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Inference to the Best Explanation (IBE) is a form of uncertain inference in which one 
reasons to a hypothesis based upon the premise that it provides a better potential 
explanation of some given evidence than any other available, competing hypothesis. 
When inferring the best explanation, one regards the explanatoriness of a hypothesis 
as good reason to favor that hypothesis. In this way, IBE links the explanatory value of 
a hypothesis to its epistemic value.

Philosophers and psychologists alike emphasize the widespread use and intuitive 
appeal of IBE in human reasoning (Harman, 1965; Lipton, 2004; Keil, 2006; Lombrozo, 
2006; Douven, 2011; Douven and Schupbach, 2015b). In everyday affairs, people often 
reason to hypotheses based on their explanatory value; I might, for example, infer that 
my train has not yet come through the station because this hypothesis better explains the 
large number of people standing on the platform than any other plausible, competing 
hypothesis. And the applicability of IBE stretches far beyond the mundane. Scientists 
often infer to the best explanation; geologists may infer the occurrence of an earthquake 
millions of years ago because this event would, more than any other plausible hypothesis, 
explain various deformations in layers of bedrock. Court cases and forensic studies 
are decided to various degrees using IBE. This is true also of diagnostic procedures, 
whether performed by clinicians or auto mechanics. Philosophers themselves often rely 
on IBE when debating some of the most venerable topics in the history of philosophy.1 
In all of these cases across domains, people favor hypotheses on account of their ability 
to explain evidence.

1 To take a small but informative sample: In the philosophy of religion, several well-known arguments 
for and against the existence of God are instances of IBE (e.g., Swinburne, 2004, p. 20). Some epistemologists 
claim that IBE provides us with our best response to various forms of skepticism (e.g., Vogel, 1990). In the 
philosophy of science, arguments to the existence of unobservables as well as arguments for scientific progress 
generally have the form of IBE (e.g., Putnam, 1975 and Psillos, 1999). And the same can be said of debunking 
arguments in ethics, and arguments for realist positions in metaethics and metaphysics—witness Lewis’s 
(1986) central argument to possible worlds realism.
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Despite its ubiquity and apparent cogency, IBE has a stormy history. It is difficult to 
think of another form of inference that has been, at once, so heartily defended by its 
champions and disparaged by its critics. Harman (1965, p. 88) boldly claims that IBE is 
the “basic form of nondeductive inference,” having normative and conceptual priority 
over other forms of uncertain inference. Fumerton (1980) argues for the opposite claim 
that IBE is no more than an incomplete description of simpler forms of induction, 
having no independent epistemic merit. Van Fraassen (1989, pp. 142–3) famously 
offers the “bad lot” objection against IBE: IBE assumes without argument that the true 
hypothesis is likely to be one of the hypotheses under consideration. The upshot is that 
it can hardly be said to give us a reliable vehicle for inferring to conclusions that are 
more probably true.2

Of all the objections put to IBE, however, there is one that is most fundamental. The 
worry, expressed by the proponents and opponents of IBE alike, is that despite decades 
of serious philosophical investigation, the specific nature of IBE is still up for grabs. 
In the words of one of IBE’s foremost supporters (Lipton, 2004, p. 2), “[IBE] is more a 
slogan than an articulated philosophy.” This worry is of primary importance because it 
needs to be addressed before IBE’s more specific vices and virtues may be explored; 
who is to say whether Harman, Fumerton, van Fraassen, and others are correct in their 
evaluations of IBE so long as this inference form has no clear articulation?

This chapter, first of all, attempts to rectify this situation by specifying more precisely 
the nature of IBE. The most significant roadblock currently standing in the way of a 
clear account of IBE is our lack of understanding regarding the concept(s) of explana-
toriness. The key premise of any instance of IBE claims a difference in explanatoriness 
between available potential explanations. Yet, the notion of explanatoriness is ambiguous. 
Section 1 accordingly distinguishes one particular version of IBE by first explicating 
precisely one prevalent sense of explanatoriness.

This chapter is not merely interested in the clear articulation of IBE, however, but 
also in its evaluation. To this end, Section 2.1 argues that the specific version of IBE 
introduced in Section 1 is cogent, meaning that its premise always lends epistemic 
support to its conclusion. Section 2.2 goes further and defends, through a series of 
computer simulations, IBE as a respectably reliable mode of inductive inference (at 
least when compared to the somewhat less contentious case of Bayesian inference).

1. IBE, Cleaned Up
The key premise of any particular inference to the best explanation refers to a difference 
in explanatoriness—or explanatory goodness—between considered hypotheses. But 
explanatoriness is famously evaluated along different dimensions, corresponding to 

2 See (Schupbach, 2014) for a recent response to the bad lot objection. Douven and Schupbach (2015a) 
additionally offer a brief response to van Fraassen’s claim that IBE is a poor form of inference insofar as it 
commits the probabilistic, epistemic agent to diachronically incoherent updates.
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the various acclaimed explanatory virtues. Potential explanations may be prized 
for their great simplicity, unification, generality, power, or some combination of these 
(or other) virtues. One immediate consequence of this, often overlooked by IBE’s 
commentators, is that the nature of an inference to the best explanation will depend 
upon the notion of explanatoriness at work therein. As a general category, IBE is poly-
morphous. There are at least as many distinct forms of IBE as there are distinct senses 
in which a hypothesis may be judged more explanatory than others; Inference to the Most 
Unifying Potential Explanation, for example, differs (prima facie, quite substantially) 
from Inference to the Simplest Potential Explanation.3

This basic point gives rise to a concern for generalist accounts and evaluations of 
IBE (i.e., much of the extant work on IBE). Such accounts gloss over potentially crucial 
differences between versions of IBE, confounding any attempt to evaluate seriously 
any specific version—the normative upshot of Inference to the Most Unifying Potential 
Explanation plausibly differs from that of Inference to the Simplest Potential Explanation. 
Any careful articulation and evaluation of IBE must rather build upon a precise 
account of the notion of explanatoriness determining what it takes for a potential 
explanation to be best. In the remainder of this chapter, I heed this advice by focusing 
my sights on one particular acclaimed explanatory virtue and the corresponding version 
of IBE.4

1.1 Explanatoriness as power

Our aim is to distinguish a particular version of IBE by first explicating an important 
notion of explanatory goodness. The result will be more interesting to the extent that 
the notion of explanatory goodness we focus on is one that reasoners indeed have in 
mind on some of the occasions in which they infer best explanations. With that in 
mind, we take a cue from C. S. Peirce’s (1935, 5.189) description of explanatory inference 
(or “abduction”):

Long before I first classed abduction as an inference it was recognized by logicians that 
the operation of adopting an explanatory hypothesis—which is just what abduction is—was 
subject to certain conditions. Namely, the hypothesis cannot be admitted, even as a hypothesis, 
unless it be supposed that it would account for the facts or some of them. The form of inference, 
therefore, is this:

3 If one is a pluralist about the nature of explanation itself, then varieties of IBE may further multiply, 
with Inference to the Best Causal-Mechanical Explanation, for example, differing from Inference to the 
Best Covering Law Explanation, and so on. Whether these are differences that make a difference to 
the logic of IBE not already captured by the distinct notions of explanatoriness is an important question. 
Regardless, my focus in this chapter will be on one particular brand of IBE distinguished by a single 
explanatory virtue at work in its central premise.

