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MacColl’s Modes of Modalities

Fabien Schang

Technische Universität Dresden, Institut für Philosophie,
Germany

LHSP, Archives H. Poincaré (UMR 7117), Nancy-Université,
France

Résumé : Hugh MacColl est présenté d’ordinaire comme un pionnier des
logiques modales et multivalentes, suite à son introduction de modalités qui
vont au-delà de la simple vérité et fausseté. Mais un examen plus attentif
montre que cet héritage est discutable et devrait tenir compte de la façon dont
ces modalités procédaient. Bien que MacColl ait conçu une logique modale
au sens large du terme, nous montrerons qu’il n’a pas produit une logique
multivalente au sens strict. Sa logique serait comparable plutôt à une « logique
non-fregéenne », c’est-à-dire une logique algébrique qui effectue une partition
au sein de la classe des vérités et faussetés mais n’étend pas pour autant le
domaine des valeurs de vérité.

Abstract: Hugh MacColl is commonly seen as a pioneer of modal and many-
valued logic, given his introduction of modalities that go beyond plain truth
and falsehood. But a closer examination shows that such a legacy is debatable
and should take into account the way in which these modalities proceeded.
We argue that, while MacColl devised a modal logic in the broad sense of the
word, he did not give rise to a many-valued logic in the strict sense. Rather,
his logic is similar to a “non-Fregean logic”: an algebraic logic that partitions
the semantic classes of truth and falsehood into subclasses but does not extend
the range of truth-values.

Modalities and many-valuedness

A preliminary attention to the notation is in order. MacColl’s Logic (hereafter:
MCL) resorts to a symbolic language that is in accordance with the algebraic
style of George Boole or Ernst Schröder. Mathematical signs are used to
characterize operations between any propositions AB and CD. Thus, AB

+

CD stands for their sum, ABCD (or AB
×CD, or AB.CD) for their product,

AB
∶ CD for the implication from AB to CD, AB

= CD for their equivalence
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164 Fabien Schang

(synonymous with (AB
∶ CD)(CD

∶ AB)), and (AB
)
′ for the denial of AB.

MCL is thus a logic of predication that consists in propositions subsuming a
class under another one: in AB, the first term A is the subject term while the
second term B is the predicate term whose application results in a proposition
such as “A is B”, or “The A is a B”.

A first terminological distinction is that between the occurrence of propo-
sitions as terms or factors and as exponents. AB and CD occur as terms in
the sum AB

+CD and as factors in the product ABCD. Also, A and C are the
subjects of the predications AB and CD; while B and D occur as exponents,
because they are predicates to which A and C respectively belong. Another
distinction is that between the adjectival and predicative use: B is used ad-
jectivally in AB , and predicatively in AB, so that the whole proposition AC

B

means that the A which is a B is also a C.

On the one hand, this symbolic device helps to convey information about
quantity by introducing integers into the adjectival and predicative uses. Thus
A1, A2 . . . , An specify n different individuals in the class A, and the superscript
0 gives an expression to quantification in terms of the null class: A0

B means that
no A is B (“the A that is B belongs to the null class”), and A-0

B that some A is
B (“the A that is B does not belong to the null class”); A0

-B means that every
A is B (“the A that is not B belongs to the null class”), and A-0

-B that some
A is not B (“the A that is not B does not belong to the null class”). On the
other hand, the later distinction between metalanguage and object-language
doesn’t appear in MCL: the truth-values are not confined to a separate higher-
order language and are treated on a par with any other term of the symbolic
logic. The result is a class of semantic predicates that go beyond truth and
falsehood, as stated by MacColl:

The symbol Aτ only asserts that A is true in a particular case or
instance. The symbol Aε asserts more than this: it asserts that
A is certain, that A is always true (or true in every case) within
the limits of our data and definitions, that its probability is 1.
The symbol Aι only asserts that A is false in a particular case
or instance; it says nothing as to the truth or falsehood of A in
other instances. The symbol Aη asserts more than this; it asserts
that A contradicts some datum or definition, that its probability
is 0. Thus Aτ and Aι are simply assertive; each refers to one
case, and raises no general question as to data or probability. The
symbol Aθ (A is a variable) is equivalent to A-ηA-ε; it asserts
that A is neither impossible nor certain, that is, that A is possible
but uncertain. In other words, Aθ asserts that the probability of
A is neither 0 nor 1, but some proper fraction between the two.
[MacColl 1906, 7]

MacColl supplements the five preceding semantic predicates with four
other elements, i.e. π for possibility, p for probability, q for improbability,
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and u for uncertainty [MacColl 1906, 14]. Most of these predicates (except for
p and q) behave like modalities, since they are reminiscent of the Aristotelian
logic and its isomorphic oppositions within quantified and modal propositions:
certainty (“every A is B”) and impossibility (“every A is not B”) correspond
to universal affirmation and negation, while possibility (“some A is B”) and
uncertainty (“some A is not B”) correspond to particular affirmation and nega-
tion. As to the remaining cases of truth, falsehood, variability, probability and
improbability, they require an extension of the Aristotelian square: variability
(“some A is B , some A is not B”) corresponds to two-sided possibility or con-
tingency, and such a concept finds its rightful place in the first logical hexagon
of Robert Blanché [Blanché 1953]; truth (“this A is B”) and falsehood (“this A
is not B”) correspond not to universal or particular, but singular propositions,
whose rightful place requires further extension from the second logical hexagon
of Tadeusz Czeżowski [Czeżowski 1955] to the logical octagon of Jan Woleński
[Woleński 1998] (see figures [1–4]).
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The result is the following list of 28 logical oppositions and their five kinds
of opposition: 1

Contraries (5): {ε, η};{ε, θ};{η, θ};{η, τ};{ε, ι}

Subcontraries (5): {π,u};{π, -θ};{u, -θ};{π, ι};{u, τ}

Contradictories (4): {ε, u};{η, π};{-θ, θ};{τ, ι}

Subalterns (10): {ε, π};{η, u};{θ, π};{θ, u};{ε, -θ};{η, -θ};{ε, τ};{η, ι};{τ, π};{ι, u}

Mere non-contradictories (4): {-θ, ι};{-θ, τ};{ι, θ};{τ, θ}

The 28 oppositions above exhaust the set of logical relations between
MacColl’s modalities, excluding the peculiar cases of p and q: the latter are
probable values that cannot be located within a polygon of oppositions, given
that they represent any of the indefinitely many values between full truth
(or certainty: 1) and full falsehood (or impossibility: 0). The dotted lines
stand for contradictory relations; the arrows indicate the entailment relation
between an antecedent A and its consequent B, such that A ∶ B is a theorem.
Here is a sample of those theorems from MacColl [MacColl 1906, 8]: (T12)
(Aτ
+Aι
) expresses the law of excluded middle between contradictory terms,

(T14) (Aε
+Aη

+Aθ
)

ε means that three modalities exhaust the semantic class
of MCL, while the implications (T15) Aε

∶ Aτ and (T16) Aη
∶ Aι correspond

to subalternation relations.

1 and 0 are usually used to symbolize truth and falsehood, in algebraic se-
mantics; but it has been frequently claimed by the commentators on MacColl
(including [Simons 1998]) that he thought of truth-values in probabilistic terms
of truth-cases. If so, then any of the logical values of MCL should be reformu-
lated within the closed interval [0,1] of an infinitely-valued logic. This should
not be a proper characterization of MacColl’s view of modalities, however:
the difference between particular and singular judgments cannot be rendered
within such a probabilistic line, and the above oppositions depict logical rela-
tions that are qualitative rather than quantitative (as witnessed by the absence
of p and q from the polygons).

