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Abstract We revise the extended uncertainty relations for
the Rindler and Friedmann spacetimes recently discussed by
Dabrowski and Wagner in [9]. We reveal these results to be
coordinate dependent expressions of the invariant uncertainty
relations recently derived for general 3-dimensional spaces
of constant curvature in [10]. Moreover, we show that the
non-zero minimum standard deviations of the momentum in
[9] are just artifacts caused by an unfavorable choice of coor-
dinate systems which can be removed by standard arguments
of geodesic completion.

1 Introduction

One of the open problems in contemporary physics is
the unification of quantum mechanics and general relativ-
ity in the framework of quantum gravity. Quantum grav-
ity phenomenology studies quantum gravity effects in low-
energy systems. The basis of such phenomenological mod-
els is the generalized or the extended uncertainty principle
(GUP/EUP) [1–4]. The main characteristics of such inves-
tigations typically consist of modified commutation rela-
tions between position and momentum, including a linear
or quadratic dependence on the position or the momenta, as
well as certain phenomenological parameters to highlight the
terms originating from the linear and quadratic contribution
related to the scale at which quantum-gravitational effects
are expected to become relevant [5]. However, it should be
mentioned that both the GUP and the EUP are mainly derived
in the literature on a phenomenological level.

In [6], a translation operator acting in a space with a diag-
onal metric has been introduced to develop a derivation of
the EUP from first principles. It has been shown that for any
(sufficiently smooth) metric expanded up to the second order,
this formalism naturally leads to an EUP and to a minimum
non-zero standard deviation of the momentum. This gives

a e-mail: t.schurmann@icloud.com

reason to expect the existence of even higher order correc-
tions in the EUP if the metric had been considered without
approximation.

Rigorous mathematical derivations of uncertainty princi-
ples on Riemannian manifolds are hard to obtain. The prob-
lem already becomes apparent for quantum particles on the
circle and on the sphere [7]. One of the difficulties for these
systems is the position uncertainty measure for the parti-
cle (or the wave function spread measure). This is a conse-
quence of the issue related to the choice of the operator for the
azimuthal angle. This problem certainly holds for any closed
manifold. For the 2-sphere the situation is even more com-
plicated because of the absence of a self-adjoint momentum
operator related to the azimuthal angle. This problem can be
solved by the definition of a special coordinate system on the
2-sphere [8].

Recently, it has been mentioned by Dabrowski and Wag-
ner [9] that there are exact formulas for the EUP in the case
of Rindler and Friedmann horizons and that these can be
expanded to obtain asymptotic forms known from the pre-
vious literature. The approach of [9] requires a foliation of
spacetime into hypersurfaces of constant time and so one
considers the 3-dimensional spatial part of the correspond-
ing spacetime metric. The underlying idea of the approach
in [9] is that the measurement of momentum depends on a
given spacetime background recently introduced in [10,11].
In order to measure the momentum one needs to consider a
measure of position uncertainty. This is given by a domain
D (typically the geodesic ball Br ) with boundary ∂D char-
acterized by its geodesic radius r or diameter d and Dirichlet
boundary conditions such that the wave function of the parti-
cle is confined in D. The method then reduces to the solution
of an eigenvalue problem for the wave function ψ

�ψ + λψ = 0 (1)

inside D with the requirement that ψ = 0 on the boundary
∂D, while λ denotes the eigenvalue and � is the Laplace-
Beltrami operator of the corresponding manifold. Then, one
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can write the following general inequality [10]

σp ≥ h̄
√

λ1, (2)

where λ1 denotes the first Dirichlet eigenvalue of the prob-
lem. For the general class of 3-dimensional Riemannian man-
ifolds of constant curvature K , there is a closed form solution
and it was found that [10]

