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Abstract In the International System of Units (SI), ‘meter’ is defined in terms of
seconds and the speed of light, and ‘second’ is defined in terms of properties of cesium
133 atoms. I show that one consequence of these definitions is that: if there is a minimal
length (e.g., Planck length), then the chances that ‘meter’ is completely determinate
are only 1 in 21,413,747. Moreover, we have good reason to believe that there is a
minimal length. Thus, it is highly probable that ‘meter’ is indeterminate. If the meter
is indeterminate, then any unit in the SI system that is defined in terms of the meter is
indeterminate as well. This problem affects most of the familiar derived units in SI. As
such, it is highly likely that indeterminacy pervades the SI system. The indeterminacy
of the meter is compared and contrasted with emerging literature on indeterminacy in
measurement locutions (as in Eran Tal’s recent argument that measurement units are
vague in certain ways). Moreover, the indeterminacy of the meter has ramifications for
the metaphysics of measurement (e.g., problems for widespread assumptions about
the nature of conventionality, as in Theodore Sider’s Writing the Book of the World)
and the semantics of measurement locutions (e.g., undermining the received view that
measurement phrases are absolutely precise as in Christopher Kennedy’s and Louise
McNally’s semantics for gradable adjectives). Finally, it is shown how to redefine
‘meter’ and ‘second’ to completely avoid the indeterminacy.
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Synthese

0 Introduction

The International System of Units (SI) is the global standard for measurement. As of
2017, it has been adopted by every nation on Earth except Myanmar, Liberia, and the
United States of America as its official system of measurements, and even in these
exceptions, it is unofficially adopted by scientists, engineers, and just about anyone
else who is interested in precise measurement. Moreover, it is not as if these rogue
nations reject the SI system—they just do not take the units of the SI system to be
their official units of measurement. (For example, the United States of America uses
miles.) The fundamental SI unit of length is the meter. Of course, one can define
derivative units in terms of meters (e.g., nanometer, kilometer, inch, and megaparsec);
for example, since 1959, an inch has been defined as exactly 0.0254 m. Thus, even the
rogue nations accept what I will call a standard unit of length (i.e., any unit of length
definable in terms of the meter).

Itis tempting to think that the meter is perfectly determinate. Indeed, this seems to be
a common view amongst those who even pause to consider the issue.! However, there
is a good—although not definitive—reason to think that the meter is indeterminate. It
follows that any standard unit of length is indeterminate as well. To be more precise,
it is very likely that the meter is indeterminate; thus, probably, any standard unit of
length is indeterminate as well.

The indeterminacy of the meter has significant consequences for several philosophi-
cal disputes. For example, in Theodore Sider’s recent influential book on metaphysical
disputes, he introduces the notion of structure, which is supposed to be a generaliza-
tion of naturalness. Sider makes several claims about the features of structure, but
two of them are that the linguistic expressions that are indispensible for formulating
our best physical theories are structural, and what is structural is completely determi-
nate.> Another example is the received view on the semantics of measure phrases. The
semantics defended by Christopher Kennedy and Louise McNally for gradable adjec-
tives entails that phrases like ‘one meter long’ are perfectly determinate.® If ‘meter’
is indeterminate, then some central views in metaphysics and semantics are unaccept-
able. Before presenting the argument, we need to get clear on the SI system of units
and discuss what it is for something to be a minimal length.

1 The meter

Over the last sixty years, the official definition of ‘meter’ has changed several times.
Those philosophers influenced by Saul Kripke but unfamiliar with the actual history
of how ‘meter’ has been defined might think that ‘meter’ is defined by as the length

1 Examples include Kennedy and McNally (2005b) and Sider (2011) For opposition, see Tal (2011).
2 Sider (2011: pp. 19-20, 2011: p. 137).
3 Kennedy and McNally (2005b) and Kennedy (2007).
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of a particular physical rod dubbed the standard meter.* However, when Kripke used
this example in his 1970 lectures that were published as Naming and Necessity, it was
already a decade out of date. From 1960 to 1983 ‘meter’ was defined as 1,650,763.73
wavelengths of the orange-red emission line in the electromagnetic spectrum of the
krypton-86 atom in a vacuum. Since 1983, the official definition of ‘meter’ has been:

(Meter) One meter = the distance light travels in 1/299,792,458 of a second in a
vacuum.

Thatis, (Meter) defines ‘meter’ in the SI system of units, which enjoys almost universal
acceptance (and even where it is not officially recognized, one can define the recog-
nized units of length in terms of meters). According to (Meter), ‘meter’ is defined, in
part, in terms of seconds. So the next question to ask is: what is a second?

The history of the official definition of ‘second’ is almost as convoluted as that of
‘meter’, but the current definition of ‘second’ is:

(Second) One second = the duration of 9,192,631,770 periods of the radiation
corresponding to the transition between the two hyperfine levels of the
ground state of a cesium 133 atom at rest at a temperature of 0 K.

This definition is considerably more complex than (Meter). Cesium atoms, like all
atoms, have electrons and a nucleus composed of neutrons and protons; the electrons
generate a magnetic field, with which the nucleus interacts. This field generates what
are called hyperfine structure effects. One of these effects is a transition associated
with splitting the energy levels of the electrons. When this transition occurs while the
cesium 133 atom is in its ground state at 0 K, the cesium atom emits electromagnetic
radiation. This radiation has a certain wavelength and a certain period, which is the time
it takes to oscillate once. A second is defined as the length of time of 9,192,631,770 of
these periods. In what follows, I use ‘cesium period’ as an abbreviation for ‘period of
the radiation corresponding to the transition between the two hyperfine levels of the
ground state of a cesium 133 atom at rest at a temperature of 0 K’. It is these official
definitions of ‘meter’ and ‘second’ that are in play throughout what follows until the
final section where I suggest two new definitions.

To return to our topic, when we put (Meter) and (Second) together, we derive the
following identity:

(Meter*) One meter = the distance light travels in the duration of 9,192,631,770/
299,792,458 cesium periods.

How many cesium periods is that? Between 30 and 31. In fact, it is 30 and
198,858,030/299,792,458 cesium periods (roughly, 30.6633189884 cesium periods);
or, to use the reduced fraction, it is 30 and 14,204,145/21,413,747 cesium periods.
To be clear: (Meter*) is not a definition of ‘meter’. It is a logical consequence of
the definitions of ‘meter’ and of ‘second’. We can already see a potential problem.
For ‘meter’ to be completely determinate, it had better be the case that every single
cesium 133 atom at 0 K transitions in the way in question every single time in exactly

4 See Kripke (1972/1980: pp. 54-63, 75, 96, 107). Kripke borrows the example from Wittgenstein, who
used it in Wittgenstein (1953: section 50). Since Kripke’s work, the example has often been used in debates
about whether there are a priori contingent truths; that topic is not our focus here.
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the same amount of time, no matter how precise we are about an “amount of time”.
This assumption built into the official definition of ‘meter’ might be implausible.
Nevertheless, in the remainder of the paper, I grant it for the sake of bringing out a
different (and what I take to be more fundamental) problem.

2 The minimal length

The Planck length is defined as the square root of the product of the gravita-
tional constant and the reduced Planck’s constant over the speed of light cubed.
We can measure all three of these fundamental physical constants, and, so,
we can calculate the value of the Planck length, which turns out to be about
1.616199 x 10735 m. Without the benefit of scientific notation, Planck length is about
0.00000000000000000000000000000000001616199 m. (There is a gigantic margin
of error, which is about .000097 x 10~ m due to the margin of error in measuring
the gravitational constant.)’

Related to the Planck length is the Planck time, which is the time it takes light
in a vacuum to travel one Planck length.® It turns out to be about 5.391 x 10~** s,
or 0.00000000000000000000000000000000000000000005391 s. One can derive the
Planck time from the same three fundamental constants (the square root of the product
of the gravitational constant and the reduced Planck’s constant over the speed of light
to the fifth).”

When discussing Planck length or Planck time, one has to be extremely careful to
get the physics right. What, then, is their significance? The short answer is: we don’t
know. Planck length is an interesting length for one because it is defined entirely in
terms of physical constants rather than arbitrary features of aspects of the universe

5 In the interest of clarity, I avoid sarcasm and irony—the margin of error is very large compared to the
numerical value of the constant in question.

6 Strictly speaking, the term ‘Planck time’ is a misnomer. Space is associated with length (or distance—
recall that these terms are synonyms), and length is a quantitative relation among points in space. One can
define various units for measuring length, like the meter, which is the topic of the present investigation.
This three-part distinction between space, length (a quantitative relation among points in space), and meter
(a unit for measuring length) is essential to respect in order to avoid confusion. Notice that the most famous
choice for a minimal length is the Planck length. The term ‘length’ is in the name, and this is exactly right.
However, when we come to the term ‘Planck time’ we see immediately that there is a problem. For time,
we have the same three-part distinction between time, duration (a quantitative relation among points in
time), and second (a unit for measuring duration). The Planck length is a particular length—that is it is a
particular value of the relation among points in space. Hence, the phrase ‘Planck length’ is appropriate. On
the other hand, the temporal analog of the Planck length is called the Planck time, but it should be clear
now that this expression is confused. It should be ‘Planck duration’, not ‘Planck time’. The phrase ‘Planck
time’ would be most intuitively interpreted as referring to either a particular dimension (e.g., ‘real time’ or
‘imaginary time’) or perhaps a particular temporal point, just like ‘tea time’. Unfortunately, it seems like
the term ‘Planck time’ is firmly entrenched, but is important for the reader to keep in mind that it refers to
a certain duration, not a certain instant or moment in time.