At any rate, it may seem strange to state logical oppositions between
concepts expressing truth-values: if an opposition is about the possibility
for two terms to be both true or false, what does it mean for τ and ι

not to be true or false together? A plausible answer is that these alleged
truth-values are not that but, rather, modal operators attached to proposi-
tions. Hence the ensuing problem is to specify the logical status of the ele-
ments that compose the semantic class. In other words: is MCL a modal logic,
or a many-valued logic?

1. For every polygon of opposition with n vertices, the number of logical oppo-
sitions is (n − 1) + ((n − 1) − 1) + . . . + 1. Thus a square has n = 4 vertices and
(4 − 1) + (3 − 1) + 1 = 6 logical oppositions. We do not count four but five kinds of
opposition in the above octagon: the so-called “mere non-contradictories” are neither
a case of subalternation nor a case of subcontrariety, as witnessed by the pair {θ, τ}
which does not express any entailment relation between its terms. See [Smessaert
2009] about the definitional link between subalternation and entailment.
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To begin with, only five elements are brought out in the semantic class
because only these are independent and cannot be reduced to each other;
conversely, possibility is the negation of impossibility (π = -η) and uncertainty
is the negation of certainty (u = -ε). For this reason, we restrict our attention
to the nature of the five elements of the semantic class Five = {ε, η, τ, ι, θ}.

Let A be a proposition of a language and v a valuation function that maps
A onto an element x of Five, so that v(A) = x. We are then faced with two
alternatives. Either MCL is a modal logic, in which case the semantic pred-
icates are not elements of Five but unary operators © that are attached to
propositions and form modal propositions of the form A = ©p. Or MCL is
a many-valued logic, and the semantic predicates are not operators but the
resulting values x of an operation. Or can they be both, in one and the same
symbolic logic? There have been such cases after MacColl’s death, in the realm
of many-valued logics: in Jan Łukasiewicz’s three-valued system Ł3, the modal-
ity of possibility occurred both as a modal operator © = M and a third value
x = 1/2 [Łukasiewicz 1920]; the same obtains in Dmitri Bochvar’s three-valued
logic of assertion, where truth and falsehood occur both as truth-values and
unary operators meaning “It is true that” or “It is false that” [Bochvar 1938].

Whatever the case may be, it can be said more generally that MCL is a
logic of modalities, without specifying the mode in which these modalities are
introduced within the formal system. The five semantic predicates occur as
terms, exponents or factors, but never in the specific manner of truth-values
or unary operators: these characterizations belong to Gottlob Frege’s modern
or functional logic, and MacColl never adhered to this logical turn as his most
famous opponent Bertrand Russell did.

Despite this theoretical discrepancy, MCL is closely related to Bochvar’s
three-valued logic.

Firstly, MacColl and Bochvar insisted equally upon the connection be-
tween affirmation and truth, denial and falsehood. MacColl claims that any
proposition A is equivalent with its being true, so that A = Aτ . Bochvar ex-
plicitly renders this by attaching an operator of affirmation * to A, so that
A∗ means the same as “It is true that A”. But just as not every occurrence of
the proposition A entails its being true, MacColl argued that A and Aτ are
equivalent without being synonymous with each other:

It may seem paradoxical to say that the proposition A is not
quite synonymous with Aτ , nor A′ with Aι; yet such is the
fact. Let A = It rains. Then A′ = It does not rain; Aτ

= it is
true that it rains; and Aι

= it is false that it rains. The two
propositions A and Aτ are equivalent in the sense that each im-
plies the other; but they are not synonymous, for we cannot
always substitute the one for the other. In other words, the
equivalence (A = Aτ ) does not necessarily imply the equivalence
φ(A) = φ(Aτ

). [MacColl 1906, 16]
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This is characteristic of what has been repeatedly blamed in MacColl’s logic,
namely: the equivocal use of its symbols. For A and Aτ are equivalent when
the term A occurs as a statement (an interpreted function) uttered by a
speaker, while A and Aτ are not synonymous when the term A occurs as a
propositional function that is not stated and unrestrictedly ranges over the el-
ements of Five. For if A is uttered, then A is claimed to be true by its speaker
and every such proposition is trivially certain: if A = τ then Aτ

= τ τ
= ε,

and if A = ε then Aτ
= ετ

= ε. Now if A′ is uttered, then A is claimed to
be false by its speaker and every such proposition is trivially impossible. At
the same time, if A is not stated and occurs as an unasserted form of words
(proposition) then A can range over any element of Five. Let A = θτ and
φ(A) = Aε; hence φ(A) = Aε

= θε
τ = η, while φ(Aτ

) = (Aτ
)

ε
= (θτ

τ )
ε
= (ε)ε = ε.

Therefore, φ(A) ≠ φ(Aτ
) for some values of A. Likewise, let A = θι; hence

φ(A′) = (A′)ε = Aη
= θη

ι = η, while φ(Aι
) = (Aι

)
ε
= (θι

ι)
ε
= (ε)ε = ε. Therefore,

φ(A′) ≠ φ(Aι
) for some values of A. Unlike Bochvar, MacColl thus assumed an

implicit occurrence of the statements A and A′ as truth- and falsehood-claims;
whereas the fact that A and Aτ (or A′ and Aι) are non-synonymous betrays
their explicit occurrence as propositional functions.

Secondly, MacColl foreshadowed Bochvar’s subsequent distinction between
external and internal negation. Such a terminology refers to the scope of func-
tions, unlike MacColl’s logic. But it makes sense in MCL, however: either its
larger scope applies to the whole proposition AB, and negation is thus said
to be external; or its narrower scope applies to the subject term A only, and
negation is thus said to be internal. This difference has already been exem-
plified in the preceding lines: in the upper vertex of the logical oppositions,
-θ in A-θ depicts an external negation meaning that the proposition A is not
contingent, while (A′)θ means that the denial of A is contingent. MacColl
motivated this distinction with reference to the higher degree statements:

The symbol ABC means (AB
)

C ; it asserts that the statement AB

belongs to the class C, in which C may denote true, or false, or
possible, &c. Similarly ABCD means (ABC

)
D, and so on. From

this definition it is evident that Aηι is not necessarily or generally
equivalent to Aιη, nor Aει equivalent to Aιε. [MacColl 1906, 7]

In an external negation (EN) like A-η, the denial applies to the factor
(or predicate) and is symbolized by a hyphen; in an internal negation (IN)
like (A′)η, the denial applies to the term A and is symbolized by a single
inverted comma. The logical difference between both is obviously seen with
the following equivalences, where the place of negation does crucially matter:

(IN) Aιη
= (Aι

)
η
= (A′)η = Aε;Aιε

= (Aι
)
ε
= (A′)ε = Aη;Aιθ

= (A′)θ = Aθ

(EN) Aηι
= (Aη

)
ι
= (Aη

)
′
= Aε

+ Aθ;Aει
= (Aε

)
ι
= (Aε

)
′
= Aη

+ Aθ;Aθι
=

(Aθ
)
ι
= (Aθ

)
′
= Aε

+Aη

MacColl will relevantly call for internal negation in order to establish a
good number of theorems in MCL, assuming the definition of implication in
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terms of denial and impossibility: (A ∶ B) = (AB′)η. He argues for this by
relying upon the usual meaning of denial:

By the “denial of a certainty” is not meant (Aε
)
′, or its synonym

A-ε, which denies that a particular statement A is certain, but
(Aε)

′ or its synonym A′ε, the denial of the admittedly certain
statement Aε. This statement Aε (since a suffix or subscriptum
is adjectival and not predicative) assumes A to be certain; for
both Ax and its denial assume the truth of Ax. Similarly, the
“denial of a possibility” does not mean A-π but A′π, or its syn-
onym (Aπ

)
′, the denial of the admittedly possible statement Aπ.