σp r ≥ π h̄

√

1 − K

π2 r2, (3)

where the corresponding position uncertainty of the particle
is represented by the radius r of the associated geodesic ball.
It should be mentioned that this uncertainty relation is inde-
pendent of the coordinate system (diffeomorphism invari-
ance) and not of the same kind as the ordinary EUP or GUP
because it features the characteristic length of the confine-
ment corresponding to r . Thus, r should rather be interpreted
as uncertainty and does not describe the standard deviation
of position [10,11]. Both the Rindler geometry and the foli-
ations of the Friedmann cosmology at a given instant of time
are spaces of constant curvature K . For the Rindler space we
have K = 0 and from (3), one simply obtains the uncertainty
relation

σp r ≥ π h̄, (4)

for 0 ≤ r < ∞. In the Friedmann spacetime, the sectional
curvature of the spacelike hypersurface depends on the cos-
mological time τ and is given by

Kτ = k

a2(τ )
, (5)

with k = 0,±1, corresponding to a flat, closed or open spa-
tial geometry and a(τ ) is the time-dependent scale factor
associated with the Friedmann solution of Einstein’s field
equations. According to (3), for a given instant of time, the
uncertainty relation in the Friedmann cosmology is given by

σp r ≥ π h̄

√

1 − k

(πa)2 r2, (6)

for 0 ≤ r ≤ πa(τ ), if k = 1, or r ≥ 0, if k = 0 or −1.
Although this closed form expression is valid for all three
possibilities of k, we want to note that the corresponding
physical context is very different. For k = 1, the space is iso-
metric to the unit sphere and the ball with maximum position
uncertainty is reached for r → πa(τ ), corresponding to the
total domain of measure 2π2a3. In this case, the right-hand
side of (6) approaches zero such that the momentum disper-
sion can be arbitrary small although the position uncertainty
is still finite. For k = −1, the space is isometric to the unit ball
with the standard metric induced by the Lorentzian 4-space.
In this case a remarkable fact is given when the position
uncertainty r tends to infinity while a(τ ) is finite. Then, we
obtain the global lower bound of σp ≥ h̄/a(τ ). On the other

hand, when r is kept finite but a(τ ) approaches zero, then the
standard deviation of the momentum tends to infinity [10].

The appeal of these inequalities is that they are indepen-
dent of the coordinate system. Moreover, inequality (6) is
universally applicable to any kind of scaling function a(τ )

which is a solution of the Friedmann equation (e.g. for mat-
ter, radiation, curvature or even mixtures of them as given
by the Lambda-CDM model). These scaling factors typi-
cally approach infinity for τ → ∞, which implies that (6)
approaches the inequality (4) of flat Minkowski space. Never-
theless, the fact that the right-hand side of (3) is determined
by the spatial curvature K of the foliation is a mathemat-
ically rigorous result and might be pathbreaking for other
approaches. For example, in the ordinary EUP it is argued
[2,3] that in an Anti-de Sitter background the Heisenberg
principle should be modified by introducing the cosmological
constant 	 = −3/ l2H, with lH the Anti-de Sitter radius, as [2]

σpσx ≥ h̄

2

[

1 + σ 2
x

l2H

]

, (7)

where it is assumed by convention that l2H < 0 for de Sit-
ter spacetime, and l2H > 0 for the Anti-de Sitter case. Now,
the left-hand side of this inequality is founded in the spatial
hypersurface at a given instant of (cosmic) time. However,
this is not the case for the right-hand side because lH is by
definition a constant quantity. A discussion of the uncertainty
principle (3) applied to the de Sitter and Anti-de Sitter back-
ground has recently been given by the author in [12].

By this argumentation it becomes clear that Dabrowski
and Wagner’s intention in [9] is somewhat doubtful because
the different meaning of curvatures applied in both approaches
(3) and (7). The uncertainty relations of Dabrowski and Wag-
ner in [9] look very different from (4) and (6) and they are
much more complicated. Obviously, this is because they are
not written in an invariant representation, but are related to
special coordinate systems.

