
Schaal S (2002) Learning robot control. In: Arbib MA (ed) The handbook of brain theory and neural
networks, 2nd Edition. MIT Press, Cambridge, MA, pp 983-987

Learning Robot Control
Stefan Schaal

sschaal@usc.edu; http://www-slab.usc.edu
 Computer Science and Neuroscience & Kawato Dynamic Brain Project (ERATO/JST)

University of Southern California, 3614 Watt Way–HNB103, Los Angeles, CA 90089-2520

Introduction
Learning robot control, a subclass of the field of learning control, refers to the
process of acquiring a sensory-motor control strategy for a particular movement
task and movement system by trial and error. Learning control is usually distin-
guished from adaptive control (see ADAPTIVE CONTROL) in that the learning sys-
tem is permitted to fail during the process of learning, while adaptive control
emphasizes single trial convergence without failure. Thus, learning control re-
sembles the way that humans and animals acquire new movement strategies,
while adaptive control is a special case of learning control that fulfills stringent
performance constraints, e.g., as needed in life-critical systems like airplanes and
industrial robots.

���	���

��

�

Figure 1: Generic control diagram for learning control

 A key question in learning control is what it is that should be learned. In or-
der to address this issue, it is helpful to assume one of the most general frame-
works of learning control as originally developed in the middle of the 20th cen-
tury in the fields of optimization theory, optimal control, and in particular dy-
namic programming (Bellman, 1957; Dyer & McReynolds, 1970). Here, the goal
of learning control was formalized as the need to acquire a task dependent con-
trol policy π that maps the continuous valued state vector x of a control system
and its environment, possibly in a time dependent way, to a continuous valued
control vector u:

u = π x,α ,t() (1)
The parameter vector α contains the problem specific parameters in the policy π
that need to be adjusted by the learning system; Figure 1 illustrates the generic

2

control diagram of learning a control policy. Since the controlled system can gen-
erally be expressed as a nonlinear function

˙ x = f x,u() (2)
in accordance with standard dynamical systems theory (Strogatz, 1994), the
combined system and controller dynamics result in:

˙ x = f x,π x,t,α()() (3)
Thus, learning control means finding a (usually nonlinear) function π that is ade-
quate for a given desired behavior and movement system. This formal viewpoint
allows discussing robot learning in terms of the different methods that have been
suggested for the learning of control policies.

Methods of Learning Robot Control

Learning the Control Policy Directly

It is possible to learn the control policy π directly, i.e., without splitting it into
subcomponents as explained in later sections. For this purpose, the desired be-
havior needs to be expressed as an optimization criterion r(t) to be optimized
over a certain temporal horizon T, resulting in a cost function

J x t()() = r x s(),u s()()ds
t= 0

T

∫ or J x t()() = 1
τ
e
−
s− t
τ r x s(),u s()()ds

t=0

∞

∫ (4)

The second formulation of equation (4) illustrates the use of an infinite horizon
time window by introducing a discount factor that reduces the influence of val-
ues of r(t) in the far future. Note that r(t) is usually a function of the state x and
command u taken in x, i.e., r(t) = r x t(),u t()() . Solving such kinds of optimization
problems was developed in the framework of dynamic programming (Dyer &
McReynolds, 1970) and its recent derivative, reinforcement learning (Sutton &
Barto, 1998, see REINFORCEMENT LEARNING). For reinforcement learning, r(t) cor-
responds to the ‘immediate reward’, and J(x(t)) is called the ‘long-term reward’.
For instance, in the classical task of balancing a pole on a finger, the immediate
reward could be “+1” at every time step at which balancing was successful, and
“-1000” if the pole was dropped; the task goal would be to accumulate maximal
long term reward, equivalent to balancing without dropping.

The policy π is acquired with reinforcement learning by, first, learning the op-
timal function J(x(t)) for every state x, usually by a technique called temporal-
difference learning (see REINFORCEMENT LEARNING), and then deducing the pol-
icy π�as the command u in every state x that leads to the best future payoff, i.e.:

u = max
′ u

(r(x(t), ′ u (t)) + J (x(t +1))), where x(t +1) = x(t) + f (x(t), ′ u (t))∆t (5)

where ∆t is an arbitrarily chosen constant time step for sampling the system’s
behavior. Many variations of reinforcement learning exist, including methods

3

that avoid estimating the optimization function J(x(t)) (see REINFORCEMENT
LEARNING).