[MacColl 1906, 15]

A modern way to put this point is to say that denial doesn’t apply to a modal
operator (◻ for necessity, say) but to its propositional content: the internal
negation of ◻A is ◻∼A, rather than ∼◻A. But again, any comparison be-
tween MCL, modal logic and many-valued logic should be made with caution.
Against the view that a logical system could be equally taken to be modal
or many-valued (as Łukasiewicz did), it has been proved by James Dugundji
[Dugundji 1940] that:

There exists no finitely many-valued logic that is characteristic
of any of the Lewis systems S1 to S5, because any finitely many-
valued logic will contain tautologies that are not theorems of S5
(and a fortiori not of S1 to S4 either). [Rescher 1969, 192]

This means that either MCL is a (finitely) many-valued logic, so that it is a
weaker system than the Lewis systems S1-S5; or MCL is a modal logic that
can be characterized by a modal system between S1 and S5, in which case it
is not a many-valued logic. Although MCL is variously presented as a modal
and (finitely) many-valued logic, it cannot be both in the light of Dugundji’s
proof. So which one should it be?

At any rate, the preceding entails that MCL may be seen as a modal
logic only in the broad, informal sense of a logic for modalities: a modality is
viewed to be a mode of being true or false, irrespective of how it is regimented
in a logical system, and MacColl follows this line by arguing that certainty or
impossibility are the same as being true or false in every case. Let us consider
first the modal features that are commonly associated with MacColl’s system.

A modal logic?

Non-truth-functionality is usually taken to be an essential criterion of a
modal logic: not every value of such a composed proposition is to be deter-
mined by the value of its components, as the case is with ◻A with respect to
its component A. Although such a criterion doesn’t hold with some many-
valued translations of modal logics, we have seen with Dugundji’s proof that
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no modal system between S1 and S5 can be characterized by a many-valued
matrix. A truth-functional many-valued logic could be appropriate for modal
systems weaker than S1, consequently. At any rate, modal logic is not merely
specified by a set of logical theorems. For instance, Georg Henrik von Wright
proposed a classification that departs from MacColl’s view of modalities. Thus
he writes:

We shall distinguish between truth-concepts or truth-categories
and modal concepts or modal categories. The logic of truth-
concepts we shall call truth-logic, and the logic of modal concepts
we shall call modal logic. The basic truth-categories are the two
so-called truth-values, viz. truth and falsehood. Further exam-
ples of truth-categories are the concept of a truth-function and
the instances of such functions: negation, conjunction, disjunc-
tion, (material) implication, (material) equivalence, tautology, and
contradiction. It is of some importance to observe that the words
tautology and contradiction are used in this essay as names of
truth-functions exclusively. The words in question are sometimes
used as synonyms for certain modal words. [von Wright 1951, 1]

Given this distinction, MCL appears as a conflation of truth- and modal con-
cepts, and MacColl is one of these logicians that would use tautology and
contradiction as synonyms for the modalities of certainty and impossibility.
The meaning of modal logic is not definite, according to him, but a question
of choice for different sakes. Thus we find in MacColl:

In the traditional logic any proposition AB of the first degree is
called a pure proposition, while any of my propositions ABC or
ABCD, &c., of a higher degree would generally be considered a
modal proposition; but upon this point we cannot speak with
certainty, as logicians are not agreed as to the meaning of the
word ‘modal’. For example, let the pure proposition AB as-
sert that “Alfred will go to Belgium”; then ABε might be read
“Alfred will certainly go to Belgium”, which would be called a
modal proposition. Again, the proposition A-B , which asserts
that “Alfred will not go to Belgium”, would be called a pure
proposition; whereas ABι, or its synonym (AB

)
ι, which asserts

that AB is false, would, by most logicians, be considered a modal
proposition. [MacColl 1906, 94]

Furthermore, truth and falsehood could be defined as ‘null’ modalities ◯
similar to the redundant operator of affirmation in the Fregean logic. Thus a
modern translation of Aτ and Aι would result in the modal formulas ◯A and
◯∼A. Once this assumption is accepted, it remains to see which sort of modal
logic MCL is.

Various answers have been given to this respect: Storrs McCall [McCall
1967] identifies MCL with S3 and Shahid Rahman [Rahman 1997] argues for S2
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or S3. Stephen Read [Read 1998] claims that the stronger system T (developed
after Clarence Irving Lewis by Robert Feys and von Wright) is characteristic of
MCL – given the theorems (T15) Aε

∶ Aτ and (T16) Aη
∶ Aι
− while discarding

any even stronger system like S4 or S5. Against McCall, Read argues that:

[T]he characteristic axiom of S3 does not figure in the nine the-
ses McCall attributes to MacColl—indeed, if it did, then since
MacColl’s logic is normal, as shown above (i.e. ηπ

= η), there
would ensue reduction theses such as aππ

= aπ, characteristic of
S4, since S4 is the union of S3 and T. Since MacColl explicitly
endorses normality and denies any reduction laws, his logic is T.
[Read 1998, 74]

Whatever the case may be, the initial question of a characteristic logical system
for MCL does not happen to make good sense from a MacCollian point of view.

For one thing, a modal system is said to be stronger (or weaker) than
another whenever the former set of logical theorems includes (or is included
in) the latter. But such an inclusion relation can be established only for
modal systems and interpreted within a Kripkean structure, where inclusion
concerns the relations of accessibility (reflexivity, transitivity, and the like)
between possible worlds. Following Dugundji’s result, again, MCL cannot be
seen with the modern glasses of modal logic and its model structures because
it proceeds as a finite many-valued logic.

Moreover, Rahman [Rahman 1997] also claimed that MacColl advocated
a logical pluralism such that no unique logical system should be characteristic
of MCL. In this sense, the latter is not so much a logical system in the modern
sense of the word, i.e. a closed set of theorems; rather, it is a symbolic language
whose theorems depend upon the applied context of discourse. According to
Rahman, Aristotle’s modal syllogistic is akin to connexive logic and closely
related to the system S2; but other modal discourses are conceivable and
should require alternative sets of modal theorems.

Finally, MCL is all the more distinct from modern modal logics in that
their iteration and reduction theses don’t proceed in the same way. Thus a
crucial difference is to be made between iterated modalities and higher de-
grees statements. The reason is that MacColl’s modalities occur as inclusion
relations, while the modern modalities stand for quantifiers. For any sequence
of modalities with n modal terms, the nth and ultimate (right-sided) modal-
ity occurs as a predicate while the n − 1th preceding modalities are parts and
parcels of the predicated subject. Given the inclusion relation that holds from
left to right between any sequence of exponents, the law of reduction from ev-
ery such higher-degree to a first-order statement requires one to know whether
the primary (left-sided) predicate is included into its (right-sided) successor.
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Let us take the statement Aηιε as an example. According to MacColl:

The symbol Aηιε may be read “It is certain that it is false that it
is impossible that A is true”; which may be abbreviated into “A
is certainly possible”. [MacColl 1900, 75]

As a third degree statement, it amounts to (Aηι
)

ε and means that it is certain
that it is false that it is impossible that A. Given that Aηι

= (Aε
+ Aθ

)

(see [MacColl 1901, 140]), it follows that Aηιε
= (Aε

+ Aθ
)

ε and a modern
translation of this statement matches with the preceding result. Using ◊ for
possibility, Aηιε would be rendered by ◻∼(∼◊A), i.e. ◻◊A. (Aε

+ Aθ
)

ε and
◻◊A hold equally, since they both mean that A is certainly possible. However,
the reduction laws of iterated modalities in the modern modal systems don’t
hold in MCL: ◻A ↔ ◻ ◻A in S4, whereas Aε

≠ Aεε; and ◻◊A ↔ ◊A in S5,
whereas Aεπ

≠ Aε.