7 A value that is about midway between the Planck time and the current age of the universe (on a logarithmic
scale) is on the order of 100 femtoseconds (a femtosecond is 10~15 s), which is about the duration of one
pulse of our most sophisticated lasers today. The shortest time interval that we are capable of measuring
right now is only about 10,000 times shorter at 12 attoseconds (an attosecond is 10718 5); see Koke et al.
(2010). There are 26 orders of magnitude between an attosecond and the Planck time.
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(e.g., arbitrary numbers of cycles of light or the distance light travels in some arbitrary
period). Given the significance of the gravitational constant (i.e., the strength of the
gravitational force), the reduced Planck constant (i.e., the smallest possible change in
angular momentum), the speed of light (i.e., the invariant velocity), and the fact that
the Planck length is the natural unit of length that is defined in terms of these constants,
it has a natural significance. In other words, if one takes the gravitational constant, the
reduced Planck constant, and the speed of light as units of force, angular momentum
(action), and velocity, respectively, to define a system of units (often called natural
units) then the Planck length is the unit of length and the Planck time is the unit of
duration in this system.® In a system of this sort, many natural laws have simpler
formulations. Beyond that, there is nothing significant about the Planck length that
one can glean from its definition alone.

The Planck length is often said to be a minimal length and the Planck time a
minimal duration. However it is rarely made clear what is meant by these claims.
Neither of the two major traditions in contemporary physics, Quantum Mechanics
(and its development into Quantum Field Theory and the Standard Model of Particle
Physics) and Relativity (and its development from Special to General and into the
Standard Model of Cosmology), imply anything in particular about the Planck length,
nor does either one by itself imply that there is a minimal length. Instead, the definition
of the Planck length borrows from each theory. Quantum Mechanics (QM) and General
Relativity (GR) are notorious for being incompatible, but the incompatibility is rather
subtle and complex. It is not as if one of them states that p and the other states that
not p, which would make them just flat inconsistent. Instead, one can use parts of one
and parts of the other to get meaningful results (as many of the arguments below will
illustrate). However, if one uses the wrong parts, the one gets nonsensical results.”

The Planck length has a certain significance that derives from QM and GR
together—it is significant because one can argue from certain aspects of QM and
GR that there is a minimal length (in a sense to be clarified below) and that it is
near the Planck length (by ‘near’ I mean within a couple of orders of magnitude).
Moreover, the Planck length is the scale below around which one needs a successor to
both QM and GR to figure out what happens (i.e., the nonsensical answers one some-
times gets from combining QM and GR occur for phenomena at the Planck length
and smaller). There are many theories that are designed to incorporate some aspects
of QM and some aspects of GR without causing these problems. It is common to call
these theories of quantum gravity (although that can be misleading because ‘quantum
gravity’ sometimes refers to specific ones of these theories). They include loop quan-
tum gravity, superstring theory, noncommutative geometry, causal sets, and doubly

8 Note that this Planck scale is not the only one that could be called natural. The Compton scale (defined
in terms of electron mass and electron charge) is as well; see Sidharth (2006) for discussion. The Planck
length attracts much more attention than the Planck time, but see He (2009) and Wetterich (2012) on Planck
time.

9 QMand special relativity are compatible, and Quantum Field Theory (QFT) is usually thought of as their
unification. See Callender and Huggett (2001: pp. 3—13) and Rovelli (2004) for discussion.
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special relativity (I discuss some of these below).!? Many of these successor theories
imply that there is a minimal length (often in very strong ways) and many also imply
that it is near the Planck length. So, the significance of the Planck length is subtle
and depends on whether one is considering just its definition, some aspects of QM
and GR, or quantum gravity.'! As such it can be misleading to say that a theory of
quantum gravity entails that the Planck length is a quantum of spacetime—it is better
to say that the theory entails that there is a minimal length and that it is near the Planck
length. For this reason and the fact that a more general presentation will be beneficial
later, I focus on whether there is a minimal length, regardless of whether it happens
to be identical to the Planck length. I designate the minimal length €.

There are several things one might mean by saying that £y is the minimal length
or distance.'> One might mean that:

(1) spacetime is quantized or granular or discrete (one sees all these terms in the
literature), which entails that spatial quantities come in chunks and can only have
values that are multiples of £y;.

(2) ‘distance’ has no meaning for values less than £;.!3

(3) there is no such thing as a distance shorter than £y;.

(4) it is impossible to measure a distance less than £y.

(5) any scale to measure length must have a minimal value of ¢p; (i.e., have a unit
that is an integral multiple of £y).!*

Some discussion of these minimal length theses is in order.

(1) Spacetime is quantized This is a claim exclusively about the physical world—it
says nothing at all about how we think about the physical world or how we represent
the physical world or about the language we use to talk about the physical world.
It also says nothing at all about our knowledge of the physical world. In essence, it
says that spacetime has a particular structure, namely, that there is no such thing as a
distance that is not an integral multiple of the minimal distance. We might formulate
this point in terms of existence—the only lengths or distances that exist are those that
are integral multiples of the minimal length. There exist no other distances.

We already know (or at least we have a colossal amount of evidence to support) that
certain things are quantized, like the energy of an atom and the frequency of light. The
claim about spacetime being quantized is meant to be similar to these familiar claims.
The claim that energy is quantized comes down to the claim that it is impossible for
there to be certain energy states; as something changes energy, the increase or decrease

10 Baez (2000) on loop quantum gravity, Ng (2011) on superstring theory, Majid (2000) on noncommutative
geometry, Sorkin (2005) on causal sets, and Burton (2009) on doubly special relativity.

1 Other aspects of the Planck length’s significance are: (i) a minimum wavelength for photons—see
Amelino-Camelia (2003) and Pesci (2011), (ii) as the scale of spacetime foam and related phenomena
like the holographic principle, the cosmological constant, and dark energy—see Nieto et al. (2007) and
Ng (2011), and (iii) as an invariant length in doubly special relativity—see Rovelli and Speziale (2002),
Amelino-Camelia (2003) and Burton (2009).

12 See Hossenfelder (2013: pp. 5-15) for a history of the idea.

13 Tuse ‘length’ and ‘distance’ interchangeably in what follows to refer to a scalar quantity, which should
be distinguished from displacement, a vector quantity.

14 yisan integral multiple of y iff there is an integer n such that yn = x.
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in energy occurs in “packets” or quanta. It is impossible for there to be an energy state
in between the units of the quanta. Likewise, the claim that spacetime is quantized
comes down to the claim that it is impossible for there to be certain distances or
durations; as the spatial distance between two things changes or the temporal interval
between two things changes, the increase or decrease in distance or duration occurs in
“packets” or quanta. It is impossible for there to be a distance or duration in between
the units of the quanta.

(2) ‘Distance’ has no meaning for values less than the minimal length This is a
claim about the meaning of a particular English word, ‘distance’. As such, it is not a
claim about the physical world, but rather a claim about our language. It might seem
like an odd way to capture the claim that there is a minimal length, but I recommend
thinking of it in the following way. Intuitively, it might seem that any positive number
might be a real distance, but it turns out that there are certain values (any number
less than the minimal length in the given units) the cannot be real distances. In other
words, beyond the minimal length, there is nothing to refer to when using the word
‘distance’. Therefore, I think this sort of statement is just a roundabout way of saying
that there are no distances below a certain minimal value.

One difference between claims (1) and (2) is that the latter is entirely about spatial
intervals (distances) and not about temporal intervals (durations). However, special and
general relativity entail that spatial and temporal intervals cannot be neatly separated.
Therefore, I assume throughout that what goes for spatial intervals goes for temporal
intervals as well.

(3) There is no such thing as a distance shorter than the minimal length This
is a claim about the physical world, not a claim about our language or thought or
knowledge. It is essentially the same claim as the one made by (2), when (2) is properly
interpreted as being about the world rather than about the meaning of ‘distance’. Both
say that distances less than the minimal length do not exist. That is, there simply
are no spatial intervals less than the minimal length. Again, what goes for distance
goes for duration as well; so, given our background information, claim (3) should be
interpreted as entailing that there is no such thing as a duration less than the minimal
duration.

(4) It is impossible to measure a distance less than the minimal length This is a claim
about what it is possible to measure, and so it should be interpreted as a claim about
what in principle can be done in human practice. In particular, it should be interpreted
as a limit to what anyone can measure in practice. As such, it is a practical claim about
what humans (or maybe any rational entity) can do. In this presentation, I am assuming
that ‘measure’ is a success term; if someone measures a length of certain sort, then there
is a length of that sort. If the reader does not share this assumption, then such a reader
should replace all occurrences of ‘measure’ with ‘successfully measure’. It should be
clear that if there is no such thing as a distance less than the minimal length, then it is
impossible to measure a distance less than the minimal length. However, the converse
does not hold—it might be that there are certain lengths despite our (in principle)
inability to measure them. If (4) turned out to be true, then it would be analogous to an
epistemic reading of the uncertainty principle in quantum mechanics (for example, in
hidden variable theories), which states that the certain properties cannot be measured
despite there being a fact of the matter about their values. There are, of course, myriad
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controversies and difficulties with interpreting quantum mechanics, so this analogy
should be taken as a heuristic, which is intended as an aid to understanding.