4 None of this is meant to suggest that all precisely articulated notions of explanatoriness—and 
 corresponding species of IBE—will only refer to one explanatory virtue. Plausibly, many instances of IBE 
involve a notion of explanatoriness that effectively strikes a balance between several distinct virtues. Any 
informative evaluation of this brand of IBE must build upon a precise account of what these virtues are and 
how they are balanced.

0003175052.INDD   41 9/22/2017   6:46:14 AM



Dictionary: <Dictionary>

OUP UNCORRECTED PROOF – REVISES, 09/22/2017, SPi

42 JONAH N. SCHUPBACH

The surprising fact, C, is observed; 
But if A were true, C would be a matter of course; 
Hence, there is reason to suspect that A is true.

According to Peirce, an inference in which one adopts an explanatory hypothesis 
begins when a “surprising fact” calls out for explanation. A hypothesis is put forth 
then, which must render the surprising fact a “matter of course.” The key idea here is 
that a hypothesis explains some surprising fact well if it is able to render that fact 
unsurprising (i.e., expected). Let us call Peirce’s notion of explanatoriness, having to do 
with a hypothesis’s ability to make evidence unsurprising, “power.”

Reasoners often assess how explanatory a hypothesis is with respect to some evidence 
by gauging its power over that evidence (Schupbach and Sprenger, 2011, p. 108). Indeed, 
this particular notion of explanatoriness is so prevalent in instances of IBE that Peirce 
just seems to identify power with the general notion of explanatoriness in the above 
passage. While Peirce is surely wrong to suggest that we always adopt explanatory 
hypotheses on the basis of their power over explananda,5 it does seem that this virtue 
adequately describes the notion of explanatory goodness at work in many applications 
of IBE. Accordingly, we focus in the rest of this chapter on applications of IBE in which 
explanatoriness is evaluated purely as power.

To develop a precise explication of power, we start with Peirce’s idea that an explana-
tory hypothesis has power over some surprising explanandum if it is able to render that 
explanandum unsurprising. This thought naturally lends itself to a subtler condition for 
an explication of power: a hypothesis has power over a proposition to the extent that it 
makes that proposition less surprising—or more expected—than it otherwise was. So, a 
geologist will favor a prehistoric earthquake as a powerful explanation of certain observed 
deformations in layers of bedrock to the extent that deformations of that particular char-
acter, in that particular layer of bedrock, and so on would be less surprising given the 
occurrence of such an earthquake. This condition is not a mere restatement of Peirce’s 
idea. For one thing, given this condition, a hypothesis may provide a powerful explan-
ation of a surprising proposition and still not render it a matter of course in any sense; i.e., 
a hypothesis may make a proposition much less surprising while still not making it 
unsurprising. Additionally, this subtler condition does not suggest that a proposition 
must be surprising in order to be explained; a hypothesis may make a proposition much 
less surprising (or more expected) even if the latter is not so surprising to begin with.

This condition may be used to motivate further conditions for an account of power. 
First, just as (positive) power comes with a decrease in surprise, one might say that a 
hypothesis has “negative power” over some proposition to the extent that it makes that 
proposition more surprising. I would judge the hypothesis that my train has already 
come through the station to be a terrible explanation of the large number of people 

5 After all, sometimes we infer best explanations based on their having virtues best describable as 
monadic properties (as opposed to relational properties between these hypotheses and evidence), simplicity 
being the most obvious example.
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standing on the platform; this is because I know that the majority of people in the sta-
tion at this time of day are there to catch this particular train; my train typically leaves 
behind an empty platform. This hypothesis thus has negative power; if adopted, the 
crowd that I observe before me is even more surprising than it already was.

Given the above, a hypothesis lacks all (positive or negative) power whatever rela-
tive to some given explanandum if the latter is neither more nor less surprising in light 
of that hypothesis. The perceived motions of the planet Uranus are less surprising in 
light of the hypothesized existence of Neptune, but they are neither more nor less sur-
prising given that my train has not yet passed through the station. The latter hypothesis 
is simply impotent with respect to that explanandum.

Insofar as a hypothesis has power over a proposition to the extent that it renders the 
latter unsurprising, one might additionally conclude that a hypothesis provides a max-
imally powerful explanation of some proposition just when it would lead one to expect 
that proposition to be true with certainty; this occurs when the hypothesis implies the 
truth of that proposition. On the other hand, a minimally powerful explanation of 
some known proposition is one that renders the latter maximally surprising, and this 
occurs when the hypothesis implies that the proposition in question is false.

Finally, the less surprising a proposition’s truth is in light of a hypothesis, the more 
surprising is its falsity. Given the above, this means that the more power a hypothesis 
has over a proposition, the less it has over the negation of that proposition. To sum-
marize then, the intuitive starting point provided by Peirce can naturally be extended 
so that it provides the following compelling conditions for an explication of power:

Condition 1: A hypothesis has (positive) power over a proposition to the extent 
that it decreases the degree to which that proposition is surprising (i.e., increases 
the degree to which we expect that proposition to be true).
Condition 2: A hypothesis has negative power over a proposition to the extent 
that it increases the degree to which that proposition is surprising.
Condition 3: A hypothesis has no power over (i.e., is impotent with respect to) a 
proposition if and only if the latter is neither more nor less surprising in light of 
that hypothesis.
Condition 4: A hypothesis has maximal power over a proposition if and only if it 
leads us to expect with certainty that the proposition is true.
Condition 5: A hypothesis has minimal power over a proposition if and only if it 
leads us to expect with certainty that the proposition is false.
Condition 6: The more power a hypothesis has relative to a proposition, the less 
it has relative to the negation of that proposition.

1.2 The measure of power ℰ

The task of this section of the chapter will be to apply the above considerations in order 
to arrive at a precise explication of power. If one makes use of the probability calculus to 
clarify and interpret these conditions, then only one measure of power with a certain 
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desirable mathematical structure satisfies a subset of Conditions 1–6. Hence, the intuitions 
pertaining to power presented in the previous section already suffice to pin down a 
formal account of this concept. This account then clarifies, in the precise language 
of the probability theory, what it takes for a hypothesis to provide the best available 
explanation, when explanatoriness is evaluated purely in terms of power.