Consequently, MCL can be viewed as a logic of modalities in the broad
sense of containing modal expressions; but not as a logical system includ-
ing modal operators, given the very different nature of its operations upon
modalities as predicates. The set-theoretical aspect of these operations is con-
nected with an algebraic reading of modalities; and since algebraic operations
(+,×, ∶,=) apply to values including a supremum 1 and an infimum 0, we should
be naturally led to conclude that MCL is a many-valued logic whereby modal-
ities stand for a set of truth-values. Let us scrutinize this widespread opinion
among the commentators.

A many-valued logic?

MCL usually appears as an extension from a two-valued to a five-valued
logic: the two classical truth-values of truth and falsehood are supplemented
with certainty, impossibility, and variability. But why five values, rather than
any other number? The cases of five-valued logics are very rare, given their
uncommon cardinality; but we can mention in this respect the recent system of
Arnon Avron [2008]. This logical system is a paraconsistent logic including a
set of five values: necessary and consistent truth (T), necessary and consistent
falsehood (F), contingent and consistent truth (t), contingent and consistent
falsehood (f), and inconsistency (I). Although MCL has nothing to do with
paraconsistency, it shares with Avron’s system the common idea to extend the
set of truth-values by combining further properties with the initial values of
truth and falsehood. Just as Avron’s non-classical truth-values appear as spe-
cial cases of truth and falsehood, MacColl emphasized the process of partition
into the basic sets of truth and falsehood:

Toutes les propositions intelligibles peuvent être divisées en deux
classes, les vraies (t) et les fausses (ι). Toutes les propositions in-
telligibles peuvent être aussi divisées en trois classes : les certaines
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(ε1, ε2, ε3, etc.), les impossibles (η1, η2, η3, etc.) et les variables
(θ1, θ2, θ3, etc.). [MacColl 1901, 138]

A way of reformulating this valuation is to split each basic concept of truth (x=
1) or falsehood (x = 0) into four modes of being so: plainly (x.3), always (x.4),
never (x.5), and sometimes (x.6). The result is a new class of eight combined
elements: Eight ={1.3, 1.4, 1.5, 1.6, 0.3, 0.4, 0.5, 0.6}. While noting that two
pairs of these elements are synonymous and reducible to each other, i.e. 1.4-
0.5 and 0.4-1.5, MacColl’s modalities correspond to the following subclasses of
elements:

ε ∶ {1.4}

η ∶ {0.4}

τ ∶ {1.3,1.4,1.6}

ι ∶ {0.3,0.4,0.6}

θ ∶ {1.6,0.6}

This numerical translation of the modalities helps us see that MacColl’s
five elements overlap each other: the basic set of truth (1) includes both
plain truth (τ for {1.3,1.4,1.6}) and certain truth (ε for {1.4}) as its el-
ements, just as the basic set of falsehood (0) includes plain falsehood (ι
for {0.3,0.4,0.6}) and certain falsehood (η for {0.4}). In symbols: 1 cor-
responds to {1.3,1.4,1.5,1.6}, and 0 to {0.3,0.4,0.5,0.6}. MCL would
thus refer to the following semantic class which includes five subclasses
of Eight, each of these corresponding to a modality from the set Five:
{{1.4},{0.4},{1.4,1.5, 1.6},{0.4, 0.5,0.6}, {1.6, 0.6}}.

Does the cardinality of Five entail that MCL is a many-valued logic, how-
ever, in the sense that it contains more than two elements (values)? Against
this view, Peter Simons argues that three preconditions have to be required
for a semantic class to be “essentially many-valued” [Simons 1998, 86]. The
first (MV1) is: to contain at least one other value besides truth and falsehood.
The second (MV2) is: for all and only all the elements to be pairwise exclu-
sive and jointly exhaustive. The third (MV3) is: for the connectives to be
value-functional.

Simons concludes against Nicholas Rescher [Rescher 1969] that MCL is
not an essentially many-valued logic, because no one of these three criteria
are respected by it. On the one hand, it fails to satisfy (MV1) insofar as the
three additional values are not introduced into Five besides truth and false-
hood: ε ({1.4}) belongs to τ ({1.3,1.4,1.6}} within the truth-class 1, since
whatever is true is so plainly (without qualification), necessarily (always), or
contingently (sometimes, but not always); the same goes for η and ι, with
respect to the falsehood-class 0. On the other hand, not all the elements
of Five are needed to exhaust the semantic class: τ and ι are sufficient, as
witnessed by the theorem (T12) (Aτ

+Aι
)

ε. This is because truth and false-
hood are subclasses whose joint elements exhaust all the modes of truth. And
finally, Simons contends that MCL is not value-functional because the op-
erations θ.θ and θ ∶ θ don’t have any determinate result [Simons 1998, 87].
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Let us review each of Simons’s objections to the uncritical view that MCL
is a many-valued logic.

About MV1, firstly. The preceding reformulation helps to bring out
some inferential relations between the five predicates. Thus, the theorems
(T15) Aε

∶ Aτ and (T16) Aη
∶ Aι state nothing but an inclusive rela-

tion between the antecedent and its consequent: {1.4} ⊂ {1.4,1.5,1.6} and
{0,4} ⊂ {0.4,0.5,0.6}. But this is not a sufficient condition to consider the re-
sulting set of inferences as really different from classical logic, Simons claims.
He gives an example of a four-valued matrix for negation and conjunction,
where each element of the corresponding semantic class {(1),(2),(3),(4)} comes
from the Cartesian product {0,1}×{0,1} of the classical truth-values 1 (for
truth) and 0 (for falsehood). Thus (1) = 11, (2) = 10, (3) = 01, and (4) = 00.
On the basis of this matrix, Simons rightly notes that there is no difference
between the resulting set of logical theorems and that of classical logic, which
means that both logics are one and the same, despite the contrary appear-
ances of the valuations. It follows from it that MCL is not many-valued if, by
a many-valued logic, we mean a deviant system that does not contain every
theorem of classical logic; given that excluded middle, non-contradiction and
all other classical laws are preserved, we agree with Simons and claim that
MCL could be viewed rather as a modal extension of classical logic.

At any rate, the criterion (MV1) makes use of a technical device: product
systems, i.e. this branch of (allegedly) many-valued logic where each logical
value is the Cartesian product of classical values. Such a technique has been
used by Prior [Prior 1955] to evaluate tensed propositions and is strikingly
reminiscent of MacColl’s modalities. Let W = {w,w∗} be a set of two different
states of affairs (or truth-cases) w and w∗. Then the same valuations as
above can be produced to give an intuitive interpretation of necessity and
possibility: whatever is necessary is true in every “possible world” w and w∗,
while whatever is possible is true in at least one of these. Apart from the
probabilistic tone of MacColl’s modalities (assuming a finite set W of elements
that enables one to assess the ratio between true cases and false cases), the
same view of modalities occurs in Prior’s logic and MCL. This will be reviewed
in a more detailed way in the next section.

Although the failure of (MV1) is a sufficient ground for Simons to settle
the problem and claim that MCL is not many-valued, let us consider the two
other points: they should throw some new light upon MacColl’s modalities,
whether they are many-valued or not.