(5) Any scale to measure length must have a minimal value of the minimal length
This claim is not about the world nor is it about how we talk or think, nor is it
about what we can know about the world. Instead, it is a claim about any legitimate
measurement scale for length. It has been said already, but it is worth emphasizing
that the International System of Units (SI) is far and away the most common and
popular in the world, and it employs the meter as its basic unit of length. If it turns
out that the meter is not an integral multiple of the minimal length, which, as we will
see, is very likely, then any measurement system that includes the meter would be
unacceptable. If there is a minimal length, and the meter turns out to not be an integral
multiple of minimal lengths, then why would that be a problem? The problem is that
a measurement system like this would not accurately represent reality. There would
be no such thing as the distance defined as a meter. There would be distances a bit
shorter and there would be distances a bit longer, but there would be no such thing as
a distance that is exactly a meter. Consider an analogy with some quantity we already
think is quantized, like energy. Any system of measurement that includes a unit for
measuring energy that is not an integral multiple of the minimal energy is obviously
problematic. The same goes for measuring distance in the event that there is a minimal
length.

We need to establish the logical relationships between these five interpretations.
Based on the discussion above, it should be clear that (1) entails all the rest. More-
over, when properly interpreted, (1), (2), and (3) are equivalent. That is, spacetime is
quantized iff there is nothing smaller than the minimal distance for ‘distance’ to refer
to (and nothing shorter than the minimal duration for ‘duration’ to refer to) iff there
is no such thing as a distance smaller than the minimal distance (and no such thing as
a duration shorter than the minimal duration).

It should be obvious as well that (1) entails (5). One might think that (2) and (3)
do not entail (5); for example, one think that there could be no distance values less
than 5 but anything greater is fair game. But then if entity A is 5 distant from entity
B and entity C is 6 distant from B in the same direction, then it looks like A is 1
distant from C, which violates our assumption. Thus, it looks like (2) and (3) entail
(5) (given some basic assumptions about the acceptability of a measurement scale). It
should be equally clear that (5) does not entail (1), (2) or (3). After all, it might be that
considerations pertaining to the nature of measurement scales mandate (5) but these
do not entail anything about whether there exist distances less than the minimal length
(or durations less than the minimal duration).

(4) does not entail (5); i.e., (4) is compatible with the scale of measurements greater
than ¢y being continuous (i.e., it is not the case any value of a metric—distance
function—is an integral multiple of £)1). Why doesn’t the same problem as above
occur with (4) as with (2) and (3)? The reason is that there is a distinction between
measurement and calculation. Say one measures the distance between event A and
event B as 1.5¢); and between event A and event C in the same direction as 2.
Neither measurement violates (4). We then calculate the distance between event B
and event C as .5¢)1. The calculation does not violate (4) either.
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Overall, (1), (2), and (3)—properly interpreted—are equivalent. They entail (4) and
(5). Our focus throughout what follows will be (5) and it will turn out that we will not
be concerned with (4) after this section.

Why believe that there is a minimal length? There are plenty of arguments for
minimal length theses, but they are rarely if ever distinguished by which minimal
length thesis is the conclusion of the argument. Let us review some of them.!

A. Light and distance When measuring a distance by measuring the time it takes
light to traverse it, the accuracy of the measurement increases as the wavelength of
the light decreases. However, as the wavelength of the light decreases, its energy
increases. As the energy increases, it deforms spacetime more. An analysis of these
relationships reveals that once one decreases the wavelength of the light past a cer-
tain point, the spacetime deformation decreases the accuracy of the measurement,
so there is a limit to how accurate such a measurement can be. It turns out to be
around a Planck length. This argument supports interpretation (4).

B. Light and volume If we try to measure some properties of a region of space then
we need to use light with high enough energy so that the region does not change
while we measure it. Once one increases the energy enough, the light deforms
the spacetime of the region so much that it no longer constitutes an accurate
measurement. This limit occurs at about the Planck length. This argument supports
interpretation (4).

C. Density If we begin with some mass in a certain regular volume and begin increas-
ing its density by decreasing the volume, then, according to GR, we eventually
reach a point at which the process stops because we create a black hole; the radius
of the volume at which this occurs is proportional to the mass (i.e., smaller masses
result in a smaller radius) According to QM, the same system eventually reaches a
point at which the process stops because the uncertainty of the energy in the sys-
tem reaches a maximum; the radius of the volume at which this occurs is inversely
proportional to the mass (i.e., larger masses result in a smaller radius). Using these
two results, we can solve for the smallest radius possible, which turns out to be
about the Planck length. Because this argument is not about measurement, it seems
to support an interpretation stronger than (4), like (2) or (3).

D. Uncertainty and position The uncertainty principle from QM entails that there
is an inverse relationship between the precision with which we may measure a
particle’s momentum and its position. If we alter this principle to include the
effect of gravity, then we arrive at the generalized uncertainty principle, which
entails that any particle has a minimum position uncertainty of around a Planck
length, no matter how uncertain its momentum is. If position measurements have
a minimum uncertainty of a Planck length, then it is impossible to measure any
distance less than a Planck length, so this argument supports interpretation (4).
However, if the uncertainty in question is taken to be with respect to position itself
rather than our measurement of position, then this argument supports a stronger
interpretation like (2) or (3).

15 For more information on these and other arguments, see the surveys by Garay (1995), Calmet (2007a,b),
Adler (2010), Ng (2011), Hossenfelder (2013) and the references therein.
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E. Energydensity and gravity A gravitational field has a certain energy and the density
of that energy is related to the strength of the field. Because of the energy-time
uncertainty in QM, any region has some fluctuations in gravity that limit our
measurements of gravitational energy in that region. These fluctuations in energy
correspond to distortions in the spacetime of the region. It turns out that uncertainty
in the energy density of the field corresponds to an uncertainty in the spatial
specifications of the region. The specifications of the region are defined only to
about the Planck length. This argument supports interpretation (4) for sure, and if
the uncertainty in question pertains to energy itself rather than our measurements
of it, then the argument seems to support stronger interpretations as well (e.g., (2)
and (3)).

F. Weakness of gravity Of the four acknowledged fundamental forces (i.e., gravity,
electromagnetism, the weak nuclear force, and the strong nuclear force), gravity
is the weakest, and it is dramatically weaker than the others. The standard model
of particle physics incorporates theories of electromagnetism, the weak force, and
the strong force. However, at around the order of the Planck length, gravitational
effects of particles described by the standard model are no longer negligible. That
is, one needs to account for gravitational effects when considering processes that
occur around the scale of the Planck length. That is exactly what we cannot do
in a straightforward way because of problems integrating GR and QM. Thus, it
is natural to think that we need some new physical theory to describe processes
that occur around the Planck length. This argument does not directly support any
of the interpretations because of its heuristic character, but if we think of distance
as implicitly defined by our best physical theories (e.g., QM and GR), then the
concept of distance no longer makes sense at scales less than the Planck length.
This consideration supports interpretation (2).

G. Superstring theory An attempt to unify QM and GR is superstring theory, which
posits very small strings whose features explain the central claims of QM and
GR. These strings are around the size of the Planck length. It is unclear which
interpretation of minimal length superstring theory supports, but it is reasonable
to think that it is (2) or (1).

H. Loop quantum gravity An alternative attempt to unify QM and GR is loop quantum
gravity, which describes spacetime geometry in anovel way so that area and volume
are quantized. Loop quantum gravity supports interpretation (1) of minimal length.

Arguments (A)-(F) appeal to aspects of QM and GR, while arguments (G) and (H)
depend on theories that are designed to incorporate both QM and GR while avoiding
the problems we have applying them together. It is these successor theories that provide
us with the arguments for the strongest versions of the minimal length thesis.

In what follows, it is the claim that any meaningful distance must be an integral
multiple of the minimal length that plays a central role. This claim is supported by
theses (1), (2), (3), and (5), and we have strong arguments for these theses. Thus, we
have good reason to believe that there is a minimal length in a strong sense even if we
ignore thesis (4) and the arguments for it.

On the other hand, there is some evidence against the Planck length being a minimal
length. This evidence usually falls into one of two types: (i) theoretical calculations of
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meaningful distances less than the Planck length and (ii) astrophysical measurements
of the smoothness of spacetime.'® For example, in the famous paper by Bekenstein,
he calculates that if one adds one photon to a solar mass black hole, then its radius
would increase by about 10~7! m. The astrophysical measurements typically use
theoretical considerations to predict that a minimal length of spacetime would cause
certain features (e.g., polarization) in light that travels through spacetime, and over
long enough intervals, we would be able to detect these features. So far, we have not
detected any.

I do not think that the calculations constitute evidence against there being a minimal
length because these calculations are usually based on GR, which is consistent with
there being no minimal length. So it is not a surprise to find out that one can use GR
to calculate something being smaller than the Planck length. Figure 1 shows which
combinations of masses and distances are ruled out by QM and GR.!” In it, the vertical
axis is length in centimeters and the horizontal axis is mass in grams. One arrives at a
minimal length only by considering both QM and GR (and the right aspects of them
at that).