In the following two sections, we will discuss the state-
ments made in [9]. The inequality corresponding to the
Rindler vacuum can be derived from (4) because both the
spatial curvature of the 3-dimensional space and the curva-
ture of the 4-dimensional Minkowski spacetime are equal and
zero. For the Friedmann cosmology we show that the time-
independent horizon specified in [9] is not compatible with
the spatial curvature Kτ in (5) and (6). We also show that
the non-zero minimum standard deviations of the momen-
tum stated in [9] can be removed by standard arguments of
geodesic completion. A comment is given at the end.

2 The uncertainty principle in Rindler space

The approach of [9] requires a foliation of spacetime into
hypersurfaces of constant time and so one considers only the
spatial part of the Rindler metric which is of the form [9,13]
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ds2 = c2

2αx
dx2 + dy2 + dz2 (8)

with acceleration α describing a boost in the x-direction as
applied to the Minkowski space, c the speed of light, and y
and z denoting the components of the metric perpendicular to
the x direction in Rindler space [9]. Without loss of general-
ity, we have chosen the boost of acceleration in the direction
of x . Let

(gi j ) = diag

(
c2

2αx
, 1, 1

)
(9)

be the corresponding 3-dimensional metric. For the following
argumentation we briefly introduce the formal representation
of a geodesic ball in Rindler space. A geodesic ball in Rindler
space can be obtained by a suitable coordinate transformation
to the Euclidean space:

X = (l0x)
1
2 , Y = y, Z = z, (10)

for x ≥ 0 and the abbreviation l0 = 2c2/α. The correspond-
ing metric in the new (Euclidean) coordinates X,Y, Z is sim-
ply given by

(gi j ) −→ (δi j ) = diag (1, 1, 1) . (11)

Now, the boundary of the 3-sphere of radius r centered
around the position (a, 0, 0) is just given by the algebraic
expression

(X − a)2 + Y 2 + Z2 = r2, (12)

The corresponding geodesic ball in Rindler coordinates
x, y, z, is obtained by substitution of (10)–(12) and reads
∣∣∣
√
l0x − a

∣∣∣ ≤
√
r2 − y2 − z2 with (13)

y2 + z2 ≤ r2, 0 ≤ y, z ≤ r. (14)

Rindler observers are accelerated with respect to inertial
observers and additionally their acceleration differs in their
positions (the closer to x = 0 they are, the larger is their
acceleration). Because of the effect of Lorentz contraction,
the endpoints (closer to x = 0) of a line of points must
accelerate harder than the front points and this is reflected
in deforming a geodesic ball. Because of the axial symmetry
with respect to the x-direction, the corresponding 3-sphere
can be properly expressed for z = 0, see Figs. 1 and 2. For
instance, the vertical distance between the center (dot) and
the north pole is different from the coordinate distance of
(0, 0, 0) to the center, although the geodesic distance of both
is identical to r . So, if one wanted to express the position
uncertainty relative to the x-direction (as has been done in
[9]), then one must take into account that the vertical coor-
dinate distance is dependent on which position the circle
is located in this direction. Actually, such a dependency is
somewhat cumbersome and hard to handle by the observer.
The appropriate choice of the position uncertainty should be

Fig. 1 Projection of the 3-sphere in Rindler space (blue) onto the x-y-
plane for α = 1/2 and c = 1 (l0 = 4). The acceleration is in x-direction,
y (and z) are perpendicular to the acceleration (see text). The black dot
at (l0/2, 0, 0) is the center of the sphere in Rindler coordinates with
radius r = l0/

√
2. Also shown are diameters of geodesic length 2r

(orange and green). The corresponding Euclidean 3-sphere of the same
diameter is shown in Fig. 2

the geodesic radius or diameter of the ball, which is constant
and independent of its position in Rindler space.