The key interpretive move of this section is to formalize a decrease in surprise 
(increase in expectedness) as an increase in probability. This move may seem dubious 
depending upon one’s interpretation of probability. Given a physical interpretation 
(e.g., a relative frequency or propensity interpretation), it would indeed be difficult to 
saddle such a psychological concept as surprise with a probabilistic account. However, 
when probabilities are themselves given a more psychological interpretation (whether 
in terms of simple degrees of belief or the more normative degrees of rational belief), 
this move makes sense. In this case, probabilities map neatly onto degrees of (rational) 
expectedness. Accordingly, given the inverse relation between surprise and expected-
ness (the more surprising a proposition, the less one expects it to be true), surprise is 
straightforwardly related to probabilities: the observation that h  decreases the degree 
to which e is surprising corresponds with the judgment that h  increases the degree to 
which e is expected, expressed probabilistically by the inequality Pr e Pr e h( )  ( | )< .6

As part of its “desirable mathematical structure” (which we specify exactly with two 
purely formal conditions of adequacy in the appendix), we require that the degree of 
power that hypothesis h  has over evidence e, E( ),e h,  be real-valued on the closed 
interval [ , ]−1 1 . In explanatory contexts, E( )e h, =1  (E ’s maximal value) is the value at 
which h  is interpreted as a maximally powerful potential explanation of e.  E( )e h, = −1  
indicates the minimal degree of power for h  relative to e,  where h  is interpreted as 
providing a maximally powerful potential explanation for e  being false. E( )e h, = 0  is 
the “neutral point” at which h  lacks any power relative to e  and its negation.

What are the corresponding formal conditions under which E  takes these values? 
Here is where Conditions 1–6 become relevant. As noted, E( , )e h  should take the value 
0 precisely when h  lacks any power relative to e (and e¬ ). Condition 3 specifies that 
this occurs if and only if e (and e¬ ) is neither more nor less surprising in light of h. 
Given the inverse relation between surprise and probability, this condition is explicated 
as  h  and e being statistically irrelevant to one another: Pr e h Pr e( | ) ( )= , or equivalently 
(remembering that Pr  is a regular probability measure and that e and h  are contingent 
propositions), Pr h e Pr h Pr e( ) ( ) ( )∧ = × .

CA1 (Neutrality): E( )e h, = 0  if and only if Pr h e Pr h Pr e( ) ( ) ( )∧ = × .

 E( , )e h  takes a maximum value of 1 if and only if h  is maximally powerful with 
respect to e. Condition 4 clarifies that such will be the case precisely when h  leads us to 

6 The background knowledge term k  always belongs to the right of the solidus “| ” in Bayesian for-
malizations (e.g., Pr e Pr e h k( | ) ( | )k < ∧  ). Nonetheless, here and in the remainder of this chapter, I leave k  
implicit in all formalizations for ease of exposition.
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expect with certainty that e is true. Such a notion is straightforwardly formalized with 
the equality Pr e h( | ) =1.

CA2 (Maximality): E( )e h, =1  if and only if Pr e h( | ) =1.

Condition 6 above requires that as the power of h  relative to e increases, that of h  
relative to e¬  decreases. When explanatoriness is assessed as power, this amounts 
to the idea that the more h  explains the truth of e, the less it explains its falsity. 
Maximality and Neutrality provide us with further rationale for this condition. 
Maximality tells us that E( )e h,  should be maximal only if Pr e h( | ) =1.  Importantly, 
in such a case, Pr e h( | )¬ = 0,  and this value intuitively corresponds to the point at 
which we should expect e,h( )¬E  to be minimal (see Condition 5 above). In other 
words, given Maximality,  we see that E( )e h,  takes its maximal value 1 precisely when 

e,h( )¬E  takes its minimal value –1  and vice versa. Also, we know from Neutrality  
that E( )e h,  and e,h( )¬E  should always equal zero at the same point given that 
Pr h e Pr h Pr e( ) ( ) ( )∧ = ×  if and only if Pr h e Pr h Pr e( ) ( ) ( )∧¬ = × ¬ .  These consider-
ations lead to the following requirement:

CA3 (Symmetry): e h e h( , ) – ( , )= ¬E E .

The final condition of adequacy appeals to a scenario in which degree of power is 
unaffected. If a hypothesis h2  is impotent with respect to another hypothesis h1 ,  to some 
proposition e, and to any logical combination of h1  and e, then Condition 3 tells us that it 
does nothing to increase or decrease the degree to which these are surprising. In such a 
case, conjoining h2  to h1  will do nothing to increase or decrease the degree to which e is 
surprising in light of h1.  Given Neutrality,  we can state this in other words: if h2  has no 
power whatever relative to e, h1 ,  or any logical combination of e and h1 ,  then its presence 
will not affect the overall power of h1  relative to e. This gives us the following condition:

CA4 (Irrelevant Conjunction): If Pr e h Pr e Pr h( ) ( ) ( )∧ = ×2 2  and Pr h h( )1 2∧ =  
Pr h Pr h( ) ( )1 2×  and Pr e h h Pr e h Pr h( ) ( ) ( )∧ ∧ = ∧ ×1 2 1 2 , then E E( ) ( )e h h e h, ,1 2 1∧ = .

These four adequacy conditions conjointly determine a unique measure of power as 
stated in the following theorem (proof in the appendix).7

7 Measure E  is structurally equivalent to Kemeny and Oppenheim’s (1952) measure of “factual support,” 

F h,e
Pr e h Pr e h
Pr e h Pr e h

( )
( | ) ( | )
( | ) ( | )

=
¬

+ ¬
−

,

which itself is ordinally equivalent to the log-likelihood measure of incremental confirmation 
L h,e Pr e e( ) log[ ( ) ( )]= ¬| / |h Pr h  (Good,  1983; Fitelson,  1999). The key difference between E  and these 

measures is in their interpretation and application; E( , )e h  is F h e( , )  with h  and e  interchanged. This dif-
ference is significant, as the conditions of adequacy used to motivate the measures differ. It is easy to verify 
that F  and L  at least fail to satisfy CA2 and CA3, making them unsuitable for measuring power—though 
both are among the most plausible measures of incremental confirmation. This is appropriate, since these 
conditions properly constrain measures of power, but they make little sense as constraints on measures of 
incremental confirmation.
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Theorem 1. The only measure with a desirable mathematical structure that satisfies 

CA1–CA4 is

 
Pr h e Pr h e

e h
Pr h e Pr h e

( | )– ( | )
( , )

( | ) ( | )
¬

=
+ ¬

E .

Note that this measure also satisfies the conditions from Section 1.1 that were not needed 
in order to prove Theorem 1. Conditions 1 and 2 require that power increases (decreases) 
as the degree to which e is surprising decreases (increases) in light of h.  Put more for-
mally, these conditions require that e,h( ) 0>E  to the extent that Pr e Pr e h( ) ( | )< .  These 
conditions are satisfied by ℰ given that e h( , ) 0>E  to the extent that Pr h e Pr h e( | ) ( | )> ¬ ,  
which in turn is true just to the extent that Pr e h Pr e( | ) ( )> . 8 Condition 5 requires that 
power is minimal if and only if e is certainly false in light of h.  This fact also follows 
necessarily from E  given that e h( , ) –1=E  if and only if Pr e h( | ) 0.= 9 Thus, these con-
ditions determine for us an intuitively well-grounded, unique measure of power.10

With E  in hand, we may formally articulate an important version of IBE. In cases 
where the premise that h  provides the best available potential explanation of the evi-
dence e can be restated as the claim that this hypothesis has more power over e than 
any competing hypothesis, we have that E E( , ) ( , )e h e hi>  for any and all of h’s explana-
tory competitors ih . The corresponding full version of IBE, which we can denote IBEp 
(“p” designating the notion of explanatoriness as power), has the following form:

>

∴

E Ep i ie h e
e

h ,   h   h

h

(IBE ) ( , ) ( , ) for any competing with

The question of whether or not this species of IBE is a cogent inference form is now 
more tractable. We investigate this question in the next section.