Learning the Control Policy in a Modular Way

Theoretically, the techniques of reinforcement learning and dynamic program-
ming would be able to solve any robot learning problem that can be formulated
as sketched in the previous section. Practically, however, this is not true since
reinforcement learning requires a large amount of exploration of all actions and
states for proper convergence of learning as well as appropriate representations
for the function J(x(t)) . Traditionally, J(x(t)) needs to be represented as a lookup
table, i.e., for every state x a specific table cell holds the appropriate value,
J(x(t)) . For continuous valued states, discretization of the individual dimensions
is needed. For high dimensional systems, this strategy leads to an explosion of
lookup table cells, e.g., for a 30 dimensional movement system where each di-
mension is just split into two cells, an astronomical number of 230 cells would be
required. Exploring all these cells with a real robot would take forever, and even
in computer simulations such problems are not tractable. Newer approaches em-
ploy special neural networks for learning and representing J(x(t)) (e.g., Sutton &
Barto, 1998), but problems with high-dimensional movement systems remain
daunting.

�������	
�� �

�������	
�� �

�������	
�� �

�������	
��

� � � �	
���	���

��

�

Figure 2: Learning control with sub-policies

A possible way to reduce the computational complexity of learning a control
policy comes from modularizing the policy (Figure 2). Instead of learning the
entire policy in one big representation, one could try to learn sub-policies that
have reduced complexity and, subsequently, build the complete policy out of
such sub-policies. This approach is also appealing from the viewpoint of learning
multiple tasks: some of the sub-policies may be re-used in another task such that
learning new tasks should be strongly facilitated.

Motor control with sub-policies has been explored in various fields, for in-
stance, under the names of schema theory (see SCHEMA THEORY), behavior based
robotics (see REACTIVE ROBOTIC SYSTEMS), pattern generators (see MOTOR
PATTERN GENERATION), and movement primitives (Schaal, 1999). Robot learning
with such modular control systems, however, is still in its infancy. Reinforcement
learning has recently begun to formulate a principled approach to this problem
(Sutton, Precup, & Singh, 1999). Another route of investigating modular robot
learning comes from formulating sub-policies as nonlinear dynamical systems

4

(Mussa-Ivaldi & Bizzi, 1997, Schaal & Sternad, 1998). However, all this research is
still of preliminary nature and will take some more time before it is applicable to
complex robot learning problems.

Indirect Learning of Control Policies

The previous sections assumed that motor commands are directly generated
based on the information of the state of the world x, i.e. from the policy function
π. For many movement systems, however, such a direct control strategy is not
advantageous since it fails to re-use modules in the policy that are common
across multiple tasks. This view suggests that, in addition to a modularization of
motor control and learning in form of a mixture of simpler policies (Figure 2),
modularization can also be achieved in terms of a functional structuring within
each control policy. A typical example is to organize the control policy into sev-
eral processing stages, as illustrated in Figure 3 and also discussed as indirect
control in MOTOR CONTROL, BIOLOGICAL AND THEORETICAL. Most commonly, the
policy is decomposed into a planning and an execution stage, a strategy that is
typical for most robot controllers but also likely to be used in motor control of
primates. Planning generates a desired kinematic trajectory, i.e., a prescribed way
of how the state of the movement system is supposed to change in order to
achieve the task goal. Execution transforms the plan into appropriate motor
commands.

Separating planning and execution is highly advantageous. For instance, in
reaching movements for a target, a direct approach to robot learning would re-
quire to learn a new policy for every target location—the desired behavior is to
minimize the distance between the hand and the target, and due to the complex
dynamics of an arm, different target locations require very different motor com-
mands for reaching. In contrast, an indirect control approach only requires
learning the movement execution module, usually in form of an inverse model
(see below). The execution module is valid for any target location. For simplicity,
movement plans can be kept the same for every target location, e.g., a straight
line between the target and the start position of the arm with a bell-shaped ve-
locity profile—planning such movement kinematics requires only one-time
learning of the robot kinematics model and using standard kinematic planning
algorithms (Sciavicco & Siciliano, 1996) that can easily cope with any reachable
target location. Thus, after the execution module has been acquired, reaching is a
largely solved problem, no matter where the target is.