About (MV2), secondly. Simons is also right to affirm that truth and
falsehood are exhaustive, given that they cover all the modes of being true and
false as their particular cases. Hence the validity of the theorems (T15) and
(T16), again; but this result contains a further subtlety that is not mentioned
by Simons: any proposition A is a theorem in MCL if and only if it is certain,
i.e. A = ε. Now this certainty is not the same as the certainty that is included
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among the different modes of being true. To give an expression to this symbolic
ambiguity, MacColl makes a difference between two ways of being certain:

A proposition is called a formal certainty when it follows nec-
essarily from our definitions, or our understood linguistic con-
ventions, without further data; and it is called a formal impos-
sibility, when it is inconsistent with our definitions or linguistic
conventions. It is called a material certainty when it follows
necessarily from special data not necessarily contained in our
definitions. Similarly, it is called a material impossibility when
it contradicts some special datum or data not contained in our
definitions. [MacColl 1906, 97]

It appears from this distinction that a theorem is formally certain because it is
a tautology, i.e. its denial is made inconsistent by the definitions of MCL; by
contrast, a formula is materially certain because it is not tautological but yields
only truth-cases on the basis of empirical data. If one introduces a symbolic
change to bring out this difference between logical and non-logical (physical)
necessity, e.g. εf for formal certainty and εm for material certainty, theorem
(T11) should be restated as (A +A′)εf , and the theorem (15) as Aεm ∶ Aτ .

Such a precision is not gratuitous: it is essential to make sense of the way
in which MacColl thought of implication. Given that A ∶ B and AB can be
interchanged, this means that B is implied by A if and only if the class A is
included in the class B. But if so, how could the class of certainty be included
in the class of truth (by (T15)) and at the same time include it (by (T11))?
Returning to our preceding reformulation of the modalities, this entails that
a further set-theoretical definition should be introduced for formal certainty:
assuming that ε = {1.3} and τ = {1.3,1.4,1.6}, εf should be a set that includes
the set for τ . We will pursue this line in the next section.

About (MV3), thirdly. The logical matrices for MCL are functionally
incomplete, according to Simons, given that some of the operations for con-
junction and implication are left undetermined. The two cases mentioned by
Simons are gathered from counterintuitive examples. Thus, Simon concedes
that Aθ

∶ Bθ is certainly true whenever A and B are one and the same propo-
sition, for the reason that any such proposition is certainly self-identical; but
it is taken to be contingently true, if both propositions are different and not
related by a logical or causal relation. The same is said about Aθ.Bθ, on the
other hand.

Nevertheless, two replies could be given to these objections about (MV3).

On the one hand, that implication yields counterintuitive results is not
specific to MacColl’s implication and need not lead to a non-value-functional
matrix for MCL. No such matrix is explicitly given in MacColl’s writings,
unfortunately; but a recursive definition of his operations should be still in
order, if we assume the set-theoretical process of inclusion between classes as
a general pattern for his symbolic logic.



176 Fabien Schang

On the other hand, the alleged indeterminacy of Aθ.Bθ is not justified but
merely conjectured by Simons, and we suspect him of confusing variability
with probability in this respect: if the probability of A is between 1/2 and 1,
A is probable but its conjunction with another probable proposition B could
weaken the final ratio under 1/2; if so, then A = B = p and A.B = q. But
again, the indeterminacy of p.p concerns probability and does not affect the
conjunction rules for variability.

As a general result, (MV1) seems to be the most plausible objection against
the statement that MCL is many-valued: the given list of logical theorems is
not deviant from classical logic, and the set of truth-values doesn’t include
any new element independent from truth and falsehood. However, a difference
between the bivalent set of classicists and MCL lies in the process of partition.
Actually, such a division of the classes of truth and falsehood into a number
of subclasses explains the view defended by Rescher [Rescher 1969] that MCL
is both many-valued and modal: a partition augments the cardinality of the
initial set beyond two elements, and the additional elements stand for different
modes of truth.

Irrespective of the proper criteria for many-valuedness or modality, let us
see how to streamline MCL in such a way that its various theorems could be
derived from general and recursive principles.

A non-Fregean logic!

MacColl appeared as a member of the algebraic school in logic, in the
sense that he attempted to algebraize logic as Boole or Schröder did before
him. Another symptom of this was the fact that MacColl regarded logic as
a useful instrument, rather than a universal language for correct thought. It
also turns out that every many-valued logician naturally subscribes to such an
relativist or goal-dependent view of logic, by contrast to the universalist line
defended by Russell, Frege or the early Wittgenstein. One corollary of this
duality between relativists and universalists is the famous controversy between
Russell and MacColl. According to Russell, every proposition is either true
or false and cannot be anything else, unlike the previous partition of truth
and falsehood into several modes. Russell defends his point with reference to
MacColl’s semantic predications:

Either of these is a propositional function; but neither is a propo-
sition [. . . ] Thus we shall say that true and false are alone appli-
cable to propositions, while certain, variable and impossible are
applicable to ambiguous forms of words and to propositional func-
tions. [Russell 1906, 257]

Woleński [Woleński 1998] recalled that Russell reduced modalities to quan-
tifiers, while MacColl made a symbolic difference between quantification
(A1,A0,A-0

) and modality (Aε,Aη,Aπ
). But whether such a reduction is
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advisable or not is unclear: why should a strict bivalence be defended, and
doesn’t it restrict the expressive power of logic? If we assume the Platonist
view that propositions are abstract objects whose truth (or falsehood) means
the occurrence (or failure) of a one-one correspondence with facts, bivalence
naturally emerges from this alternative. Otherwise, Russell’s position needs
to be defended in practical terms of convenience: a logic with only two truth-
values should be favored because of its being equally informative and more
economical. But MacColl seemingly contests this point:

What chiefly led me to this decision was the discovery that in
dealing with implications of the higher degrees (i.e. implications
of implications) a calculus of two dimensions (unity and zero)
is too limited, and that for such cases we must adopt a three-
divisional classification of our statements. [MacColl 1897, 496]

MacColl does so in order to emphasize the way in which a proposition may be
true, i.e. certainly or variably. But this is not a sufficient reply to Russell’s
objection: to turn a modal proposition in MCL into a propositional function
in Frege-Russell’s logic makes the latter a convenient symbolism for MacColl’s
modalities. At the same time, this is a sufficient reply if one wants to distin-
guish formal from material certainty: the latter distinction cannot be rendered
by Russell’s formalism, so let us consider it in detail.

Many-valuedness usually relates to a process of partition into the set of
“truth-values”. MacColl also talks about a number of “dimensions” related to
this process. There are three dimensions in MCL, i.e. three modes of being
true or false, while only two dimensions are explored in a two-valued logic.
But to call MCL a three-dimensional logic seems strange, if five semantic
predicates can be predicated of a term. The reason for such a cardinality is
that, according to MacColl:

Comme termes et comme facteurs, τ et ι sont équivalents re-
spectivement à ε et η; mais pas toujours comme exposants. Car
comme terme ou facteur (puisque A veut dire Aτ ), τ = τ τ

= ε, et
ι = ιτ = η. [MacColl 1901, 140]

Once the predicate terms are thus restricted to three irreducible elements,
MacColl suggests a generalization from 3- to 3n-dimensional logics [MacColl
1897, 509]. There are further irreducible modes for the modes of being true,
including these predicates that anticipate the modern epistemic modal logic:
known to be true (κ), known to be false (λ), or doubtful (µ), i.e. neither known
to be true nor known to be false. Thus a proposition A can be known to be
true certainly (Aεκ), doubtfully impossible (Aηµ), etc., within a larger set of
3 × 3 = 9 higher-order modalities combining n = 2 groups of alethic (ε, η, θ)
and epistemic (κ,λ,µ) modalities. While such an increasing partition would
have been accused of psychologism by Russell, it clearly appears that MCL
does not have a fixed number of truth-values but makes room for a family
of multiple-valued languages: it is not a many-valued logic, or a deductively
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closed language where new truth-values would be added to truth and falsehood;
rather, it is an open language in which the set of semantic predicates includes
more than two elements and can expand indefinitely the basic values of truth
and falsehood.