2. IBE, Made Respectable
The nature of IBE changes depending on the precise sense of explanatoriness at 
work in its central premise. And the evaluation of IBE naturally follows suit. Any 

8 This is easy to see in light of the fact that 

Pr h e Pr e h Pr e
Pr h e Pr e Pr e h

( | ) ( | ) 1– ( ) .
( | ) ( ) 1– ( | )

= ×
¬

9 e h( , ) –1=E  just in case e h Pr h e Pr h e( , ) – ( | ) / ( | )= ¬ ¬E . But this equality holds only if Pr h( ) 0≠  and 
Pr h e( | ) 0=  which implies that Pr e h( | ) 0= .

10 Alternative uniqueness theorems providing different axiomatic foundations for E  may be found in 
(Schupbach and Sprenger, 2011) and (Cohen, 2015). That E  can be defended via several distinct unique-
ness theorems helps alleviate the worry that our result is driven by a faulty condition of adequacy. 
Schupbach and Sprenger (2011) also provide further support for E via several theorems, which show 
that E  matches clear intuitions about power. E  gains yet another line of support as an accurate measure of 
(explanatory) power in Schupbach  (2011), where I show experimentally that E  is a good predictor of 
actual human judgments of explanatoriness.
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informative evaluation of IBE will attend to a precisely explicated species of IBE. 
Correspondingly, any attempt to evaluate (defend or criticize) IBE in general without 
first precisely articulating the version of IBE will be at least as confused as the general 
category of explanatoriness itself. Once different versions of IBE are disentangled, it 
may well turn out that some of these are epistemically defensible and others not. This 
will depend most obviously on whether the notion of explanatoriness at work in a par-
ticular version of IBE carries any genuine epistemic force.

This section evaluates IBEp, the version of IBE instantiated when explanatoriness 
is evaluated as power. The strategy is as follows: Section 2.1 first defends IBEp as 
cogent, arguing that there is a clear sense in which its premises always support 
its conclusion. Section 2.1 also suggests that IBEp is useful as an informal heuristic 
allowing us to approximate sound probabilistic reasoning. Section 2.2 thus asks just 
how reliable this inference form is when compared to Bayesian inference. It turns 
out that IBEp stacks up quite well. Indeed, under certain (arguably common) condi-
tions, IBEp provides a more reliable mode of inference than that based on sound 
probabilistic reasoning.

2.1 Some implications of power

As a first step toward evaluating IBEp, it is enlightening to spell out the probabilistic 
implications of a single hypothesis h  having positive power over evidence e, E( , )e h > 0 . 
Filling in the details of ,E  this judgment can be shown to have the following probabilistic 
consequences (where ‘⇔’ symbolizes interderivability):11

Pr h e Pr h e
Pr h e Pr h e

( | )– ( | ) 0
( | ) ( | )

¬
>

+ ¬

Pr( | ) Pr( | )h e h e⇔ > ¬

( | ) ( | )
( ) ( )

Pr e h Pr e h
Pr e Pr e

¬
⇔ >

¬

Pr e h Pr e h Pr e Pr e Pr e h Pr e( | )– ( | ) ( ) ( )– ( | ) ( )⇔ >

Pr e h Pr e( | ) ( )⇔ >

Pr e h Pr e h( | ) ( | )⇔ > ¬       (L)

⇔ >( | ) ( )Pr h e Pr h        (C)

(L) and (C) are especially interesting; these results tell us that positive power can be 
probabilistically represented using either a likelihood comparison or the notion of 
incremental confirmation, respectively. We will have more to say, in the rest of this 
section, about the likelihood comparisons indicated by certain explanatory judg-
ments. (C) reveals that, to the extent that a hypothesis is able to provide a powerful 
explanation of the evidence in question, that evidence confirms (raises the probability 

11 Recall that Pr  is a regular probability measure and that e and h  are contingent propositions.
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of) that hypothesis. This suggests a particular sense in which the judgment that a 
hypothesis is positively explanatory of the evidence does constitute a reason to favor 
that hypothesis.

IBEp’s central premise does not claim, however, that h  has positive power over e. 
Instead, it makes the comparative claim that  h offers a more powerful potential explan-
ation of e than does any competing hypothesis ih , ie h e,h( , ) ( ).>E E  Filling in the prob-
abilistic details of ,E  this explanatory judgment is explicated as follows:

i i

i i

Pr h e Pr h ePr h e Pr h e
Pr h e Pr h e Pr h e Pr h e

( | )– ( | )( | )– ( | )
( | ) ( | ) ( | ) ( | )

¬¬
>

+ ¬ + ¬

i

i

Pr h ePr h e
Pr h e Pr h e

( | )( | )
( | ) ( | )

⇔ >
¬ ¬

i

i

Pr e h Pr ePr e h Pr e
Pr e h Pr e Pr e h Pr e

( | ) ( )( | ) ( )
( | ) ( ) ( | ) ( )

¬¬
⇔ >

¬ ¬
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 thus reveals that, in multiple-hypothesis settings, the hypothesis that offers the 
most powerful potential explanation of some proposition will be the one that makes 
that proposition the most likely. In Bayesian terms, the hypothesis judged to provide 
the best explanation will have the greatest corresponding likelihood of any explanatory 
hypothesis considered. This result clarifies the nature of the reason that favors the most 
explanatory hypothesis over those that are explanatorily inferior. A hypothesis’s likeli-
hood (Pr e h( | )) is positively related to its overall probability in light of the evidence 
(Pr h e( | )), as can be seen via Bayes’s Theorem:

Pr h Pr e h
Pr h e

Pr e
( ) ( | )

( | )
( )

×
=

Holding all else constant, the greater a hypothesis’s corresponding likelihood, the 
greater its probability given e.

Furthermore, when comparing various hypotheses with respect to the same evi-
dence e (as in instances of IBE), Pr e( )  is the same regardless of which hypothesis one 
has in mind. Accordingly, we can say that if h offers the most powerful of the available 
potential explanations of e, then it is also the most probable hypothesis given e so long 
as it is at least as plausible as its competitors apart from considerations of e—i.e., so 
long as iPr h Pr h( ) ( )≥ , for all rival hypotheses ih . Of course, the most explanatory 
hypothesis may be less plausible apart from considerations of e as compared to other 
hypotheses; in this case, it is possible for h to provide the best explanation and not be 
the most probable available hypothesis overall. Nonetheless, it is also true that the 
power of h  over e may be greater than that of rival hypotheses to such an extent that it 

E
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overcomes the fact that Pr h( )  is comparatively low and makes it the case that h is the 
most probable competing hypothesis.