5

#��

��

�����������	
�

Figure 3: Learning control with functional decomposition

Depending on the task, planning can take place in external kinematic vari-
ables, e.g., Cartesian or endeffector space, or in internal kinematic variables, e.g.,
joint space for a human-like arm. If the planning space does not coincide with the
space where motor commands are issued, coordinate transformations are re-
quired to map the external motor plan into intrinsic coordinates. This problem is
typically discussed as the inverse kinematics problem (see ROBOT CONTROL) of
robot control, a problem that equally needs to be addressed by biological move-
ment systems.

To transform kinematic plans into motor commands, standard methods from
control theory can be employed (e.g., Sciavicco & Siciliano, 1996). Figure 3 illus-
trates a typical example that uses a feedforward/feedback mechanism—called
“computed torque controller”—that enjoys popularity in both robotic systems as
well as models of biological motor control (Jordan, 1996). The feedback controller
is of classical Proportional-Derivative (PD) type, while the feedforward control-
ler contains an inverse dynamics model of the movement system (see CERE-
BELLUM AND MOTOR CONTROL).

From the point of robot learning, functional modularity also decomposes the
learning problem into several independent learning problems. The modules of
the execution stage can be learned with supervised learning techniques (see be-
low and also CEREBELLUM AND MOTOR CONTROL). For various types of move-
ments, kinematic movement plans can be highly stereotyped, as described in the
reaching example above, such that no learning is required for planning. For
complex movements, e.g., a tennis serve, planning requires more sophistication,
and the same reinforcement learning methods of direct control can be ap-
plied—the only difference is that motor commands u are replaced with a desired
change in trajectory ˙ x d . Applying reinforcement learning to kinematic planning
is of reduced complexity than solving the complete direct control problem since
the highly nonlinear transformation from kinematic plans to motor commands
does not need to be acquired anymore, but still it remains an open research
problem how to perform reinforcement learning for high dimensional movement
systems.

6

Imitation Learning

A topic in robot learning that has recently received increasing attention is that of
imitation learning. The idea of imitation learning is intuitively simple: a student
watches the performance of a teacher, and, subsequently, uses the demonstrated
movement as a seed to start his/her own movement. The ability to learn from
imitation has a profound impact on how quickly new skills can be acquired
(Schaal, 1999). From the viewpoint of learning theory, imitation can be conceived
as a method to bias learning towards a particular solution, i.e., that of the teacher.
Motor learning proceeds afterwards as described in the other sections of this
chapter. However, not every representation for motor learning is equally suited
to be biased by imitation (Schaal, 1997). For instance, a robot using direct control
can hardly profit from a demonstration as motor commands are not perceivable,
but a robot using indirect control could extract a first kinematic plan from the
demonstration and use it for starting its own learning. The ability of imitation
thus imposes interesting constraints on the structure of a learning system for
motor learning.

Learning of Motor Control Components
Whether direct or indirect control is employed in a motor learning problem, the
core of the learning system usually requires methods of supervised learning of
regression problems, called function approximation in the neural network and
statistical learning literature. Function approximation is concerned with ap-
proximating a nonlinear function y=f(x) from noisy data, drawn according to the
data generating model:

y = f (x) + ε where x ∈ℜn, y∈ℜm ,E ε{ } = 0 (6)
i.e., x is an n-dimensional continuous valued vector, y is an m-dimensional con-
tinuous valued vector, and ε a mean-zero random “noise” variable. By compar-
ing the generic form of a policy in Equation (1) or a dynamics model in Equation
(2) with (6), it is apparent that learning such functions falls into the framework of
function approximation.

Neural Network Approaches to Function Approximation

Many different methods of function approximation exist in the literature (see
LEARNING AND STATISTICAL INFERENCE). For the purpose of this chapter, it is suffi-
cient to classify all these algorithms into two categories, spatially localized (local)
algorithms, and spatially non-localized (global) algorithms. The power of learning
in neural networks comes from the nonlinear activation functions that are em-
ployed in the hidden units of the neural network. Global algorithms use nonlinear
activation functions that are not limited to a finite domain in the input space (x-
space) of the function. The prototypical example is the sigmoid function in
Figure 4a that outputs a value of roughly one for any input greater than about
one. In contrast, local algorithms make use of nonlinear activation functions that
are different from zero only in a restricted input domain—the Gaussian function

7

in Figure 4b exemplifies this class of functions. Despite that both local and global
algorithms are theoretically capable of approximating arbitrarily complex non-
linear functions, the learning speed, convergence, and applicability to high-
dimensional learning problems differ significantly (Schaal & Atkeson, 1998).

a) b)
Figure 4: Nonlinear activation functions used in neural networks: a) the sigmoid function, a spa-

tially global function, b) the Gaussian function, a spatially localized function.

