suslin, and (b) <λ-homogeneously Suslin, coincide. If N =
Mω, these further coincide, in Mω, with the classes (c) δ0 + 1-universally Baire,
and (d) correctly (∆˜ 2

1)L(R).

Proof. By [6, 3.3.13], (b) coincides with (e) λ-universally Baire.
The preceding two lemmas show “(a) ⇒ (e)”, so we have “(a) ⇔ (b)”.
For “(c) ⇒ (d)” and “(d) ⇒ (e)”, combine the proofs of [20, 7.20] and 4.1,

using [20, 7.13]. 2

6.6. Lemma. Let N,λ, S satisfy the hypotheses of 6.2, other than the require-
ment that N be tame. Assume N has a Woodin cardinal. Then in N , every
δN0 -hom set is λ-universally Baire.

Proof. We may assume δN0 < λ. Let θ, η,M, π be as usual. We may assume

S, λ ∈ rg(π). Let η∗ = (η+)N and M∗ = HullN |η
∗

ω (∅) and π∗ : M∗ → N |η∗ be
elementary. Let ν ∈ rg(π) ∩ N |θ be a δ0-complete homogeneity system. In N ,
we will define λ-absolutely complementing trees W, I such that p[W ] = p[ν].

24For the case of G = ∅, an alternative, detailed proof, which gives more information, is

given in [14, 5.14]. The following generalizes that proof to G 6= ∅. We work in V . Fix a

sequence X = 〈xα〉α<ω1
, with xα a real coding α, and require of all x-certificates π : M → Vθ

that M be countable and X ∈ rg(π). This ensures that if N = Cω(NC
α) and ρ+ 1 is a cutpoint

of NC
α , then there’s a fixed NC

α -generic G for Col(ω, ρ) that’s in dom(π) for eventually all
N -certificates π. Then the proof of [14, 5.14] goes through with all trees T ∈ Nα[G].
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Let W be the tree on ω× η∗ building (x, P, τ, g, T , Q) such that τ : P → N |η∗
is elementary, g is <λP -generic over P , M∗ ∈ P , x ∈ RP [g], and P [g] satisfies
“T is a normal tree on M∗ via ΣSP , with last model Q, iT exists, x is Q-generic

for Q’s extender algebra at δQ0 , and Ult(Q, νQx ) is wellfounded” 25 . Let I be
defined in the same way, but replacing “wellfounded” with “illfounded”.

If G is < λ-generic over N , then clearly RN [G] ⊆ p[W ] ∪ p[I], since N [G]
successfully computes genericity iterations on M∗.

Let us verify that in N , p[W ] ⊆ p[ν] and p[I] ⊆ R − p[ν]. It will also follow
that in V , p[W ] ∩ [I] = ∅, so this will complete the proof. 26

Work in N . Let x ∈ p[I] (or x ∈ p[W ]), witnessed by (P, τ, g, T , Q). So
Ult(Q, νQx ) is illfounded (or wellfounded). As in 6.2, T is via ΣS , so π∗T has
wellfounded models. Since M∗, T are countable in N , there’s an elementary
σ : Q→ N |η∗, and σ ◦ iT = π∗.

Assume x ∈ p[I], so Ult(Q, νQx ) is illfounded. Note σ“νQx = νx, so Ult(Q, νQx )
embeds into Ult(N |η∗, νx), so the latter is illfounded. So x /∈ p[ν], as required.

Now assume x ∈ p[W ]. Note M ∈ Q and M = HullQ|η
Q

ω (∅). Let ν̄ =

νQ. By δQ0 -completeness, ν̄ extends to a homogeneity system ν̄+ of Q[x], and
Ult(Q[x], ν̄+

x ) = Ult(Q, ν̄x)[x]. Since x ∈ p[W ], these are wellfounded. Now

Ult(Q[x], ν̄+
x ) sees an embedding from Ū = Ult(M,νMx ) into i

Q[x]

ν̄+
x

(Q|ηQ). There-

fore in Q[x], Ū embeds into Q|ηQ. So in N , Ū embeds into σ(Q|ηQ). As in Claim
2 of 6.2, this implies that in N , Ū embeds into some N ′�N |ωN1 , so Ū is λ-iterable
in N . So as in Claim 3 of 6.2, Ult(N, νx) is wellfounded. So x ∈ p[ν]. 2

We can apply this, for example, to Mwlim (see [18, 3.5]).

6.7. Theorem. In Mwlim, every δ0-hom set is <λ-hom, where λ is the sup of
the Woodins.

Proof. The proof of “(b) ⇒ (c)” in [18, 5.1] shows 6.6 applies. 2

6.8. Question. In Mwlim, are all hom sets <λ-hom?
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