In general then, the judgment that a hypothesis provides the most powerful 
explanation of the evidence provides us with a good reason to favor that hypothesis. 
This is because comparative judgments of power bear witness to relative degrees of 
statistical relevance between e and considered hypotheses. The hypothesis with the 
greatest power over e corresponds to that which is the most statistically relevant to e, 
implying that this hypothesis has the greatest corresponding likelihood. A hypoth-
esis’s likelihood is positively related to its overall probability in light of the evidence. 
The judgment that a hypothesis provides the best available explanation of the evidence 
does therefore constitute reason to favor that hypothesis over its explanatory competi-
tors, because this judgment reflects probabilistic information that has a positive bearing 
on h’s overall probability in light of e. In this sense, IBEp is manifestly a cogent form of 
nondeductive inference.

At this point, it is important to bear in mind what a general defense of a nondeductive 
inference form can and cannot provide. Precisely in virtue of its nondeductive nature, 
such a form cannot fairly be criticized for not always guiding us from true premises to 
a true conclusion. Instead, the most that we can generally require of such an inference 
form is that, whenever we instantiate it, we do end up with premises that—in some 
way, to some extent—positively support the conclusion. The above claim that IBEp is 
cogent thus amounts to the claim that any inference to the most powerful explanation’s 
premises will provide positive support for the corresponding conclusion.12

2.2 What computers can teach us about IBE

The picture that arises out of the above defense of IBEp’s cogency is that considerations 
of power have epistemic value on account of the role they play in reflecting important 
probabilistic information. When a person recognizes that a hypothesis has the most 
power over the evidence, that person has taken account of a fact with probabilistic 
ramifications in favor of that hypothesis. In this way, IBEp enables us to account for 
relevant probabilistic information when reasoning without necessarily having explicit 
awareness of the individual probabilities involved or even any working knowledge 
of probability theory. The foregoing investigation into the epistemic implications of 
power thus sheds new light on Peter Lipton’s oft-repeated dictum that “explanatory 
loveliness is a guide to judgments of likeliness” (2004, p. 121).

12 Note that this is a far cry from claiming that the conclusion of any particular inference of this form is 
justified. Whether an inference form is cogent is determined at a general level—based upon whether there 
is a logical sense in which the sort of premises required by that form provide positive evidence for the sort 
of conclusion described. Whether a particular conclusion of an inference is justified, on the other hand, is 
not generally decidable. There must be at least some reason in favor of the conclusion of any particular 
instance of an inference form, if that form is cogent. However, other epistemic considerations may bear 
upon this conclusion in such a way that it is overall unjustified. Whether or not the conclusion of a particular 
such inference is justified is determined by the full epistemic details of one’s context; whether or not IBEp 
is a cogent form of inference is not determined by such contextually specific factors.
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IBEp describes a cogent inference form because the power of a hypothesis is a genuine 
epistemic virtue; all else being equal between competing hypotheses, the most powerful 
hypothesis will also be the most probable. But all else is seldom equal in real life. 
Consequently, in contexts where people typically make inferences to the most powerful 
explanations, it might be that, despite its cogency, this inference form is not very useful; 
though considerations of power reflect important probabilistic information in such 
contexts, IBEp may commonly misguide us because of the probabilistic information 
that these considerations ignore (viz., prior probabilities). Just how useful IBEp is 
depends inter alia on its potential for guiding us to true hypotheses despite selectively 
attending only to some of the relevant probabilistic information.

In this section, I use computer simulations—based closely upon those devised and 
reported by Glass (2012)—to model and compare the performance of IBEp versus 
probabilistic reasoning for the sorts of everyday contexts in which people are inclined 
to infer most powerful explanations. The general methodology that these simulations 
employ is summarized in the following steps:

1. For each of a specified number n of competing (mutually exclusive) explanatory 
hypotheses, assign values of the prior probabilities ( iPr h( )) and likelihoods 
( iPr e h( | )). Priors and likelihoods are drawn randomly from a normal and uni-
form distribution, respectively (see discussion below for more details).

2. Using weights corresponding to the respective values of iPr h( ) , randomly select 
the “true” hypothesis jh  from nh ,h , ,h1 2 … . Each ih  has a iPr h( )  chance of being 
selected.

3. Using the value of jPr e h( | )  (the likelihood associated with the true hypoth-
esis), check whether e “occurs.” If e occurs, continue with steps 4–6; otherwise, 
end this iteration.

4. Check which of the n hypotheses has the greatest power; i.e., find kh  where 
k ie,h e,h( ) ( )>E E  for all i k≠ .

5. Check which of the n hypotheses is the most probable in light of e; i.e., find lh  
where l iPr h e Pr h e( | ) ( | )>  for all i l≠ .

6. If k jh h= , count this as a case where the most explanatory hypothesis matches 
the true hypothesis; if l jh h= , count this as a case where the most probable 
hypothesis matches the true hypothesis.

Steps 1–6 constitute one iteration of the simulation. After a large number of repeated 
iterations, the simulation provides estimates of how often the hypothesis with the greatest 
power (relative to e) corresponds to the true hypothesis and how often the hypothesis 
with the greatest probability (conditional on e) corresponds to the true hypothesis. In 
either case, this is calculated as the number of times that one gets such a match divided 
by the number of instances in which e occurs.

The goal is for this procedure to model real-world contexts in which people are 
inclined to infer most powerful explanations, and thereby to give us an estimate of 
IBEp’s average, actual accuracy in such contexts. Whether one is able to accomplish 
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this end (and precisely which real-world contexts are modeled) is contingent upon 
several assumptions built into the simulation. Two important decisions in particu-
lar constrain the model’s proper application: (1) whether one includes a “catch-all” 
hypothesis, and (2) how exactly one assigns prior probabilities (values of iPr h( )) to 
the hypotheses.

Regarding (1), in general, if explanatory hypotheses h1  through nh  are not only 
assumed to be mutually exclusive but also jointly exhaustive, then one’s model will rep-
resent a situation in which it is known that one of these competing hypotheses must be 
true. In such a case, there is no need to include a “catch-all” hypothesis to represent all 
unimagined hypotheses. To take a simple example, one might be interested in inferring 
whether a particular coin is fair or biased by examining how well these respective 
hypotheses explain a series of observed coin flips. Given that the coin must either be 
fair or biased, there is no room to include a third, catch-all hypothesis.

However, there are many contexts in which it is not known with certainty that one of 
the considered hypotheses is true. In order to represent this scenario, a model must 
include a catch-all hypothesis. Within the above simulation procedure, a catch-all 
hypothesis can be chosen as the true hypothesis jh  in step 2, but it cannot be chosen as 
the most explanatory ( kh  in step 4) or probable ( lh  in step 5) of the available competing 
hypotheses for the simple reason that it is not considered by—and therefore not 
available to—the reasoner.