The astrophysical measurements on the other hand do provide evidence against
some values of a minimal length, but they are far from conclusive. For example,
they often rely on Lorentz invariance considerations (i.e., a minimal length would be

16 On the former, see Bekenstein (1973) and Reifler and Morris (2003); on the latter, see Bernadotte and
Klinkhamer (2007), Klinkhamer (2007), Stecker (2011), Christiansen et al. (2011) and Laurent et al. (2011).
See Cunliff (2012) for criticism of some theoretical arguments for a minimal length.

17 Figure from Majid (2000: p. 15).
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invariant across reference frames), but this is a controversial assumption.18 Moreover,
at best, they tell against certain values of a minimal length, not against a minimal
length per se.

To sum up, we do not know whether there is a minimal length in any of the above
senses. We do not know whether a minimal length would be the Planck length or some
other length. We do have many good reasons to think that there is a minimal length.
Think of what follows as an investigation into the consequences for the SI system if
there is a minimal length in the sense of (5), which is entailed by (1), (2), and (3).

3 The indeterminacy of the meter

So far we have seen: (i) how ‘meter’ and ‘second’ are defined, (ii) five interpretations of
the claim that there is a minimal length and the entailments between them, and (iii) the
arguments from physics that there is a minimal length and which interpretation each
argument favors. Before turning to the main argument that ‘meter’ is indeterminate,
it will be helpful to discuss exactly what is meant by ‘indeterminacy’.!®

It is standard to distinguish between two or three kinds of indeterminacy: semantic,
metaphysical, and epistemic. The following is a quote from Matti Eklund that sets out

the distinction:

The ‘indeterminacy’ we speak of can in principle be held to be semantic (or
more, generally: representational), metaphysical, or epistemic. To say that it is
semantic is to say that the indeterminacy in question is a matter of how we
represent the world; of the relations between our representations and the world.
To say that it is metaphysical is to say that the world in itself, as opposed merely
to how we represent it, is indeterminate. To say that it is epistemic is to say that
we are dealing with a case where our ignorance is in a certain way principled.’

Some theorists focus only on the distinction between semantic and metaphysical inde-
terminacy, thinking of epistemic indeterminacy as a misnomer. For example, David
Taylor and Alexis Burgess write:

In broad strokes, semantic indeterminacy, is supposed to be indeterminacy—in
some more generic sense—stemming specifically from the semantic or other-
wise representational features of expressions/concepts used to articulate any
given instance of the phenomenon. Metaphysical indeterminacy, by contrast, is
supposed to consist in portions or aspects of reality itself being somehow unset-
tled, quite independently of whether and how we think or talk about them.?!

I follow Taylor and Burgess in excluding so called epistemic indeterminacy as well.
Doing so allows us to use a single way of making sense of indeterminacy in general.

18 See Rovelli and Speziale (2002) and Burton (2009).

19 The reader should be careful to distinguish indeterminacy from uncertainty. Uncertainty is related to the
measurement of various physical quantities; see BIPM (2008).

20 Eklund (2011: p. 150).
21 Taylor and Burgess (2015: p. 298).
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In the literature, the most common way of glossing indeterminacy in general is to say
that when something is indeterminate, there is “no fact of the matter” about it. Then
one distinguishes between semantic and metaphysical indeterminacy on the basis of
why there is no fact of the matter. In the case of semantic indeterminacy, there is no
fact of the matter because of the meanings or other semantic features of our words or
concepts—the way we represent the world. In the case of metaphysical indeterminacy,
there is no fact of the matter because of the way the world is, independently of the
way we represent it.

The idea that there is no fact of the matter is common between semantic and
metaphysical indeterminacy, and the two varieties are distinguished on the basis of the
source of the indeterminacy. For example, Elizabeth Barnes and J. Robert G. Williams
characterize metaphysical indeterminacy in the following way: “It is metaphysically
indeterminate whether p iff (1) it is [indeterminate] whether p, and (2) the source of
this [indeterminacy] is the non-representational world.” (Barnes and Williams 2011:
p. 108).22 Likewise, semantic indeterminacy is characterized as indeterminacy whose
source is the semantic features of one or more of our words.

Taylor and Burgess provide the following example to help illustrate the distinction
between metaphysical and semantic indeterminacy.

For some large, carefully chosen integer n, we might be inclined to endorse a claim
like:

(0) It is indeterminate whether Kilimanjaro contains more than n molecules.

We can call facts of this form “cases” or “instances” of indeterminacy, whether
they turn out to be semantic or metaphysical. To call (0) a case of [semantic
indeterminacy] is basically to say that the indeterminacy at issue “owes” to
certain semantic properties of one or more of the words in its complement: ‘Kil-
imanjaro contains more than n molecules’. The pertinent semantic fact might
be that ‘Kilimanjaro’ fails to pick out a unique, mountain-shaped composite of
molecules. On the other hand, to call (0) an instance of [metaphysical indetermi-
nacy] is effectively to say that Kilimanjaro itself—that natural volcanic peak in
Tanzania—is somehow indeterminate with respect to the number of molecules
it contains.??

All these quotes make clear that the distinction between metaphysical and semantic
indeterminacy comes down to the source of the indeterminacy—is it due to the seman-
tic features of our words or is it due to the world itself? If we make use of the ‘no
fact of the matter’ locution, we can rephrase the question as—is there no fact of the
matter as to what such and such linguistic expression refers to or is there no fact of the
matter about the world itself? As we will see, it makes the most sense to think of the
indeterminacy associated with ‘meter’ to be semantic indeterminacy—indeterminacy
that has its source in the semantic features of ‘meter’ and ‘second’. Indeed, one major
reasons for thinking that this indeterminacy is semantic is that its source is the inter-

22 Barnes and Williams (2011: p. 108). Barnes and Williams distinguish between indefiniteness and inde-
terminacy, but this distinction does not matter for our purposes (they are interested in the relationship
between vagueness and indeterminateness).

2 Taylor and Burgess (2015: pp. 298-299).
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action between the official definition of ‘meter’ and the official definition of ‘second’,
provided we assume that there is a minimal length in the sense of (5) described above.
And the second major reason is that if we change the official definitions of ‘meter’
and ‘second’ in the way suggested in the final section of this paper, the indeterminacy
disappears. Let us turn to the arguments.

We are assuming that there is a minimal length and that any measurement of distance
has a value that is a multiple of £);. It will be helpful to have an actual value for £);.
We might as well take it to be the Planck length, with the understanding that we will
return to the issue of alternative minimal lengths below.

The natural question to ask at this point is, how many Planck lengths are in
a meter? The trouble with answering this question is the uncertainty in the value
of the Planck length. However, we can establish upper and lower bounds to an
answer with our estimate together with the margin of error. It turns out that there
are between 61,873,940,138,076,647,333,329,084,656,110,518.736883111402...and
61,873,197,440,404,819,006,357,285,417,409,273.938446192004. . .Planck lengths in
a meter. But, of course, there cannot be a fraction of a Planck length since it
is the minimal length. So we should round the first number down and round
the second number up. That still leaves us with a huge margin: a difference of
742,697,671,828,326,971,799,238,701,244 Planck lengths. Presumably, there is an
exact number in this range that constitutes the exact number of Planck lengths in a
meter. If so, then the meter is completely determinate.

Not so fast. Recall that (Meter*), which is entailed by the definitions of ‘meter’
and ‘second’ together, is an identity relating the meter to cesium periods—a meter is
exactly the distance traveled by light in a vacuum in 30 and 14,204,145/21,413,747
cesium periods. There must be an exact integer number of Planck lengths in the dis-
tance traveled by light in a vacuum in 30 and 14,204,145/21,413,747 cesium periods.
One Planck length is the distance traveled by light in a vacuum in one Planck time;
thus, for there to be an exact integer number of Planck lengths in a meter, that frac-
tion, 14,204,145/21,413,747, must cut the number of Planck times in a cesium period
exactly.

To see the problem, let us simplify the math a bit. Imagine that one cesium period is
3 Planck times and that a meter is the distance light travels in 2 and 1/2 cesium periods.
2 cesium periods would take 6 Planck times, but that extra 1/2 cesium period would
take 1.5 Planck times. However, there is no such thing as taking 1.5 Planck times.
A process can take 1 Planck time or it can take 2 Planck times, but it is impossible
to take any value in between. Thus, if the meter were the distance light travels in 2
and 1/2 cesium periods and a cesium period takes 3 Planck times, then the number
of Planck times it takes light to travel one meter would be indeterminate; the number
of Planck lengths in a meter would likewise be indeterminate. In order for a meter to
be completely determinate—to be an exact number of Planck lengths— the fractional
remainder of the number of cesium periods required for light to travel one meter must
cut the number of Planck times in a cesium period exactly. How likely is that?

Consider again the problem with the math simplified. If that fractional remainder
were 1/2, then there would have to be an even number of Planck times in a cesium
period. If that fractional remainder were 1/10, then the number of Planck times in a
cesium period would have to be exactly divisible by 10. If that fractional remainder
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were 33/100, then the number of Planck times in a cesium period would have to be
exactly divisible by 100. Let n/m be the fractional remainder. For which values of t,
the number of Planck times in a cesium period, does n/m pick out an integer number
of Planck times? (n/m)t = x for x a positive integer. For that to happen t must be
divisible by m without remainder. That is, t must be a multiple of m.