We want now to clarify this open language as a product system, in order
to see which sort of deductively closed logic MCL could amount to.

For this purpose, let us introduce a non-Fregean logic of modalities: an
algebraic logic in which the values that interpret the propositional variables
are not Fregean “truth-values”. In other words: the following logical values
won’t be “truth-values” including truth and falsehood but, rather, ordered
n-tuples of answers R to corresponding questions Q about the propositions.
Such a device is closely related to “many-valued” systems (or, better, multiple-
valued, if one takes (MV1) into account) that had been elaborated before
the rise of possible-world semantics, especially by Prior [Prior 1955; 1957] or
Łukasiewicz [Łukasiewicz 1920]; but it also occurs in Nuel Belnap’s four-valued
logic FDE, where two main questions are asked about the state of information
of a computer [Belnap 1977].

Let W = {w1,w2} be a set of two states of affairs. Then two questions are
asked about modalities, i.e. the mode of truth of a proposition A, namely: q1 =
“Is A true in w1?”, and q2 = “Is A true in w2?”. Assuming that each question
results in a yes-no answer (with 1 for “yes” and 0 for “no”), there are two
questions and two possible answers for each question; we thus obtain a set of
22
= 4 ordered answers within a general framework of mn-valued logics (where

n is the cardinality of Q and m is the cardinality of R), that is: (11), (10), (01),
and (00). Most of MacColl’s modalities can be rendered by these new logical
values: R(ε) = (11), R(θ) = (10) or (01), and R(η) = (00). The trouble is that
such a valuation is both incomplete and non-value-functional: variability is
given two synonymous values instead of only one; truth and falsehood cannot
appear in this valuation, given that they are singular predications about actual
states of affairs. This establishes the fact that a probabilistic understanding
of MCL is not sufficient to account for the meaning of MacColl’s modalities:
the mode of a truth differs from its frequency.

An alternative set of questions-answers can be found in [Smessaert 2009],
giving rise to an alternative semantics (see [Schang 2011]) and characterizing
modalities as generalized quantifiers. In order to express the modes of truth
and falsehood, generalized quantification proceeds by subsuming an indefinite
number of truth-cases under four subclasses. The ensuing questions are: q1
= “Is A always false?”, q2 = “Is A actually (but not always) false?”, q3 = “Is A
actually (but not always) true?”, and q4 = “Is A always true?”.

For every pair of propositions A and B, the various operations of MCL
can be performed upon their values R(A) and R(B) within a Boolean algebra
(∩,∪,⊂,–,1,0). Thus:

1 ∩ y = y and 0 ∩ y = 0; 1 ∪ y = 1 and 0 ∪ y = y

−(r) = 0 if and only if r = 1, and − − (r) = r
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For every value R(A) = (r1(A), r2(A), r3(A), r4(A)) and every binary op-
eration ○ ∈ (∩,∪,⊂):

R(A)○R(B) = (r1(A)○r1(B), r2(A)○r2(B), r3(A)○r3(B), r4(A)○r4(B))

R(AB) = R(A) ∩R(B)

R(A +B) = R(A) ∪R(B)

R(A′) = (−r1(A),−r2(A),−r3(A),−r4(A)).

Then each of MacColl’s five modalities can be reformulated as follows:

R(ε) = (0001), R(η) = (1000), R(τ) = (0011), R(ι) = (1100), and R(θ) =
(0110).

The above questions do not serve to characterize the probabilistic values p
and q, however: these need a questioning about all the n particular cases that
are not sorts of cases, so that R(A) = (r1(A), . . . , rn(A)) for p and q.

These valuations also coincide with the set-theoretical definition of im-
plication as inclusiveness. Hence the following Boolean definition (where
R(A) ≠ R(B)):

R(A ∶ B) = R(A) ⊂ R(B), i.e. −(R(A) ∩ −R(B)) or (−R(A) ∪ R(B)).

This calculus entails two further things. Firstly, implication is such that
every yes-case of the antecedent is also a yes-case of the consequent, following
the set-theoretical view of implication as total inclusion. That is:

(A ∶ B) holds if and only if R(A)∩R(B) = R(A) andR(A)∪R(B) = R(B).

Secondly, the difference between material and formal certainty clearly ap-
pears in the above valuation: R(εm) = (0001), and R(εf) = (1111). Recalling
a statement of the previous section, this makes apparent that a theorem is cer-
tain in the sense of including only yes-answers in its logical value, and not in
the sense of being a special mode of truth. Taking theorems (T11) and (T13)
again, these respectively mean that the sum or the product of two contradic-
tory terms A and A′ is formally certain or impossible for any logical value of
A: R(A +A′) = (1111) and R(AA′) = (0000) for any R(A).

If this non-Fregean valuation does justice to MacColl’s theorems and its
view of theoremhood as formal certainty, it also means that the preceding set
Five is largely incomplete: the number of questions and possible answers is
such that there should be a total number of mn

= 42
= 16 modalities, including

the five or three elements MacColl usually brought out in his writings. A

presentation of these values can be made by means of the following Hasse
diagram [Fig. 5], where each value is classified according to its number of
yes-cases.

The lines of the Hasse diagram form implicational relations A ∶ B from
bottom to top, such that the consequent B is above its antecedent A. This
diagram also shows that logical truth (⊺) is implied by everything and logical
falsehood (⊥) implies everything, together with a number of other theorems
like (T20) ε ∶ A = Aε, (T21) A ∶ η = Aη, (T22) Aε = A and (T23) Aη = η.
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(0000) = R(τ) ∩ R(ι) = R(ηf ) = R(⊥) (1001) = −R(θ) = R(-θ)
(0001) = R(ε) (1010) = R(η) ∪ R(τ -ε) = R(η + τ -ε)
(0010) = R(τ -ε) (1100) = R(η) ∪ R(ιη) = R(η + ι-η) =

R(ι)

(0100) = R(ι-η) (0111) = R(θ) ∪R(ε) = R(θ+ε) = R(π)

(1000) = R(η) (1011) = R(η) ∪ R(τ) = R(η + τ)

(0011) = R(τ -ε) ∪ R(ε) = R(τ -ε + ε) =
R(τ)

(1101) = R(ι) ∪ R(ε) = R(ι + ε)

(0101) = R(ι-η) ∪ R(ε) = R(ι-η + ε) (1110) = −(R(ε)) = R(-ε) = R(u)
(0110) = −(R(η) ∪ R(ε)) = −R(η) ∩

−R(ε) = R(θ)

(1111) = R(τ) ∪ R(ι) = R(εf ) = R(⊺)

Turning again to the logical oppositions between MacColl’s modalities, the
corresponding logical values give rise to an algebraic characterization of the
four Aristotelian oppositions. Namely:

Contrariety: A and B are contrary to each other iff R(A) ∩ R(B) =

(0000) and R(A) ∪ R(B) ≠ (1111)
Contradiction: A and B are contradictory to each other iff R(A) ∩