We briefly express the corresponding boundary value
problem in Rindler coordinates. According to the metric (8),
the Laplace-Beltrami operator of the problem is given by

� = 2α

c2

(
x

∂2

∂x2 + 1

2

∂

∂x

)
+ ∂2

∂y2 + ∂2

∂z2 , (15)

so that the associated eigenvalue problem (1) is given by the
following 3-dimensional partial differential equation

2α

c2

(
x

∂2ψ

∂x2 + 1

2

∂ψ

∂x

)
+ ∂2ψ

∂y2 + ∂2ψ

∂z2 + λψ = 0. (16)

Instead, to solve this equation in Rindler coordinates, as has
been done in [9], here we follow an alternative approach by
applying the coordinate transformation (10) to equation (16).
After a few algebraic steps, we simply obtain

∂2 f

∂X2 + ∂2 f

∂Y 2 + ∂2 f

∂Z2 + λ f = 0, (17)

while f = f (X,Y, Z) ≡ ψ(x, y, z) is defined in the ordi-
nary Euclidean space equipped with the standard metric (11)
and the simple boundary condition

f (X,Y, Z) = 0 for (X,Y, Z) ∈ ∂S3
r . (18)
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Fig. 2 Projection of the 3-sphere in Euclidean space (blue) onto the X -
Y -plane for c = 1 (l0 = 4). The black dot is at the center (l0/

√
2, 0, 0)

of the sphere with radius r = l0/
√

2. Diameters of length 2r are also
shown (green and orange), see also Fig. 1

This problem has already been discussed in [10] and the
result is given by (3), for K = 0. In contrast to the result in
[9], the acceleration does not explicitly occur in the invariant
representation (4).

More precisely, let us discuss the statement (18) of
Dabrowski and Wagner in [9]. Therein, it is proposed to
express the position uncertainty by the coordinate �x in the
direction of acceleration and the associated 1-dimensional
domain of position uncertainty is taken to be the interval
I = [l0 − �x, l0 + �x], with l0 = 2c2/α. At this point we
want to mention that the corresponding (coordinate) distance
dx := 2�x in this direction is not equal to the geodesic diam-
eter which is d = 2 r . Our starting point to understand the
inequality (18) of [9] is to express the geodesic radius r of
(4) in terms of �x . Therefore, we first define the north pole
and the south pole x± = l0 ±�x of the ball in Rindler space.
Applying the coordinate transformation (10) to x±, we find
the dependency

dx = 2a

l0
d. (19)

or equivalently

�x = 2a

l0
r. (20)

It follows that the position uncertainty �x does not only
depend on the measure of I but also on the position at which
the measurement is performed in space. This is certainly an
unfavorable property in the choice of �x . However, let us

apply (20) to express the inequality (4) in terms of �x . To
eliminate the dependency on a, we consider the pre-image
of x± under coordinate transformation (10), that is

x± = 1

l0
(a ± r)2 (21)

and by a few algebraic manipulations we get the equivalent
expression

2a

l0
=

√

1 + �x

l0
+

√

1 − �x

l0
. (22)

By substitution into (20), we obtain the geodesic radius r in
terms of �x and the acceleration α, that is

r = �x
√

1 + �x
l0

+
√

1 − �x
l0

. (23)

This expression is now applied for r in the 1-dimensional
version of (4) given in [11]. The square root terms are sub-
sequently rearranged on the right-hand side, such that we
find

σp�x ≥ π h̄

2

(√

1 + �x

l0
+

√

1 − �x

l0

)

. (24)

We finally apply the binomial formula to the terms with
square roots to get

σp�x ≥ π h̄
�x
l0√

1 + �x
l0

−
√

1 − �x
l0

. (25)

By this derivation it becomes obvious that the complicated
square root expression (25) is just a representation of the
geodesic radius with respect to the coordinate dependent pro-
jection in the direction of acceleration. Since in the approach
of [9] the uncertainty of position is restricted by �x ≤ l0,
we see that the minimum possible σp in the Rindler chart
will be π h̄

√
2/ l0 > 0. The meaning of the bound �x ≤ l0

seems to be similar to the meaning of the Unruh tempera-
ture - both appear in Rindler frames for Rindler coordinates.
However, the lower bound for σp only holds for measure-
ments which are performed for the set of balls with the center
at (l0/2, 0, 0) in Rindler space (see Fig. 1). Alternatively, if
we consider balls with the center at position (r2/ l0, 0, 0) in
Rindler space, or equivalently a = r in (20), then we have
r = (l0�x/2)1/2. By substitution into the 1-dimensional
version of (4), we obtain