Given that the fractional remainder is exactly 14,204,145/21,413,747, the number
of Planck times in a cesium period must be exactly divisible by 21,413,747. Given
our current estimate for Planck length and our margin of error, there are between
61,873,940,138,076,647,333,329,084,656,110,517 and 61,873,197,440,404,819,006,
357,285,417,409,273 Planck lengths in a meter. Call the set of integers between these
two the margin set. The least natural number in the margin set that is exactly divisible by
21,413,747 is 61,873,940,138,076,647,333,329,084,667,011,124. If there are exactly
that many Planck times in a cesium period, then ‘meter’ is completely determinate.
How many natural numbers in the margin set are exactly divisible by 21,413,747?
34,683,218,767,286,592,664,013. So, there are that many elements in the margin
set for which ‘meter’ to is completely determinate. That is, only for 1 out of every
21,413,747 members of the margin set does ‘meter’ end up being determinate.

Notice that the particular value for the Planck length plays no role in the above cal-
culations. To see why, let the margin set be {x : a < x < b, where a, b, x are positive
integers}. For t, the number of minimal lengths in the distance light travels in a cesium
period, to be a positive integer, t must be a multiple of m, the denominator of the
fractional remainder, which in our case is 21,413,747 (regardless of what the minimal
length turns out to be). How many multiples of 21,413,747 turn up in the margin set?
As long as the difference between b and a is much greater than 21,413,747, it will be
1/21,413,747 of the margin set.

If we assume that all the options are equally likely, then that is about a 1 in 21 million
chance of there being the right number of Planck times in a cesium period for the
meter to be completely determinate.”* Those are not good odds. Therefore, probably,
the meter is indeterminate (if there is a minimal length). If it is, then it follows that
any standard unit of length is indeterminate as well.?> All these conclusions follow
as long as there is some minimal length, regardless of how small it turns out to be: if
the chance that ‘meter’ is completely determinate is nonzero, then it is about 1 in 21
million.

Furthermore, if the meter is indeterminate, then the problem ripples through the SI
system because any derived unit based on the meter will be indeterminate too. Before
going through them, we need to deal with the distinction between units and quantities.
The meter is a unit for measuring the guantity of length. ‘meter’ is probably indeter-
minate, but ‘length’ is not (so long as there is some exactly determinate length). Many
SI units have special names (for example, the coulomb is the SI unit for measuring

2 1n making this claim, I am assuming that; the important point is not the exact probability but rather the
fact that ‘meter’ is very likely indeterminate.

25 Note that it need not be the case that ‘second’ is indeterminate. If there is an exact number of Planck
times in a cesium period, regardless of whether it is divisible by 21,413,747, then ‘second’ is completely
determinate.
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Table 1 Indeterminate SI units

Unit Formula Quantity

Meter - Length

The SI unit for area meters2 Area

The SI unit for volume meters> Volume

The SI unit for velocity meters/second Velocity

The SI unit for acceleration meters/second? Acceleration
Newton kilograms * meters/second? Force

Joule newtons * meters Energy

Gray joules/kilogram Absorbed radiation dose
Pascal newtons/meter? Pressure

Watt joules/second Power

Volt watts/ampere Potential

Farad coulombs/volt Capacitance

Ohm volts/ampere Resistance

Siemen ohms ! Conductance
Weber volts/second Magnetic flux
Henry webers/ampere Inductance

Tesla webers/meter? Magnetic flux density
Lux lumens/meter? Illuminance
Ampere - Electric current
Candela - Luminous intensity
Coulomb amperes * seconds Electric charge
Lumen candelas * steradians Luminous flux

electric charge, and electric charge is electric current * time).?® The problem is, lots
of units in the SI system do not have special names (e.g., the quantity, area, is length
squared, but it does not have a special name). I use the convention ‘the SI unit for Q’
where ‘Q’ is replaced by a quantity term for naming those units of the SI system that
do not have special names.

The SI system has seven base units and dozens of derived units. ‘Meter’ is a base
unit, along with ‘ampere’ (the SI unit for current), ‘second’ (the SI unit for time),
‘kelvin’ (the SI unit for temperature), ‘mole’ (the SI unit for quantity of substance),
‘candela’ (the SI unit for luminous intensity), and ‘kilogram’ (the SI unit for mass).
If ‘meter’ is indeterminate, then all the SI units on Table 1 are indeterminate as well.
These include derived units that are explicitly defined in terms of meters in addition to
two base units whose definitions appeal to meters—e.g., an ampere is defined as that
constant current which, if maintained in two straight parallel conductors of infinite
length, of negligible circular cross-section, and placed 1 meter apart in vacuum, would
produce between these conductors a force equal to 2 x 10~7 newtons per meter of

26 e g just a multiplication sign.
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length. The other example is the candela, which is defined as the luminous intensity,
in a given direction, of a source that emits monochromatic radiation of frequency
540 x 10'2 hertz and that has a radiant intensity in that direction of 1/683 watt per
steradian. The definition of ‘ampere’ explicitly mentions the meter, so if ‘meter’ is
indeterminate, then ‘ampere’ is too. The definition of ‘candela’ explicitly mentions
the watt, which is defined in terms of meters. Thus, if ‘meter’ is indeterminate, then
‘candela’ is too. These indeterminacies in base units affect some other derived units
that do not show up on the list—‘coulomb’ and ‘lumen’ would be indeterminate as
well.

See Fig. 2 for a diagram of the SI system; the impact of the indeterminacy of the
meter is the shaded area.?’ Little is unaffected.

4 Discussion

A quick summary of the argument so far is in order. From the definitions of ‘meter’
and ‘second’, it follows that a meter is the distance light travels in the duration of 30
and 14,204,145/21,413,747 cesium periods. If there is a minimal length and a minimal
duration (these two assumptions stand or fall together because space and time are just
two aspects of a single underlying spacetime), then the number of minimal durations
in a cesium period must be an integral multiple of 21,413,747. Otherwise, there would
not be an exact number of minimal lengths in a meter. One way of thinking about
this problem is that, together, the definitions impose what we might call a certain
requirement on reality—that the number of minimal lengths in a meter is an integral
multiple of 21,413,747 and that the number of minimal durations in a cesium period
is an integral multiple of 21,413,747.28 If the number of minimal lengths in a meter
(and the number of minimal durations in a cesium period) might have any value at all,
and there is an equal likelihood for any of the available values, then there is only a
1 in 21,413,747 chance that the value is just right. If the value is not just right, then
‘meter’ is indeterminate in the sense that there is no exact number of minimal lengths
in a meter.

It is helpful to consider how the value might turn out to be not just right. Let us
simplify the math. If a meter is the distance light travels in 1/100 of a second and a
second is the duration of 130 cesium periods, then a meter would be the distance light
travels in 1 and 3/10 cesium periods. Assume that we eventually arrive at a value for
the minimal duration that makes it exactly 1/100 of a cesium period. In that case, a
cesium period would be 100 minimal durations. One second would be the duration
of 13,000 minimal durations (130 * 100), and one meter would be the distance light
travels in 130 minimal durations (1/100 of 13,000). This is an example of everything
turning out just right.

Instead, imagine that we eventually arrive at a value for the minimal duration that
makes it exactly 1/99 of a cesium period. In that case, a cesium period would be 99

27 Figure 2 is based on a diagram from the National Institute of Standards and Technology (NIST) Physical
Measurement Laboratory (http://physics.nist.gov/cuu/Units/SIdiagram2.html).

28 1 borrow this terminology from Williams (2012).
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Fig. 2 Indeterminacy in the SI System

minimal durations. One second would be the duration of 12,870 minimal durations
(130 x 99), and one meter would be the distance light travels in 128.7 minimal
durations (1/99 of 12,870). That is, it would be 128.7 minimal lengths. But that is
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impossible! By hypothesis, nothing can be 128.7 minimal durations, and nothing can
be 128.7 minimal lengths.

Return for a moment to the question of what kind of indeterminacy is involved
if the meter turns out to be indeterminate—that is, if there turns out to not the right
number of minimal durations in a cesium period. I claim that this is a case of semantic
indeterminacy rather than metaphysical indeterminacy because it makes more sense
to say that the source of indeterminacy is in the definitions of ‘meter’ and ‘second’.
Together these two definitions impose a requirement on reality—that the number of
minimal times in a cesium period must be evenly divisible by 21,413,747. If it turns
out by sheer luck that this requirement is met, then the definitions are in fine order and
‘meter’ would be determinate. However, it is much more likely that the requirement
fails, and in this case, the problem would obviously be due to the interaction between
these two definitions. That is, this is clearly a semantic indeterminacy. This is one of
the two major reasons for thinking that the indeterminacy in question is semantic. The
second reason is that we can redefine ‘meter’ and ‘second’ in a way that is compatible
with present usage and completely avoids the indeterminacy problem that is the topic
of this paper. I show exactly how to do that in the final section. If that is right, then
there is no reason to think that the source of the indeterminacy is in the world rather
than in the way we represent the world. That is, it is not a metaphysical indeterminacy,
but instead a semantic indeterminacy because changing the definitions of ‘meter’ and
‘second” would not eliminate a metaphysical indeterminacy.