R(B) = (0000) and R(A) ∪ R(B) = (1111)
Subcontrariety: A and B are subcontrary to each other iff R(A) ∩

R(B) ≠ (0000) and R(A) ∪R(B) = (1111)
Subalternation: B is subaltern to A iff R(A) ∩ R(B) ≠ (0000) and
R(A) ∪ R(B) ≠ (1111) 2

In the light of this exhaustive list of ordered answers, it clearly appears that
some of the sixteen modalities are produced by meeting or joining some more
basic ones: despite their symbolic appearance of simplicity, τ and ι are not
basic modalities (with only one yes-case) because they equate respectively with
the sum of merely actual truth and necessity or merely actual falsehood and

2. Strictly speaking, this algebraic definition of subalternation also includes the
merely non-contradictory cases that do not form either a subalternation or a subcon-
trariety relation (see footnote 1).
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impossibility. Moreover, this complete representation entails that Woleński’s
octagon is partial and should be completed by the tetraicosahedron of Alessio
Moretti [2009] and its 120 logical oppositions 3 [Fig. 6] (only subalternations
and some of the contradictory relations are drawn here, for sake of clarity):

Contraries (18): {ε, τ -ε}; {ε, ι-η}; {ε, η}; {ε, θ}; {ε, ι}; {ε, η + τ -ε};
{τ -ε, ι-η}; {τ -ε, η}; {τ -ε, ι-η + ε}; {τ -ε, ι}; {τ -ε, -θ}; {ι-η, η}; {ι-η, τ}; {ι-η, η +
τ -ε}; {ι-η, -θ};{η, τ}; {η, ι-η + ε}; {η, θ}

Subcontraries (17): {τ,u}; {τ, ι+ε}; {ι-η+ε,u}; {θ, η+τ}; {θ, ι+ε}; {ι, π};
{ι, η + τ}; {η + τ -ε,π}; {η + τ -ε, ι + ε}; {-θ,π}; {-θ,u}; {π, η + τ}; {π, ι + ε};
{π,u}; {η + τ, ι + ε}; {η + τ,u}; {ι + ε,u}

Contradictories (8): {ε,u}; {η,π}; {-θ, θ}; {τ, ι}; {τ -ε, ι + ε}; {ι-η + ε, η +
τ -ε}; {η + τ ; ι-η};{⊺,⊥}

Subalterns (65): {ε, τ}; {ε, ι-η + ε}; {ε, -θ}; {ε,π}; {ε, η + τ}; {ε, ι + ε};
{τ -ε, τ}; {τ -ε, θ}; {τ -ε, η + τ -ε}; {τ -ε,π}; {τ -ε, η + τ}; {τ -ε,u}; {ι-η, ι-η + ε};
{ι-η, θ}; {ι-η, ι}; {ι-η,π}; {ι-η, ι+ε}; {ι-η,u}; {η, ι}; {η, η+τ -ε}; {η, -θ}; {η, η+
τ}; {η, ι+ε}; {η,u}; {τ,π}; {τ, η +τ}; {ι-η+ε,π}; {ι-η+ε, ι+ε}; {θ,π}; {θ,u};
{ι, ι + ε}; {ι, u}; {η + τ -ε, η + τ}; {η + τ -ε,u}; {-θ, η + τ}; {-θ, ι + ε}; {⊥,X} and
{X,⊺} (for every other modality X)

Mere non-contradictories (12): {τ, ι-η + ε}; {τ, θ}; {τ, η + τ -ε}; {τ, -θ};
{ι-η + ε, θ}; {ι-η + ε, ι}; {ι-η + ε, -θ}; {ι-η + ε, η + τ}; {θ, ι}; {ι, η + τ -ε}; {ι, -θ};
{η + τ -ε, -θ}

The difference between internal and external negation is also made ap-
parent by the oppositions of non-Fregean values: by reference to Piaget

3. Note that the modalities ⊺ and ⊥ stand in a contradiction and subalternation
relation at once.
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[Piaget 1949], these negations correspond respectively to the two distinct op-
erations of reciprocity and inversion in Piaget’s INRC Group. Let R(AX

) =

(r1(A
X
), r2(A

X
), r3(A

X
), r4(A

X
) be the general form of the logical value of

a proposition AX . Then we have the following characterizations of internal
negation (A′X) and external negation (A-X

):

Internal negation: R(A′X) = (r4(AX
), r3(A

X
), r2(A

X
), r1(A

X
))

External negation: R(A-X
) = (−r1(A

X
),−r2(A

X
),−r3(A

X
),−r4(A

X
))

Let us take the example of certainty AX
= ε, where r1(ε) = r2(ε) = r3(ε) =

0 and r4(ε) = 1. Then its internal negation is an impossibility: R(A′X) =
(r4(ε), r3(ε), r2(ε), r1(ε)) = (1000) = R(η); whereas its external negation is
an uncertainty: R(A-X

) = (−r1(ε),−r2(ε),−r3(ε),−r4(ε)) = (1110) = R(u).
It is worth noting that internal negation corresponds to a contrariety-forming
operator, whereas external negation is a contradiction-forming operator. This
logical difference will be reviewed later, since MacColl made an essential use
of internal negation to validate its theorems.

However useful this non-Fregean calculus may be with its Boolean un-
derstanding of MacColl’s modalities, it gives rise to problems in two other
respects: certainty, and denial.

The first difficulty concerns the ambiguity of MCL about certainty: al-
though MacColl didn’t make any symbolic distinction between the material
and formal sense of certainty, the theorems (T22) Aε = A and (T23) Aη = η
cannot be validated with the material sense if one sticks to our non-Fregean val-
uation. For if so, thenR(Aε) = R(A)∩R(ε) = R(A)∩(0001) = (0000) whenever
r4(A) = 0, so that Aε ≠ A; and R(Aη) = R(A)∩R(η) = R(A)∩(1000) = (0000)
whenever r1(A) = 0, so that Aη ≠ η. Nevertheless, the theorems are preserved
if ε is equated with formal certainty, and it should be the case from an intuitive
standpoint: the above theorems (T22) and (T23) suggest that each product
takes the lowest value of its factors, and each sum the greatest; this is in accor-
dance to our preceding Hasse diagram, where the supremum is not a material
but a formal certainty. This does not involve any cancellation of material
certainty, of course, given that MacColl repeatedly enhanced the opposition
between two modes of certainty. A way to reconcile our formal reading of the
theorems with the occurrence of material instances is to read the former as a
case of relative necessity. Recall that MacColl endorsed the reduction of five
to three main modalities (ε, η, θ) whenever the modalities occur as terms of
factors. It is because a statement is given to be certainly true if given as true
(τ = τ τ

= ε), certainly false or impossible if given as false (ι = ιτ = η), and
variable if given as variable (θ = θτ

= θ). Again, the equivalence between A

and Aτ stems from the nature of statement as a truth-claim. But the resulting
certainty of τ τ has nothing to do with the probabilistic meaning of material
necessity; rather, it has to do with the formal certainty for a statement to be
claimed to be true when taken to be true, or the formal impossibility for a
statement to be claimed to be true when taken to be false. Thus MacColl
argues that:
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If at the moment the servant tells me that “Mrs. Brown is not at
home” I happen to see Mrs. Brown walking away in the distance,
then I have fresh data and form the judgment Aε, which, of course,
implies Aτ . In this case I say that “A is certain”, because its
denial A′ (“Mrs. Brown is at home”) would contradict my data,
the evidence of my eyes. [MacColl 1906, 19]

It is not the datum that is certainly true, but the linguistic rule to the effect
that I state a corresponding proposition to be true once I have evidence for
its truth. This rule implicitly obtains behind MacColl’s symbolic language,
where no clear reference is made about when a proposition occurs as a neutral
propositional function or a statement taken to be true. Our context-sensitive
account of certainty also argues for a formal reading of ε, since R(τ τ

) =

R(τ ∶ τ) = −R(τ) ∪R(τ) = −(0011) ∪ (0011) = (1100) ∪ (0011) = (1111).