Decisions pertaining to (2) are more difficult. How should one go about assigning 
prior probabilities to the explanatory hypotheses in these simulations if the goal is to 
model contexts in which people are inclined to infer most powerful explanations? Such 
probabilities must always sum to one,13 but is there more to say than this? At least the 
following seems clear: the set of hypotheses reasoners are willing to entertain in such 
contexts will be determined in part by how plausible those hypotheses are to begin with. 
When faced with evidence in need of explanation, a person may be able to conjure up 
any number of alternative, explanatory hypotheses having various degrees of power 
over that evidence. But the fact that a given hypothesis is conjurable and powerful is not 
enough to place that hypothesis within the ranks of those that a reasoner is willing to 
infer. No matter how well I think that an ancient extraterrestrial visitation, for example, 
would explain the patterned deformations that I observe in layers of bedrock, I will not 
consider this hypothesis when inferring the best explanation. This is because, to my 
mind, that hypothesis is so implausible to begin with that it’s not worth consideration. 
By contrast, insofar as someone believes that the extraterrestrial hypothesis is plausible, 
that person will find it appropriate to consider for potential inference.

This is particularly true when reasoners are inclined to rest all inferential weight on 
considerations of power. In such cases, considerations of prior plausibility are neglected. 

13 This is true in either case regarding decisions about (1). If no catch-all hypothesis is required, then h1  
through nh  are mutually exclusive and jointly exhaustive, their prior probabilities thus necessarily sum-
ming to one. If a catch-all is required, then h1 through nh  plus the catch-all hypothesis are mutually exclusive 
and jointly exhaustive, with prior probabilities thus summing to one.
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But people are not inclined to neglect such considerations when they weigh heavily for 
or against considered hypotheses. That is, it is plausible to think that people only allow 
power alone to do the inferential heavy lifting in cases where there is no substantial 
difference in prior plausibility that also weighs in favor of one of the hypotheses.

The upshot is that the hypotheses considered when people infer most powerful 
explanations will all typically be comparably plausible (though they might all have low 
probability—e.g., if there are a sufficiently large number of mutually exclusive hypotheses 
to consider). For the sake of modeling the usual IBEp context, then, the prior probabilities 
of the considered hypotheses are chosen in such a way that they tend to be closer in 
value to one another. This is only enforced for the considered hypotheses though; when 
a catch-all hypothesis is included in a simulated context, the prior probability of 
this catch-all hypothesis is allowed to stray from the values of the prior probabilities 
corresponding to the considered hypotheses.14

This basic simulation design was run for two distinct scenarios corresponding to the 
choice of whether or not to include a catch-all hypothesis. Within each of these 
two scenarios, a specific simulation was run for a particular number n of competing 
explanatory hypotheses (n ranging from 2 to 10). Any individual simulation included 
1 million repetitions to secure accuracy.

Results are shown in Figures 4.1 and 4.2. For a given number of hypotheses, these 
figures display the percentage of cases in which the most powerful hypothesis is true as 

14 This is achieved by sampling prior probabilities randomly from a normal distribution ( 0.5=µ , 
0.15=σ ), choosing the prior probability of the catch-all randomly from a uniform distribution between 0 

and 1, and then renormalizing so that the probabilities sum to 1.
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compared to the percentage of cases in which the most probable hypothesis is true. For 
reference, the percentage accuracies of a random guess (“chance”) from the lot of avail-
able hypotheses is also displayed. Figure 4.1 shows these results for contexts that do not 
include a catch-all hypothesis, while Figure 4.2 shows the results corresponding to 
contexts that do.

Both figures reveal that percentage accuracies decrease as the number of hypoth-
eses increases. This validates the intuitive idea that as the number of competing 
hypotheses increases, so does the number of ways in which one’s inferred conclusion 
could go wrong. Hence, accuracy decreases when there are more hypotheses to 
which one can infer. Note, however, that IBEp and probabilistic reasoning are both 
unsurprisingly much more accurate in contexts with no catch-all hypothesis. This 
fact allows us to clarify one sense in which increasing the number of considered 
hypotheses could actually increase the respective accuracies of these inference rules. 
Each new hypothesis added to the lot of those considered decreases the probability 
of (i.e., the need for) a catch-all hypothesis; each such addition brings us a step closer 
to the special case where our considered hypotheses partition the space of possibil-
ities, leaving the catch-all with zero probability. And as one moves closer to a context 
in which there is no space left for a catch-all in this way, the result may be an overall 
increase in accuracy. Thus, comparing Figures 4.1 and 4.2, the addition of an explanatory 
hypothesis that exhausts the remaining possibility space (so that there is no longer 
any need for a catch-all hypothesis) slightly improves the average accuracy of IBEp 
and probabilistic reasoning in all cases.
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Figure 4.2 Percentage accuracies in contexts that include a catch-all.
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As can be seen from Figures 4.1 and 4.2, IBEp approximates probabilistic reasoning 
very well indeed, the average accuracy of the former being consistently only slightly 
less than that of the latter. More specifically, both in contexts that do and those that do 
not include a catch-all hypothesis, IBEp’s accuracy is consistently, on average, only 
about 3 per cent below that of probabilistic reasoning. To compare IBEp’s reliability to 
that of probabilistic reasoning more directly, we can calculate its relative percentage 
accuracy (i.e., the percentage accuracy of IBEp divided by that of probabilistic reasoning). 
These results are displayed in Table 4.1. Again, the results suggest that IBEp’s reliability 
is not much worse than that of probabilistic reasoning. Whether or not a context includes 
a catch-all, IBEp identifies the true hypothesis about 90 percent as often as probabilistic 
reasoning—averaging over the simulated contexts.

Thus far, our results suggest that IBEp’s epistemic import is parasitic upon Bayesianism’s. 
IBEp is cogent insofar as it gives us an informal handle on some, but not all, of the prob-
abilistic information needed for Bayesian inference, and it is useful because it is nearly 
as reliable as the latter (and much more reliable than chance). Practically speaking, we 
might point out that IBEp seems eminently more useful to human reasoners than 
Bayesian inference insofar as it serves reasoners who are, for whatever reason, not able 
to apply probabilistic reasoning directly; still, if this is right, IBEp may be thought 
merely heuristically useful as a poor man’s Bayesianism.

However, the above simulations incorporate an unrealistic, simplifying assumption 
that gives Bayesianism a substantial advantage. Specifically, these assume that an agent’s 
prior probabilities perfectly match the objective chances of the various hypotheses 
being true. Thus, ih ’s chance of being selected as the true hypothesis in any iteration of 
the simulation is determined straightforwardly by the value of ( )iPr h . Relaxing this 
assumption by allowing agents to have inaccurate priors accordingly results in 
Bayesian reasoning having a worse reliability. By contrast, IBEp neglects priors and 
ultimately puts all inferential weight on likelihood comparisons. And so, relaxing this 
assumption has no effect on IBEp’s reliability. The predicted upshot is that, as an agent’s 

Table 4.1 Relative percentage accuracies of 
IBEp (percentage accuracy of IBEp/percentage 
accuracy of probabilistic reasoning).

n No catch-all Catch-all

2 0.9639 0.9642
3 0.9398 0.9409
4 0.9174 0.9205
5 0.9024 0.9000
6 0.8882 0.8881
7 0.8772 0.8800
8 0.8711 0.8646
9 0.8584 0.8571
10 0.8505 0.8462
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priors are allowed, on the average, to diverge from objective chances, IBEp may become 
more reliable than probabilistic reasoning.