Let us turn to some objections. One might think that if there are, say, 1 and 1/10
Planck times in each cesium period, and a second is 5 and 1/5 cesium periods, then
there would be an exact number of Planck times in a second even though the number
of Planck times in a cesium period does not exactly divide the denominator of the
fractional remainder. Thus, the objection goes, the chances of a completely determinate
meter might be much better.

My reply is that, above, I assumed that there is an exact natural number of Planck
times in a cesium period. If that assumption turns out to be false, then ‘cesium period’
is indeterminate, which makes ‘second’ indeterminate, which makes ‘meter’ indeter-
minate. Thus, the assumptions of the objection would support my conclusion without
having to calculate the probability at all. It would be assured that the meter is indeter-
minate.

Another objection is that even though no positive integral multiple of Planck lengths
satisfies ‘the distance light travels in the duration of 9,192,631,770/299,792,458
cesium periods’ and so no positive integral multiple of Planck lengths makes (Meter)
true, nevertheless, there is an exact positive integral multiple of Planck lengths in a
meter. This sort of view might be supported by what has come to be known as refer-
ence magnetism. The key to understanding reference magnetism is the idea of carving
nature at its joints. This metaphor goes back to Plato, but is probably more familiar to
contemporary philosophers in the form of David Lewis’ theory of natural properties.>
Natural properties are those that are the most basic and fundamental constituents of
reality. For example, the property of being green is thought to be more natural than

29 See Plato (1997) and Lewis (1983). Do not confuse this use of ‘natural’ with the one in the above
discussion of planck units. More on this topic below.
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the property of being grue. (Something is grue iff it is green and it is examined before
a certain time t, or it is blue and not examined before t.) Although controversial, they
are helpful in dealing with many of the most intractable problems in metaphysics. I
am going to assume that the reader is familiar with Lewisian naturalness.>°

Reference magnetism is the claim that natural properties need not satisfy a definition
in order to be the referent of the term defined. Even if the definition is somehow faulty
(in that no thing satisfies it), the term defined ends up with a determinate semantic
value. If this view is correct, then (Meter) might succeed in giving ‘meter’ a referent
even though nothing satisfies the definiens because of the peculiar mismatch between
(Meter), (Second), and the fact that there is a minimal length.

First, I should say that reference magnetism is a controversial minority view
amongst philosophers of language with very little to support it beyond some armchair
metaphysical speculations. It is supposed to help solve some very difficult problems
about how our words come to have determinate content, so most of the support for it
is of the “hey, it would be great if this were true because it would solve so many of our
problems!” There is little to no empirical support for the idea but many problems with
it. For example J. Robert. G. Williams argues convincingly that if reference magnetism
is true, then we have no reason to think that our words refer to things in the world
instead of to numbers.>! Moreover, John Hawthorne and Cian Dorr recently catalogued
the most important features of naturalness (which is the notion on which reference
magnetism rests), and pointed out dozens of potential inconsistencies between these
features, and reference magnetism is the feature most involved in these inconsisten-
cies.??

Second, it is not even clear that reference magnetism would be an effective response
here. Imagine we get a better estimate for the natural constants in terms of which Planck
length is defined (i.e., the speed of light, the gravitational constant, and the reduced
Planck constant), and this estimate narrows the estimate for Planck length to the point
that P— and P+ are the new lower and upper bounds, respectively. Assume as well that
no integer between P— and P+ is exactly divisible by 21,413,747. None of the values
between P— and P+ will determine a positive integral multiple of Planck lengths in
a meter that satisfies (Meter). So, which one of these equally unsatisfactory numbers
correctly describes how many Planck lengths are in a meter? The numbers themselves
are all equally natural, so that consideration does not help. It is not clear how the
referent of ‘meter’ would get determined in this case even if we assume reference
magnetism is true. Thus, not only is the view unmotivated and internally inconsistent,
but it isn’t even efficacious in this case.

Consider a related objection: the argument given above that ‘meter’ is probably
indeterminate illicitly presupposes a tight connection between semantic determinacy
and naturalness. Imagine, for example, that the average American family has 1.5
children, and we define a unit for this quantity—call it avekid. There is nothing wrong
with the definition of ‘avekid’; it is perfectly determinate and we could use it without

30 See Dorr and Hawthorne (2013) for discussion.
31 Wwilliams (2007). For commentary, see Hawthorne (2007), Bays (2007) and Sider (2011: ch. 3).
32 Dorr and Hawthorne (2013). See also Schwartz (2014).
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any problem despite the fact that it is unnatural because children naturally come in
single units. The same lesson applies to ‘meter’; namely, if there is no exact integral
multiple of minimal lengths in a meter, ‘meter’ is still determinate despite the fact that
it won’t be natural.

My reply is that the analogy is not apt. In section two I considered five ways of
interpreting ‘there is a minimal length’. When we consider the analogs of these claims
for children it is obvious that not a single one is remotely plausible. For example, there
is such a thing as half a child, it is possible to measure half a child, there is no reason
to think that children come only in discrete indivisible chunks. Thus, the objection
misses the most important point about a minimal length—that it is impossible for there
to be smaller lengths. The problem is not that there is nothing natural for ‘meter’ to
represent (that is, if no integral multiple of minimal lengths make up a meter)—it is
that there is nothing at all for it to represent. The argument I have given does not rely
on the concept of naturalness at all.

5 Measurement and philosophy of science

One might agree with my conclusion but object to its significance by noting that the
SI system is shot through with indeterminacy; thus, the point about the meter being
indeterminate is not worrisome at all. In fact, ‘kilogram’ is still defined as the weight
of a particular platinum and iridium cylinder called the International Prototype of the
Kilogram (IPK). How precise is that? Probably not very precise at all. How many
atoms are in the cylinder? There probably is not a stable answer because the platinum
and iridium atoms that compose the IPK are interacting with the surrounding air all
the time. In fact, we have good evidence that the IPK is losing weight (on the order
of 1078 kg/year, which is gigantic).?? So “kilogram’ is wildly indeterminate given the
standards of precision at play in the above considerations about ‘meter’. Notice that
this is a different sense of ‘indeterminate’ that I have been using. I argued that there is
probably nothing for ‘meter’ to represent—no distance at all that is an integral multiple
of minimal lengths. The problem with ‘kilogram’ is that what it is supposed to represent
is changing and also that ‘cylinder’ is vague. For example even at a time slice, it will
be difficult to determine the boundary of IPK exactly (say, down to the Planck length)
due to quantum indeterminacy—and even though these differences in mass would be
extraordinarily small, the inability to say for sure whether they are or are not part of
IPK makes ‘kilogram’ vague. (The same can be said for ‘meter’ when it was defined
as the length of the meter bar, which is a primary reason the definition was changed.)
In the parlance of our times, vagueness is a kind of indeterminacy—whether it is
epistemic, semantic, or metaphysical depends on the particular theory of vagueness.>*
Thus, even if we ignore the changes in IPK, ‘kilogram’ is still indeterminate.

My reply to this “who cares?” objection is that I agree that the SI system has a
dramatic indeterminacy because of the conventional definition of ‘kilogram’. However,
the Bureau International des Poids et Mesures (BIPM), which is the international

33 Jabbour and Yaniv (2001).
34 See Eklund (2011) for example.

@ Springer



Synthese

organization whose responsibility is maintaining and promoting the SI system, is well
aware of this problem and is probably going to adopt the following new definition of
‘kilogram’:%

(Kilogram) the unit of mass whose magnitude is set by fixing the numerical value
of the Planck constant to be equal to exactly 6.62606X x 1073 m? kg s~

Notice that this change in the SI system would eliminate definitions in terms of physical
objects (like the IPK) and define all base units in terms of fundamental constants. Any
indeterminacy in the SI system because of the IPK definition of ‘kilogram’ would
disappear as well. In fact, removing this indeterminacy in the SI system is the primary
motivation for the change.3¢

The lesson is that there is a push to make the SI system as determinate as possi-
ble given our best physical theories, our measurement technology, and our interests.
Pointing out that the kilogram is indeterminate (and its indeterminacy is a problem for
our current measurements) spurred the scientists and engineers dedicated to improving
the SI system to suggest changes that would eliminate that indeterminacy. Of course,
they could not do that if no one noticed that source of indeterminacy. The problem
discussed above for ‘meter’ is a hitherto unnoticed source of probable indeterminacy
in the SI system. It does not pose a practical problem for us given the state of our
measurement technology yet, but might very well pose theoretical problems within
physics (for example, calculations about the very early universe—within a few Planck
times after the big bang).