The second difficulty is an ambiguity in the meaning of denial. Does
MacColl make an external or internal use of negation, in his definition of
implication? Departing from his contemporary symbolic logicians (including
Schröder) who view implication as a total inclusion of the antecedent into the
consequent, MacColl said that A implies B if and only if it is impossible for
A to be affirmed and B to be denied. In symbols: A ∶ B = (AB′)η. Although
the denial of B should refer to the external negation, as it will be in the later
version of modal logic by Lewis, MacColl makes an essential use of internal
negation to establish some of his theorems. An example is the paradox of strict
implication, according to which certainty is implied by everything. Thus for
every A in MCL, (A ∶ ε) = (Aε′)η = (Aη)η = (η)η = ε. The question is: why
does one have ε′ = η, rather than ε′ = -ε = u? While MacColl patently needs an
internal use of denial to validate this theorem, he argues for it for vernacular
reasons:

Some persons might reason, for example, that (. . . ) the denial
of a possibility is not merely an uncertainty but an impossibility.
A single concrete example will show that the reasoning is not
correct. The statement “It will rain tomorrow” may be considered
a possibility ; but its denial “It will not rain tomorrow”, though an
uncertainty is not an impossibility. [MacColl 1906, 15]

Two objections can be made to this explanation. On the one hand, Woleński
[Woleński 1998] rightly notes that MacColl here confuses possibility and vari-
ability: the statement “It will rain tomorrow” is neither impossible nor certain,
hence variable (and uncertain, since θ ∶ u); its denied form “It will not rain
tomorrow” is equally variable, because this statement claims something for
which no present datum is available at the time of its utterance. While it is
admittedly more difficult to find a natural sentence that expresses possibility
without being variable, the point is that the making of a negative statement
naturally leads to an internal use of negation: “2+3 equals 5” is a certain
statement and “2+3 does not equal 5” is an impossible statement, in the sense
that the former is a truth-claim of something given as certain and the latter
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is a truth-claim of something given as impossible (by mathematical defini-
tion). Therefore, the context-sensitive interpretation of MacColl’s modalities
implicitly favors an internal use of negation; but this does not mean that every
proposition of MCL occurs as a statement rather than a propositional function
without any underlying truth-claim. Rather, a fair definition of implication
should be such that no special use of negation should be preferred to the other
one for merely vernacular reasons.

On the other hand, we suspect MacColl of assuming a material interpre-
tation of certainty in the following objection to implication as total inclusion:

If the statement A ∶ B be always equivalent to the statement A�B,
the equivalence must hold good when A denotes η, and B denotes
ε. Now, the statement η ∶ ε, by definition, is synonymous with
(ηε′)η, which only asserts the truism that the impossibility ηε′ is
an impossibility [. . . ] But by their definition the statement η � ε

asserts that the class η is wholly included in the class ε(. . . ) Thus,
η ∶ ε is a formal certainty, whereas η � ε is a formal impossibility.
[MacColl 1906, 78]

Not only does MacColl’s “truism” rely upon an exclusively internal use of
negation such that ε′ = η; but his conclusion is wrong so long as ε is read as
formal certainty while denial is applied externally. For then the validity of η ∶ ε
trivially states that −Rη ∪R(ε) = −(1000)∪ (1111) = (0111) ∪ (1111) = (1111).
We find here a reason to adopt a purely set-theoretical logic of modalities in
terms of class inclusion: MacColl wanted to introduce another definition of
implication in order to avoid a supposedly formal impossibility, but he did so by
assuming internal negation and for a partial motivation, i.e. the vernacular use
of denial upon context-sensitive statements. Rather, our non-Fregean device
validates the theorems of MCL by restoring the external use of denial in the
definition of implication and favoring a formal sense of certainty for the same
reasons as MacColl made a privileged use of internal negation: statements
are given as certainly true in a context relative to given data, whereas the
material sense of certainty still holds for other theorems of MCL (as with the
T-characteristic theorems (T15) Aε

∶ Aτ and (T16) Aη
∶ Aι). It is at this price

of a relative use of denial and modalities that MCL can be streamlined into a
genuinely algebraic logic of classes.

Conclusion: an algebraized logica utens

This paper attempted to throw some new light on MacColl’s modes of
modalities, i.e. the way in which the various modes of being true (or false)
proceeded in his logical writings. Let us recapitulate our six main theses.

1. MCL is not so much a logic as a symbolic language: following a dis-
tinction of Peirce’s, it is not a logica docens, or abstract logic without implicit
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assumptions, but a logica utens whose results rely upon a pre-theoretical use
of its symbols. MacColl’s logic was not so much a closed set of theorems as a
list of various implications whose explanation is not given by a totally “blind”
calculus but supported by linguistic considerations. The reduction from five
to three modalities witnessed this pre-theoretical use of statements as context-
sensitive truth-claims.

2. MCL is a modal logic, in the sense that it mainly deals with modes
of truth. But MacColl’s modalities don’t proceed like quantifiers: they occur
as inclusion relations, and such a modal logic cannot be formalized in the
same way as modern modal logics. The difference between iterated modalities
and higher degree statements witnessed this crucial difference between modal
predicates and modal operators.

3. MCL is not a many-valued logic if, by ‘many-valued’, we mean a non-
classical set of theorems that includes further elements beyond truth and false-
hood. Rather, it proceeds by a partition within these two basic elements and
results in an enlarged set of multiple modes of being true or false. A better
name for this logic of partitioned classes could be multiple-valued logic, whose
theorems are a modal extension of classical logic but whose non-bivalent val-
uation is akin to many-valuedness.

4. MCL could be viewed as a non-Fregean logic, where the logical values
are not truth-values but ordered answers about generalized quantifiers. The
result is a multiple-valued system, doing justice to the usual view that MacColl
was a father of both modal and many-valued logic. It also helps: to locate
the five initial modalities within a range of sixteen logical values, to introduce
a Boolean calculus for the demonstration of MacColl’s theorems and, finally,
to take seriously the difference between formal and material certainty as an
explicit difference in their corresponding values: (1111) and (0001).

5. Our non-Fregean reconstruction showed that MacColl’s definition of im-
plication in terms of denial and impossibility was superfluous in two respects:
on the one hand, a set-theoretical definition in terms of total inclusion fills the
bill of obtaining the ensuing theorems of MCL; on the other hand, the use of
internal negation can be avoided and replaced by external negation under the
proviso that impossibility is read formally.

6. If we are right, then MacColl’s modes of modalities can be streamlined
into a pure algebraic logic. Such a result should be in perfect harmony with the
theoretical background of MacColl, namely the work of Boole and Schröder,
as well as that of John Venn and Louis Couturat.

It is commonly said that history is written by its winners; this is equally
true for the history of logic, where the victory of Russell’s ideas has largely
eclipsed MacColl’s writings but does not annihilate their explanatory value.
The same holds in modal logic, where the victory of Kripke’s possible-worlds
semantics has totally eclipsed the algebraic writings about modalities by
Tarski, McKinsey, Thomason or Lemmon. We hope to have recalled their
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relevance in this paper, through the logical legacy of MacColl as a peculiar
father of algebraic modal logic.
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