This is easily verified by complicating the above simulations as follows. Steps 1–3 
remain the same, although the “prior probabilities” referred to in those steps are 
now interpreted as the objective chances that the various hypotheses are true. After 
these initial steps, each prior is calculated by adding to the corresponding chance 
the value of a normally distributed random variable with mean 0 and specified 
standard deviation (and then renormalizing to ensure that they sum to 1). This 
standard deviation explicates the average error of the agent’s prior probabilities. 
While the true hypothesis (and whether e occurs) is determined on the basis of 
the objective chances, the remaining steps calculate greatest power and posterior 
probability using the (erroneous) prior probabilities.

The above predictions are verified in the results of all variations—average accuracies 
for the specific case where n 2= , for standard deviations varying from 0.05 to 0.50, 
are shown in Figures 4.3 and 4.4. Both in contexts that do and those that do not include 
a catch-all hypothesis, the average reliability of probabilistic reasoning dips below that 
of IBEp already with rather modest allowances for error in the priors—though it never 
dips below that of chance.

3. Conclusions
Past work on the nature and value of IBE largely treats this inference form as one 
unified category. However, once one remembers that explanatory goodness is evaluated 
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on distinct dimensions that can (and often do) vary from case to case, this generalist 
perspective looks dubious and misleading. Different versions of IBE can be distinguished 
by the notions of explanatoriness at work in their respective central premises. And 
these are differences that plausibly matter a great deal to IBE’s normative evaluation. 
Depending on how explanatory goodness is evaluated, IBE may or may not describe a 
respectable form of uncertain inference.

In Section 1 of this chapter, I put forward a Bayesian explication of one specific sense 
of explanatory goodness, and I articulated precisely the corresponding version of IBE. 
Then, in Section 2, I defended this version of IBE as inductively cogent and respectably 
reliable (at least when compared to Bayesian reasoning). At the start of his most well-
known attack on IBE, van Fraassen (1989, p. 131) writes, “As long as [IBE] is left vague, 
it seems to fit much rational activity. But when we scrutinize its credentials, we find it 
seriously wanting.” This chapter demonstrates, to the contrary, that once we clearly 
articulate the nature of IBE via an explication of explanatoriness, this inference form 
can gain a sound new defense.

Appendix A: Uniqueness of ℰ
The mathematical structure that we require of our explicatum is specified in the 
following two formal conditions of adequacy:

Normality. For any probability space (Ω, A, Pr(·))—where Pr  is a regular probability 
measure—E  is a measurable function from two contingent propositions ,e h∈ A  to a real 
number e h( , ) [–1,1]∈E .
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Structure. E  is the ratio of two functions of Pr e h( )∧ , Pr e h( )¬ ∧ , Pr e h( )∧¬  and 
Pr e h( )¬ ∧¬ , each of which are homogenous in their arguments to degree k 1≥ , 
where k  is the smallest integer permitted by Normality  and CA1–CA4.15

These conditions require that e h( , )E  be probabilistic in nature and simple in a well-
defined sense.

Theorem 1.16 The only measure that satisfies Normality, Structure, and CA1–CA4 is

Pr h e Pr h ee h
Pr h e Pr h e

( | )– ( | )( , ) .
( | ) ( | )

¬
=

+ ¬
E

Notation. Let x Pr e h( )= ∧ , y Pr e h( )= ∧¬ , z Pr e h( )= ¬ ∧  and t Pr e h( )= ¬ ∧¬  
with x y z t 1+ + + = . Then, by Structure, e h( , )E  has the form

n

d

f x, y,z ,t
f x ,y,z ,t

f x, y,z ,t
( )

( ) ,
( )

=

where nf x y z t( , , , )  and df x ,y,z ,t( )  are homogeneous in their arguments to the same 
least degree k 1≥ .

Lemma 1. There is no f  with n df f,  of degree 1 that satisfies Normality, Structure , 
and CA1–CA4; i.e., k 1≠ .
Proof. Let k 1= . Then nf x y z t( , , , )  has the form ax by cz dt+ + +  ( a b c, , , and d  are 
coefficients). By CA1, f x y z t( , , , ) 0=  (and so ax by cz dt 0+ + + = ) if and only if 
x Pr h e Pr h Pr e x z x y( ) ( ) ( ) ( )( )= ∧ = × = + + . Now we can show that this bicondi-
tional cannot be generally satisfied by locating four different parameter settings of 

x y z t( , , , )  that each satisfy x x z x y( )( )= + +  but across which there are no (non-
zero) coefficients that satisfy ax by cz dt 0+ + + = . The following four parameter 
settings suffice: (1/2, 1/4, 1/6, 1/12), (1/2, 1/3, 1/10, 1/15), (1/2, 3/8, 1/14, 3/56), and 
(1/4, 1/4, 1/4, 1/4). Since these vectors are linearly independent (i.e., their span has 
dimension 4), the only way to satisfy ax by cz dt 0+ + + =  across these cases is if 
a b c d 0= = = = . QED.
Lemma 2. CA4 entails that for any value of (0,1)∈β ,

15 A function is homogenous to degree k  iff multiplying its arguments all by the same factor c  multiplies 
its value by kc . The homogeneity requirement ensures that the functional form of E itself does not 
determine which of the terms (Pr e h( )∧ , Pr e h( )¬ ∧ , Pr e h( )∧¬ , Pr e h( )¬ ∧¬ ) should have more weight. 
Representing E  as the ratio of two functions serves the purpose of normalization. Pr e h( )∧ , Pr e h( )¬ ∧ , 

( ),Pr e h∧¬  and ( )Pr e h¬ ∧¬  fully determine the probability distribution over the truth-functional com-
pounds of e  and h , so it is appropriate to represent E  as a function of them. Finally, the requirement that E  be 
the ratio of two functions, each having “the least possible degree 1k ≥ ,” reflects a minimal and well-defined 
simplicity assumption akin to those advocated by Carnap (1950, chapter 1) and Kemeny and Oppenheim 
(1952, p. 315). Any reader skeptical of simplicity’s place in these conditions of adequacy is referred to 
(Schupbach and Sprenger, 2011), which contains an alternative uniqueness proof from different conditions of 
adequacy (not including Structure).