Instead of focusing on the kilogram in particular, one might motivate the same
kind of objection from general considerations about measurement locutions. That is,
in effect, what Eran Tal and Paul Teller have argued in recent work.37 Here are two
quotes from Tal’s paper on ‘second’:

[A] question arises as to how the reference of ‘second’ is fixed. The traditional
philosophical approach would be to propose some ‘semantic machinery’ through
which the definition succeeds in picking out a definite duration, for example, a
possible world semantics of counterfactuals. However, this sort of approach is
hard pressed to explain how metrologists are able to experimentally access the
extension of ‘second’ given the fact that it is physically impossible to instantiate
the conditions specified by the definition. By contrast, the approach adopted in
this article takes the definition to fix a reference only indirectly and approx-
imately by virtue of its role in guiding the construction of atomic clocks. ...
The activities of constructing and modeling cesium clocks are therefore taken
to fulfill a semantic function, that is, that of approximately fixing the reference
of ‘second’ rather than simply measuring an already linguistically fixed time
interval 3

35 The X in the definition stands for any additional significant digits that might be added by the time the
new definition is adopted. Discussion of when the new definition is set to take effect is ongoing.

36 However, the change leaves the indeterminacy of the meter unaffected.
37 Tal (2011) and Teller (forthcoming). In what follows I focus on Tal’s paper.
38 Tal 2011: p. 1087)
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[Ulnit definitions do not completely fix the reference of unit terms unless fixing
is understood in a manner that is utterly divorced from practice.?

Tal claims that because the definition of the second involves some kind of idealization
(e.g., one cannot get a Cesium 133 atom to 0 K), ‘second’ cannot be determinate.
Moreover, the actions of metrologists in calibrating the official atomic clocks, which is
the frontier for measuring a temporal duration, impact the semantic value of ‘second’
by making it more precise as the uncertainty in these measurements decreases. To
accomplish this calibration, metrologists engage in a process of de-idealization, which
involves estimating ways in which various concrete features of atomic clocks diverge
from the ideal definition of ‘second’ (e.g., estimating the impact of curved spacetime
on the operation of the clock).

Inresponse, I want to emphasize taht these points made by Tal pretty clearly confuse
the semantic features of ‘second’ with epistemological issues associated with how
we calibrate our instruments. It is perfectly coherent—and much more intuitive and
plausible—to say that the definition of ‘second’ fixes its extension and that metrologists
use all the techniques Tal describes to arrive at an estimate of the duration defined by
‘second’ in the SI system. Given the radical nature of Tal’s position, one would expect
way more argumentation for the main conclusion. But the two places Tal alludes to a
problem with the received view (quoted above) can be addressed without much trouble
at all. How do metrologists experimentally access the extension of ‘second’? They
don’t, but metrologists estimate it using the method of de-idealization Tal describes.
Is the definition that supposedly fixes the reference of ‘second’ utterly divorced from
practice? No. Indeed, Tal explains exactly how it is related to practice. Again, the
primary connection to practice is in methods of de-idealization as Tal describes them.
However, instead of contributing to the semantic value of ‘second’, this process helps
us estimate the duration of a second in a way that can be readily applied to all sorts of
problems associated with estimating very short temporal durations. If these answers
to the Tal’s questions from the perspective of the received view are inadequate in some
way, then Tal has yet to explain why. In sum, my response to this objection from Tal’s
work is that it is almost completely unmotivated.

6 Measurement and metaphysics

All the standard units of length mentioned so far are conventional in the sense that
they are arbitrary. That is, there is nothing about the universe as far as we can tell that
would adjudicate in favor of any one of them or any multiple of any one of them. For
example, let a pimeter be exactly pi meters. There is no feature of the universe that
would render pimeters over meters more reasonable or perspicuous as our basic unit
of length. It will pay to be a bit more careful about this notion of conventionality.
One way of making sense of conventionality that I find particularly helpful for
the topic at hand is suggested by Theodore Sider’s theory of substantivity. According
to Sider, a sentence s is nonsubstantive iff for some expression e occurring in s, the

39 Tal (2011: p. 1094).
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semantic candidates for e are such that for one of e’s semantic candidates s is true and
for another of e’s candidates, s is not true, and all of e’s semantic candidates are equally
natural (in the sense of naturalness discussed above).40 Of semantic candidates, Sider
writes, “if a linguistic community, roughly in our circumstances, could have use E to
mean m without seeming “semantically alien”—could have used E to reach “the same
semantic goal” as we use E to reach, albeit perhaps by a different route—then m is a
candidate for E.”*! Semantic candidates are meanings that an expression could have
had without changing the proper use of the expression too much. It will be helpful to
have a definition of ‘substantive’: a sentence s is substantive iff for every expression
e in s, one of e’s semantic candidates is more natural than the others or s has the same
truth value on each of e’s semantic candidates.

Sider uses this account of substantivity to define a notion of conventionality. A
linguistic expression is conventional iff it has multiple candidate meanings that are
equally natural and each would serve the semantic goal of the expression equally well.
Sider writes:

To illustrate, consider the word ‘inch’. The purpose of ‘inch’ is to be a convenient
measure for smallish things, the kinds of things we can hold in our hands. But
there is a range of very similar lengths that would each have served this purpose.
We chose one of these to mean by ‘inch’, but that choice was arbitrary; any of
the others would have served our purposes equally well.*>

He continues:

All length-words achieve a general semantic goal of allowing speech of absolute
and relative sizes, but ‘inch’” has a more specific goal: to be a convenient measure
of smallish things. This goal could have been achieved by many lengths within
a certain range. But if ‘inch’ had meant mile, it would not have achieved exactly
this goal, since measuring smallish lengths in miles would be inconvenient. And
if ‘inch’ had meant something other than a length—for instance it has meant
happiness—then it would not have achieved anything like its actual semantic
goal. All words for units of measure are conventional in this way.*3

By the same reasoning, ‘meter’ and all the other standard length expressions are
conventional as well. However, as we will see, Sider is wrong to think that all measure
expressions are conventional.

Because one can derive the Planck length as the natural unit of length by considering
fundamental constants of the universe alone, it is free from the kind of arbitrariness one
finds in standard units of length like the meter. Thus, the property of having the Planck
length is a natural property in Lewis’s sense. Using Sider’s theory of substantivity and

40" Above, I criticized the idea that natural properties are reference magnets, so it might seem odd to appeal
to Sider’s theory here. However, there is no inconsistency in saying that the concept of naturalness can play
an important role in an account of substantivity and conventionality even though there are no reference
magnets. See Williams (2010) for a theory of fundamentality that is similar in spirit.

41 Sider (2011: p. 50).
42 Sider (2011: p. 54).
43 Sider (2011: p. 55).
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his theory of conventionality, we can see that ‘Planck length’ is not conventional. That
is, it has among its semantic candidates one that is most natural, namely, its actual
semantic value—the Planck length. As such, it is a counterexample to Sider’s claim
that all measure expressions are conventional. Moreover, a sentence like ‘A is n Planck
lengths long’ (where ‘A’ is the name of some object and ‘n’ is a positive integer) is
substantive. It is substantive because the measure expression has a semantic candidate
that is much more natural than any of its others, namely the Planck length, and we
have no reason to think that it would be nonsubstantive because of one of its other
constituents. All the same considerations apply to the Planck time as well.

The next consideration is whether the naturalness of the Planck length would render
the meter natural as well if there turned out to be an exact number of Planck lengths in
ameter. If 1 meter is n Planck lengths, where n is a positive integer, and ‘A is n Planck
lengths long’ is substantive, then why wouldn’t ‘A is 1 meter long’ be substantive?
After all, ‘1 meter long’ has a semantic candidate that is more natural than the others:
n Planck lengths long. Still, there is good reason to think that even in this case, ‘meter’
is still conventional because it has several equally natural semantic candidates that
would fulfill its semantic role. Let n be the number of Planck lengths in a meter. Then
the semantic candidates n Planck lengths and n-1 Planck lengths are equally natural
and each would have fulfilled the semantic role for ‘meter’ equally well. Thus, even
if ‘meter’ turns out to be completely determinate, it is still conventional. One cannot
say the same for ‘Planck length’.

7 Measurement and language

We often speak and think as if the world is a certain way. That is, attempts to understand
or explain the semantic and pragmatic features of our linguistic activity and the contents
of our mental states often require making assumptions about the world. For example,
one might say that ‘dog’ designates the property of being a dog or that ‘Barack Obama’
refers to Barack Obama. That works fine as long as there is a property of being a dog
and Barack Obama exists. However, when we discover something about the world that
conflicts with the assumptions made when we explain our thought or talk, then we have
a potential problem. For example, if we say that ‘phlogiston’ designates the property
of being phlogiston, then we do not really have a satisfying explanation because we
have good reason to think that there is no such property. Likewise, we don’t want to
say that ‘A is simultaneous with B’ is true iff A is simultaneous with B; because of
special and general relativity, simultaneity is relative to a reference frame—there is no
absolute simultaneity. Any time we have a mismatch between a scientific description
of the world and what linguists and cognitive scientists tell us about what our thought
and talk presupposes about the world, we need some way of reconciling the two. This
topic has come to be known as natural language metaphysics.**

In our case, it turns out that most, if not all, of the proposed semantics for measure
phrases (e.g., ‘6 m long’) presuppose that these phrases are completely determinate.
For example, Kennedy and McNally claim that gradable adjectives (e.g., ‘long’) have

44 The term comes from Bach (1986); see Pelletier (2011) for discussion.
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semantic values that map individuals to degrees, where a degree is a point or interval
on a scale, which is an ordered set of degrees. Measure phrases pick out a degree in
the scale relevant to the gradable adjective in question (e.g., ‘6 m long’ picks out a real
number on the meter scale. The assumption is that any measure phrase like ‘6 m long’
is completely determinate—there is no possibility for indeterminacy of any kind.*