A metaphor of how global algorithms approximate nonlinear functions is to
conceive of them as an octopus whose tentacles stretch out and span the complex
surface described by y=f(x), except that the tentacles live in an n-dimensional
space. Global algorithms can work quite well for problems with many input di-
mensions since their non-local activation function (i.e., their “tentacles”) can span
even huge spaces quite efficiently. But global algorithms usually require very
careful training procedures such that the “tentacles” learn how to stretch appro-
priately into all directions. In particular, if at some point of training, data is only
provided for a restricted area in input space, the “tentacles” may focus too much
on approximating this area and, while doing so, forget maintaining the “tentacle
posture” in previously learned areas—a phenomenon called catastrophic inter-
ference (Schaal & Atkeson, 1998). Catastrophic interference is particularly pro-
nounced in incremental learning problems, where training data comes point after
point and can only be used once for updating the algorithm—unfortunately this
is the typical scenario in robot learning. Together with the problem on how to
select the right number of hidden units (i.e., the right number of tentacles), it be-
comes quite complicated to train global algorithms for high dimensional robot
learning problems.

In contrast, local learning algorithms have quite different characteristics. The
metaphor for local learning is simply that they approximate the complex regres-
sion surface with the help of small local patches, for instance locally constant or
locally linear functions (Atkeson, Moore, & Schaal, 1997). Problems of how many
patches need to be allocated, where to place them, how large they should be in
input space, and how to learn them incrementally have largely been solved
(Schaal & Atkeson, 1998). The biggest problem of local algorithms is the curse of
dimensionality, i.e., the exponential explosion of the number of patches that are
needed in high dimensional input spaces. For instance, assume that we want to

8

divide every input dimension of a function approximation problem into ten local
regions. For two input dimensions, this strategy would result in 102 local regions,
for three inputs in 103, and for n inputs in 10n regions. Even for only 12 input di-
mension, this number reaches the number of neurons in the human brain. The
only way to avoid this problem is to make the patches larger, but then the quality
of function approximation becomes unacceptably inaccurate. There is theoreti-
cally no way out of the curse of dimensionality—but empirically, it turns out not
to be a problem. The example above that demonstrates the curse of dimensional-
ity can equally be turned around in our favor: how long would it take a robot
system to generate all the data points to fill these big spaces? E.g., collecting 1012

data points at 100Hz sampling frequency would take more than 300 years of
uninterrupted movement! Thus, no actual robot will ever be able to generate
enough data to fill these huge spaces. This argument triggers a most important
question: what kind of data distributions are actually realized by robotic (or bio-
logical) movement systems? Vijayakumar and Schaal (2002) found that distribu-
tion had only about 4-6 dimensions locally in a robot learning problem that had
21 input dimensions, a finding that was also duplicated in other robot learning
domains (Vlassis, Motomura, & Krose, 2002). Local learning can exploit this
property by using techniques of local dimensionality reduction and can thus
learn efficiently even in very high dimensional spaces (Vijayakumar et al., 2002).
Thus, for the time being, local learning algorithms seem to be better suited for ro-
bot learning.

Specific Function Approximation Problems in Robot Learning

Applying function approximation to problems of robot learning requires a few
more considerations. The easiest applications are those of straightforward super-
vised learning, i.e., where a teacher signal y is directly available for every train-
ing point x. For example, learning a dynamics model of the form of Equation (2)
falls usually into this category if the inputs x and u, and the output ˙ x can be
measured directly from sensors. Many other problems of ROBOT CONTROL are of
a similar nature.

Learning becomes more challenging when instead of the teacher signal only
an error signal is provided, and the error signal is just approximate. Assume we
have such an error signal e when the network predicted a particular ˆ y for a
given input x. From this information, we can create a teacher signal y = ˆ y + e and
train the network with this target. However, if e was only approximate, y is not
the true target, and later on during learning another (hopefully more accurate)
teacher signal may be formed for training the network. Thus, learning proceeds
with “moving targets”, which is called a nonstationary learning problem. For
such learning tasks, neural networks need to have an appropriate amount of
plasticity in order to keep on changing until the targets become correct. On the
other hand, it is also important that the network converges at some point and av-
erages out the noise in the data, i.e., that the network does not have too much
plasticity. Finding appropriate neural networks that have the right amount of

9

plasticity-stability tradeoff is a non-trivial problem, and so far, heuristic solutions
dominate the literature.