16 This theorem and its proof are closely related to, and were inspired by, Kemeny and Oppenheim’s 
(1952) discussion and proof of their Theorem 17.
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 ( , , , ) ( , (1– ) , , (1– ) ).f x y z t f x y x z t z= + +β β β β  (1)

Proof. This lemma is a consequence of CA4, which describes conditions 
under which degrees of power must be the same. For any x y z t, , , [0,1]∈  such that 

1x y z t+ + + = , allow that there could be an  e  and 1h  such that x Pr e h1( )= ∧ , 
y Pr e h z Pr e h1 1( ), ( ),= ∧¬ = ¬ ∧  and 1( )t Pr e h= ¬ ∧¬ . For any  β , allow that there 

may be an 2h  that satisfies the antecedent conditions of CA4 and such  that 
2( )Pr h = β .17

With regards to such an 1, ,e h  and 2h , CA4 requires that 1 2 1( , ) ( , )e h h E e h∧ =E . We 
can show that this is equivalent to (1) by establishing the following:

1 2( ( ))x Pr e h h= ∧ ∧β

1 2( ( ))z Pr e h h= ¬ ∧ ∧β
y x Pr e h h1 2(1– ) ( ( ))+ = ∧¬ ∧β

t z Pr e h h1 2(1– ) ( ( )).+ = ¬ ∧¬ ∧β

These equations are demonstrated straightforwardly, making use of the ante-
cedent conditions of CA4. For example, these require that Pr e h h1 2( ( ))∧ ∧ =
Pr h Pr e h x2 1( ) ( )∧ = β  (establishing the first equation above). This condition entails 
that Pr e h h1 2( )∧ ∧¬ =  Pr h Pr e h2 1( () ),¬ ∧  allowing us to demonstrate the second 
equation:

Pr e h h Pr e h e h1 2 1 2( ( )) [( ) ( )]∧¬ ∧ = ∧¬ ∨ ∧¬  

Pr e h Pr e h Pr e h h1 2 1 2( ) ( )– ( )= ∧¬ + ∧¬ ∧¬ ∧¬

Pr e h Pr e h h1 1 2( ) ( )= ∧¬ + ∧ ∧¬

Pr e h Pr h Pr e h y x1 2 1( ) ( ) ( ) (1– )= ∧¬ + ¬ ∧ = + β

The other two equations are demonstrated mutatis mutandis. QED.

Proof of Theorem 1 (Uniqueness of E ). Lemma 1 shows that there are no nf , df  of degree 
1 that satisfy our desiderata. Here, I show that there is exactly one ratio of such functions of 
degree k 2= , which completes the proof (given the formal requirements set out in Structure ). 
If k 2= , f x y z t( , , , )  takes the form

 n

d

f x y z t ax bxy cy dxz eyz gz ixt jyt rzt st
f x y z t ax bxy cy dxz eyz gz ixt jyt rzt st

2 2 2 2

2 2 2 2

( , , , )
.

( , , , )
+ + + + + + + + +

=
+ + + + + + + + +

 (2)

As previously noted, CA1 tells us that f ’s numerator has to be zero if and only if 
x x y x z( )( )= + + . Making use of x y z t 1+ + + = , we conclude that this is the case if 
and only if:

17 In Bayesian terms, this amounts to allowing that an agent could have credences x y z, , ,  and t  in the 
corresponding conjunctions and β in a proposition that is statistically independent of e h1, , and e h1∧ . More 
generally, it amounts to not restricting the sorts of probability spaces to which E  might apply.
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x x y x z x x xy xz yz2–( )( ) – – – –+ + =

x x y z yz(1– – – )–=

xt yz– 0.= =

The obvious way to satisfy CA1 (i.e., to ensure that ( , , , ) 0nf x y z t =  iff xt yz– 0= ) is 
to set e i–=  and all other coefficients (but i ) in the numerator to zero. That this is 
the  only way to satisfy CA1 is a straightforward consequence of Hilbert’s 
Nullstellensatz—a fundamental theorem in and to algebraic geometry. In this  context, 
the Nullstellensatz says that, given that the two polynomials ax bxy cy2 2+ + +  
dxz eyz gz ixt jyt rzt st2 2+ + + + + +  and xt yz–  have exactly the same zeros, they are 
constant multiples of each other. Accordingly, f  can be reduced to

i xt yzf x y z t
ax bxy cy dxz eyz gz ixt jyt rzt st2 2 2 2

( – )( , , , ) .=
+ + + + + + + + +

Turning now to the denominator, CA2 requires that f x y z t( , , , ) 1=  iff Pr e h( | ) =
Pr e h Pr h x x z( ) / ( ) / ( ) 1∧ = + = . Thus, if =z 0 , =f x y z t( , , , ) 1 . Accordingly, for any 
case in which = =y z 0 , CA2 yields = = + +f x t ixt ax ixt st2 2( ,0,0, ) 1 / ( ), and by a 
comparison of coefficients, we get = =a s 0  and =i i . CA3 ( = ¬E Ee h e h( , ) – ( , )) is 
equivalent to

 =f x y z t f z t x y( , , , ) – ( , , , ).  (3)

Combining (3) with CA2, we have = = = + +f x t f t x ixt ct ext gx2 2( ,0,0, ) 1 – (0, , ,0) / ( ). 
Comparing coefficients again, we obtain = =c g 0  and =e i , reducing f  to

=
+ + + + +

i xt yzf x y z t
bxy dxz i xt yz jyt rzt

( – )( , , , ) .
( )

Assume now that ≠j 0 . Let →x z, 0. We know by CA2 that in this case, →f 1. 
Since the numerator vanishes, the denominator must vanish too, but by ≠j 0  it stays 
bounded away from zero, leading to a contradiction ( →f 0). Hence =j 0 . In a similar 
vein, we can argue for =b 0  by letting →z t, 0  and for =r 0  by letting →x y, 0 —
making use of (3) again: = f z t–1 (0,0, , ).

Thus, letting α = d i/ , f  can be written as

=
+ +

i xt yzf x y z t
dxz i xt yz

( – )( , , , )
( )

 
α

=
+ +
xt yz

xt yz xz
( – ) .

( )
 (4)

To fix the value of α , we make use of CA4, which requires =f x, y,z , t( )
β β β β+ +f x, y x, z ,t z( (1– ) (1– ) )—see Lemma 2, equation (1). Applying this con-

straint to (4), we obtain
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β β β β
α β β β β β

β αβ

+ +
=

+ + + + + +

=
+ + +

x t z z y x x zxt yz
xt yz xz x t z z y x x z xz

xt yz
xt yz xz

2

( – )–( – )–
( – ) ( – )

– .
(2 – 2 )

For this to be true in general, we have to demand that α β αβ= +2 – 2 , which implies 
that α = 2. Hence,

=
+ +
xt yzf x ,y,z ,t

xt yz xz
– .( )

2

After replacing x y z, , ,  and t  by their corresponding joint probabilities, some algebraic 
manipulations show that this ratio is equivalent to the following:

¬
=

+ ¬
E

Pr h e Pr h ee h
Pr h e Pr h e

( | )– ( | )( , )
( | ) ( | )

which is therefore the unique function satisfying all of the conditions. QED.
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