One might say that if a semantic theory presupposes that ‘meter’ is completely
determinate and ‘meter’ turns out to be indeterminate, then the semantic theory is
false—end of story. However, this dramatic stance is implausible and unnecessary.
Analytic metaphysicians have recently given this topic considerable attention and
arrived at a new way of thinking about the relation between discourse that aims at the
fundamental nature of reality and discourse that does not. This new work is largely
motivated by discontent over the available options for dealing with this kind of situ-
ation. For example, one might be a mereological nihilist (i.e., hold that only simples
exist and no composite objects—things with parts—exist). Presumably, a table has
parts. Thus, a mereological nihilist wants to deny that tables exist. However, that same
person might find discourse about tables to be perfectly legitimate as long as that dis-
course is not aiming to specify the fundamental nature of reality. How do we reconcile
the claims that aim at the way reality is fundamentally with claims that do not? The typ-
ical responses to this conundrum are: (i) error theory (the description of fundamental
reality is true and nonfundamental discourse that contradicts it is false), (ii) fictional-
ism (the description of fundamental realty is true and nonfundamental discourse that
contradicts it should be treated as if it is a useful fiction), and (iii) nonfactualism (the
description of fundamental reality is true and nonfundamental discourse that contra-
dicts it should be treated as if it does not aim at representing the world at all—perhaps
statements of nonfundamental discourse aim to express attitudes of the speaker rather
than state facts about the world). The reasons to be dissatisfied with these responses
are the primary reasons for seeking an alternative.*

Kit Fine’s proposal is a good example of a metaphysical approach to the relation
between fundamental and nonfundamental discourse. Fine introduces an operator, ‘in
reality’ that allows one to say things like ‘there is a table’ and ‘in reality there are no
tables” without contradicting oneself. He also motivates the metaphysical relation of
grounding, which is intended to make sense of the ‘in virtue of” locution. Proposition
p grounds another proposition q iff q holds in virtue of p and the truth of q consists
in nothing more than the truth of p. Together, the notion of reality and the notion of
grounding allow Fine to specify what it is for a proposition to be factual: a proposition
is factual iff it is real or it is grounded in the real.*’

Does Fine’s approach help us reconcile the claim that ‘meter’ is indeterminate
(assuming it turns out to be) with the claim that measure phrases involving ‘meter’
are completely determinate? We could say that ‘meter’ is completely determinate,
but in reality ‘meter’ is indeterminate. That seems strange especially if ‘in reality’

45 See Kennedy and McNally (2005a); see also Krifka (1989), Schwartzchild (2005) Kennedy (2007),
Sassoon (2010) and van Rooij (2011).

46 T am not going to cover the debate about these responses; see Fine (2001) for discussion.

47 An alternative to Fine’s theory is Sider’s account of structure and metaphysical semantics; see Sider
(2011: pp. 105-124).
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is factive, then we’re back with a contradiction. Instead, we should say that ‘meter’
is completely determinate, but it is not the case that in reality ‘meter’ is completely
determinate. Then, there is no contradiction. However, we’d need to also say something
about whether ‘meter’ is factual, which would require us to say that the proposition
that ‘meter’ is completely determinate is grounded in some other propositions that are
real *8

8 Replacing the definitions of ‘meter’ and ‘second’

Even if we get very lucky and there turns out to be exactly the right number of
minimal durations in a cesium period, making ‘meter’ perfectly determinate, one
might think that these definitions are defective for imposing such an arbitrary and
unlikely requirement on reality. In this final section, I consider one way of fixing the
problem with the definitions of ‘meter’ and ‘second’.

One suggestion for fixing the indeterminacy problem: defining ‘meter’ directly in
terms of Planck lengths instead of in terms of seconds and the speed of light. There
are about 103? options for doing this, and it is hard to say what the costs and benefits
might be for choosing one over the others, so we might just try one that is close to
the middle of the margin set. Then the meter would be defined as exactly that many
Planck lengths. Because Planck lengths are highly natural—defined in terms of the
gravitational constant, the speed of light, and Planck’s constant—the meter would
then inherit this desirable feature. Moreover, as long as ‘Planck length’ is determinate,
‘meter’ would turn out to be determinate as well.

However, this suggestion immediately runs into a serious objection: defining the
meter directly in terms of Planck lengths severs the conceptual tie between meters and
seconds. As it is right now, meters are defined directly in terms of seconds, and because
of this direct connection between the two, we know the speed of light in meters per
second exactly—it is 299,792,458 m/s. If we change the definition of ‘meter’ so that it
is an exact number of Planck lengths, then the speed of light in m/s might no longer an
exact whole number, and it would have to be determined experimentally. This result
would entail some uncertainty about its value. Of course for all intents and purposes
right now, treating it as exactly 299,792,458 m/s would be fine even if we redefine
‘meter’ directly in terms of Planck lengths. Still, this problem would be a serious cost
to the proposal for redefining the meter.

There are two obvious replies to this objection and each one involves redefining
‘second’. The first would be to define a second as the duration it takes light to travel
1/299,792,458 of a meter. Then seconds would be defined in terms of meters rather
than the way it is currently, where meters are defined in terms of seconds. This proposal
would reestableish the exact value for the speed of light in meters per second.

48 T am not sure how that story about grounding would work. Still, I think this sort of view is worth
considering, especially given the fact that there are multiple ways of implementing it, from Schaffer’s entity
grounding view to Sider’s concept of structure and metaphysical semantics, to Robert Williams’ take on a
regimented representation of reality instead of a representation of a regimented reality. See Schaffer (2009),
Williams (2010) and Sider (2011).
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The second option would be to define the second directly in terms of Planck times. If
the number of Planck lengths defining a meter and the number of Plank times defining
a second were chosen to coordinate properly, then the speed of light in meters per
second would again be an exact value. Here are the candidates—these choices are
very close to the middle of the current range of uncertainty for the value of the Planck
length and Planck time in our current units:

(Proposed Meter) 1 m=61,873,568,789,240,733,169,843,185,036,759,895 Planck
lengths.

(Proposed Second) 1 s = 18,549,229,272,558,563,350,709,419,916,719,069,277,
871,910 Planck times.

It is easy to see that, because a Planck length is the distance traveled by light in a
vacuum in one Planck time, these proposed definitions would make the speed of light
in meters per second have exactly the same value it has right now: 299,792,458 m/s.

There are plenty of other issues associated with these proposed revisions that cannot
be discussed here—e.g., how they would interact with the proposed changes to the
SI system discussed above in section five—but I want to emphasize that these new
definitions of ‘meter’ and ‘second’ would eliminate the indeterminacy of the meter
entirely. As such, it makes the most sense to think of the indeterminacy of the meter,
which has been the topic of this paper, as a semantic indeterminacy, not a metaphysical
indeterminacy. A metaphysical indeterminacy would not disappear by changing the
definitions of ‘meter’ and ‘second’.

9 Conclusion

We have good reason to think that there is a minimal length (whether or not it is the
Planck length), and if there is a minimal length, then there is a hitherto unnoticed
problem with the International System of units. The definition of ‘meter’ depends on
the definition of ‘second’ in such a way that it is extremely unlikely that there is an exact
number of minimal lengths in a meter (even if there is an exact number of minimal
times in a second). If there is no positive integer value for the number of minimal
lengths in a meter, then ‘meter’ is indeterminate. And if ‘meter’ is indeterminate, then
all the units in the SI system that depend on meters are indeterminate as well. That is
most of the system.

The existence of a minimal length and the indeterminacy of the meter have implica-
tions for the conventionality of measurement and the semantics of measure phrases. On
a plausible account of conventionality, not all measurement terms are conventional—
in particular, ‘Planck length’ is not conventional even if it turns out that there is no
minimal length or the minimal length has some other value. Moreover, even if ‘meter’
turns out to be determinate, it is still conventional. In addition, the received view of
measure phrases is that they are perfectly determinate. Thus, if ‘meter’ is indetermi-
nate, then the received view of measure phrases is false. Nevertheless, there are some
strategies available for reconciling the claims of linguists about measure phrases and
the facts about the indeterminacy of ‘meter’.

Let me conclude with a puzzle raised by these considerations. I began Section Two
by presenting our best estimate of the Planck length in meters (i.e., 1.616199 x 10~
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meters). However, if ‘meter’ is indeterminate because there is a minimal length and
that minimal length is the Planck length, then in what sense do we have any estimate
at all of the Planck length? What is the status of the claim that the Planck length is
about 1.616199 x 10733 meters? Wouldn’t the indeterminacy of ‘meter’ undermine the
legitimacy of this measurement? Moreover, we do not currently know whether ‘meter’
is indeterminate because we do not currently know whether there is an exact number
of minimal lengths in a meter. With increases in technology, we could conceivably
investigate this matter by getting a better estimate of the Planck length. But why should
we think that getting a more precise measurement of the Planck length, in meters,
would help clear up whether ‘meter’ is indeterminate? I think there are answers to
these questions, but they are far from easy and require some reflection on the nature of
scientific and conceptual change that will have to wait for future work. Fortunately, we
have some time before the potential indeterminacy in ‘meter’ becomes technologically
significant.
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