Nonstationary learning problems are unfortunately quite common in robot
learning. Learning the optimization function J(x(t)) in reinforcement learning is
one typical example since the temporal difference algorithm (Sutton & Barto,
1998) can only provide approximate errors. Other examples include feedback er-
ror learning and learning with distal teachers (Jordan, 1996). Both of these meth-
ods address the problem that in learning control, we usually only receive errors
in sensory variables, e.g., positions and velocities, but what is needed to train a
control policy is an error in motor commands. Thus, feedback error learning cre-
ates an approximate motor command error by using the output of a linear feed-
back controller as the error signal. Learning with distal teachers accomplishes es-
sentially the same goal, except that it employs a learned forward model to map
an error in sensory space to an approximate motor error.

Applications
While the theoretical development of learning control has progressed signifi-
cantly in recent years, applications in actual robots have remained rather sparse
due to the significant computational burden of most learning algorithms and the
real-time constraints of actual robots. Reinforcement learning in actual robots
remains largely infeasible, and only few examples exist in simplified setups (e.g.,
see references in Atkeson et al., 1997; Schaal, 1999; Sutton & Barto, 1998). Learn-
ing of internal models for robot control has found increasingly more widespread
application due to significant advances in the computational efficiency of super-
vised learning algorithms (e.g., see references in Atkeson et al., 1997; Vijaya-
kumar et al., 2002; Vlassis et al., 2002).

Discussion
Robot learning is a surprisingly complex problem. It needs to address how to
learn from (possibly delayed) rewards, how to deal with very high-dimensional
learning problems, how to use efficient function approximators, and how to em-
bed all the elements in a control system with real-time and robust performance.
A further difference to many other learning tasks is that in robot learning the
training data is generated by the movement system itself. Efficient data genera-
tion, i.e., exploration of the world, will result in fast learning, while inefficient
exploration can even prevent successful learning all together (see RE I N-
FORCEMENT LEARNING). Given the fact that only very few robots in the world are
equipped with learning capabilities yet, it becomes obvious that research on ro-
bot learning is still in an early stage of its development.

References
*Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally weighted learning for control. Artificial

Intelligence Review, 11, 75-113.

10

Bellman, R. (1957). Dynamic programming. Princeton, N.J.: Princeton University Press.
Dyer, P., & McReynolds, S. R. (1970). The computation and theory of optimal control. New York: Aca-

demic Press.
*Jordan, M. I. (1996). Computational aspects of motor control and motor learning. In H. Heuer, &

S. W. Keele (Eds.), Handbook of perception and action. New York: Academic Press.
Mussa-Ivaldi, F. A., & Bizzi, E. (1997). Learning Newtonian mechanics. In P. Morasso, & V. San-

guineti (Eds.), Self-organization, Computational Maps, and Motor Control (pp. 491-501). Am-
sterdam: Elsevier.

Schaal, S. (1997). Learning from demonstration. In M. C. Mozer, M. Jordan, & T. Petsche (Eds.),
Advances in Neural Information Processing Systems 9 (pp. 1040-1046). Cambridge, MA: MIT
Press.

*Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences,
3, 233-242.

Schaal, S., & Atkeson, C. G. (1998). Constructive incremental learning from only local informa-
tion. Neural Comput., 10, 2047-2084.

Schaal, S., & Sternad, D. (1998). Programmable pattern generators, 3rd International Conference on
Computational Intelligence in Neuroscience (pp. 48-51). Research Triangle Park, NC.

Sciavicco, L., & Siciliano, B. (1996). Modeling and control of robot manipulators. New York:
MacGraw-Hill.

Strogatz, S. H. (1994). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,
and engineering. Reading, MA: Addison-Wesley.

*Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning : An introduction. Cambridge: MIT
Press.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: a framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112, 181-211.

Vijayakumar, S., D'Souza, A., Shibata, T., Conradt, J., & Schaal, S. (2002). Statistical learning for
humanoid robots. Autonomous Robots, 12, 59-72.

Vlassis, N., Motomura, Y., & Krose, B. (2002). Supervised dimension reduction of intrinsically
low-dimensional data. Neural Comput., 14, 191-215.