σp�x ≥ π h̄

√
�x

2l0
(26)

and there is no restriction for �x in (26). As a consequence,
the greatest lower bound of σp is 0, which can be obtained
for �x → ∞. As we can see, the value of the greatest lower
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bound of σp depends on the position at which the measure-
ment process is performed in Rindler space. However, what
we can be sure about is that σp → 0 is possible.

We already know from literature that the Rindler space-
time cannot be geodesically complete, because it covers
only a portion of the original Minkowski spacetime, which
is geodesically complete. However, the Rindler spacetime
(and its 3-dimensional foliation) can be extended to the
Minkowski spacetime (or the 3-dimensional Euclidean sub-
space) such that there is no longer any singularity in the
metric components.

3 The uncertainty principle in Friedmann cosmologies

Let us proceed under the assumption that the universe
is homogeneous and isotropic. Then there exists a one-
parameter family of spacelike hypersurfaces �τ , foliating
the spacetime into pieces labelled by the proper time, τ , of a
clock carried by any isotropic observer. In these coordinates
the spacetime metric is the Friedmann-Lemaître-Robertson-
Walker (FLRW) form which can be written as

ds2 = −c2dτ 2 + a2(τ )

⎧
⎨

⎩

dχ2 + sin2 χ d�2, 0 ≤ χ ≤ π

dχ2 + χ2 d�2, χ ≥ 0
dχ2 + sinh2 χ d�2, χ ≥ 0

(27)

where the three possibilities beside the bracket correspond to
the three possible spatial geometries, either the flat Euclidean
space (k = 0), the closed unit sphere (k = 1) or the open unit
hyperboloid (k = −1) [14]. The scale factor a(τ ) is given by
the solution of the associated Friedmann equations. Without
any further specification of the scale factor, the corresponding
time slices at any instant of τ are 3-dimensional subspaces �τ

of constant sectional curvature given by (5), where the cor-
responding uncertainty relation has already been introduced
in (6).

On the other hand, in section 4 of [9], Drabowski and
Wagner consider an alternative (isometric) representation of
the Robertson-Walker form corresponding to

ds2 = −c2dτ 2 + dr̃2

1 − r̃2

r̃2
H

+ r̃2d�, (28)

with the horizon r̃ H defined by

r̃2
H = c2

H2 + kc2

a2

. (29)

Here, we have slightly adjusted the notation in (28) by writing
r̃ instead of r . The reason is that r̃ in the representation of
(28) is not a geodesic coordinate and has to be distinguished
from the geodesic radius r defined in the previous sections.
Moreover, in (29) we used the notation k instead of K for the

curvature index, while the latter has been applied in (22) of
[9]. Now, using the definition of the Hubble function H =
ȧ/a, and after a few algebraic manipulations we see that
expression (29) is just equivalent to the Friedmann equation
with curvature k and cosmological constant 	 = 3/r̃2

H, given
by

ȧ2

c2 = 	

3
a2 − k. (30)

Actually, this case corresponds to the standard de Sitter and
Anti-de Sitter spacetime. At this point we see that r̃ H is in fact
not the curvature radius of the foliation in a given time slice
and is therefore not appropriate to be used for the uncertainty
relation under consideration (see [12]). Instead, the correct
curvature radius is corresponding to the scale factor a(τ ).
For reasons of comparison with [9], in the following we will
define the notation (without tilde) given by

r H ≡ a(τ ), (31)

instead of r̃ H given in (29). With this notation, the approach
in [9] is to solve the associated Dirichlet boundary value
problem in r̃ and to obtain the expression (29) in [9]. As
already mentioned in the introduction, this physical situation
has already been treated by inequality (6), with k = 1. To
compare our result with the statement (29) in [9], we first
rewrite (6) as follows

σp ≥ h̄

r H

√(
π

r/r H

)2

− 1. (32)

We remember that the standard representation of the spatial
part in (28) is based on the coordinate transformation

r̃ = r H sin

(
r

r H

)
, (33)

for 0 ≤ r < πr H, which is a relation between the geodesic
radius r and the coordinate r̃ . We also keep in mind that the
foliation is not completely covered for r̃ → r H. Actually,
this limit is only related to the “upper” hemisphere of S3

r H

corresponding to the polar angle of π/2 in spherical coordi-
nates (see [14], p. 116). For covering the complete space, one
must also regard the lower hemisphere, which is not a priori
contained in the representation (28). This fact will be taken
into account by writing (33) in terms of the two branches

− r

r H

= ± arccos

(
r̃

r H

)
− π

2

= 2 arctan ( f±(r̃)) − π

2
(34)

with

f±(r̃) = ± tan

(
1

2
arccos

(
r̃

r H

))
. (35)
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Fig. 3 The uncertainty relation (6) for the Friedmann cosmology in
terms of the rescaled position uncertainty �x/r H in units of π h̄. In
these units the uncertainty approaches its minimum value of 0. The
curve is passed through the two branches (blue and orange) clockwise
from top to bottom. For reasons of comparison, we have used the same
notation as in Fig. 2 of [9], that is r̃ ≡ �x (see text)

We reformulate this expression by using the half-angle
formula

tan
ξ

2
=

√
1 − cos ξ

1 + cos ξ
, (36)

for ξ ∈ [0, π) and cos ξ := r̃/r H, to obtain

f±(r̃) = ±
√

1 − r̃/r H

1 + r̃/r H

. (37)

By substitution of (34) into the denominator under the square
root in (32), we obtain the final result

σp r̃ ≥ h̄
r̃

r H

√(
π

2 arctan ( f±(r̃)) − π/2

)2

− 1, (38)

which reproduces expression (29) of [9], except that there
are two signs in our result.

In Fig. 3, we see the (total) uncertainty in terms of the
notation applied in [9], that is r̃ ≡ �x . In Fig. 2 of [9],
there is only the upper (blue) part of the curve but not the
lower branch (orange) and it is argued that the uncertainty
approaches a minimum value of

√
3/π , for �x → r H. As

already mentioned above, this argumentation is incomplete,
because it ignores the “lower” hemisphere of S3

r H
. Instead, we

consider the complete space and find the true minimum value
of the uncertainty approaches zero (orange curve) when the
space is completely covered by the position uncertainty such
as r → πr H ≡ πa(τ ).

4 Comment

As we know from the history of Riemannian geometry and
general relativity, the property of diffeomorphism invari-
ance is one of the most important features for the gener-
alization of physical laws to curved spaces. For uncertainty
principles given in 3-dimensional space this means that the
applied measures of uncertainty should be chosen with cau-
tion. When the standard deviation of the momentum is based
on the Laplace-Beltrami operator, then one can be sure that
invariance under change of coordinates is satisfied. On the
other hand, an obvious choice for the position uncertainty
is hard to obtain if one is only concerned to apply the con-
cept of standard deviation. As we have seen in the present
contribution, fortunately the choice of a standard deviation
in position space is not really necessary or even appropriate.
Especially from the concept of projection-valued measures
it becomes obvious, alternatively, to consider suitable spa-
tial domains for the representation of position uncertainty.
Moreover, from the theory of spectral analysis, we know that
geodesic balls play an important role because these are the
distinguished domains in many variational approaches. Since
geodesic balls are uniquely classified by their geodesic radius
(or diameter) it becomes obvious that the geodesic radius
is the appropriate measure for the representation of posi-
tion uncertainty in curved spaces. For that reason it becomes
clear why the requirement of coordinate invariance is hard to
obtain by the standard GUP and EUP in literature. This fact
makes their analysis and interpretation sometimes difficult.
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