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Abstract

The utilisation of quantum theories within social science and biology is often
reasonably met with dubiety. It would be even more controversial should such the-
ories be applied to concepts under the domain of eugenics. Nonetheless, this can
open up a fresh and unique understanding of theories that are usually understood
by their classical structure. We will provide quantum interpretations of dysgen-
ics and dysgenic traits from different scopes and procedures. The way dysgenic
traits are in a flux with the environment that they interact will be analysed as
well as how they interact with each other under quantum conditions. We will also
take into account of factors such as intelligence, genetic heritability, and other
biological and cognitive factors and try to study their frameworks in non-classical
ways. Using what we have theorised, we will also attempt to create numerical
and empirical analyses of some of the theories that we have proposed.

1 Introduction

”What we observe is not nature itself, but nature exposed to our method of questioning.” -
Werner Heisenberg (1901 - 1976)

Eugenics is quite often regarded as a pseudoscience; the history of it has been
filled with trouble. Many studies have tried to test the idea of whether or not there is
a rise in dysgenic traits in populations as well as trying to see what the devastating
consequences for a society as a whole are because of dysgenic populations. As the
author, it is not my job to persuade whomever that reads this to be in favour of or
in opposition of eugenics. That is simply not my task. However, it is in my hopes
that the reader will understand how we can apply what we know about quantum
physics to topics that are encapsulated in theories of genetics and biology. We will
go through this rigorously. Much of this seems unconventional, most people would
think, but regardless this will set in stone the potential for future theories of a similar
nature. Some with hopefully even more predictive power. None of this has ever been
attempted before, at least specifically regarding theories under eugenics, until now.
Nevertheless, it is in the nature of interest for the quantum social scientist such as
myself to revolutionise these fields with intriguing and meaningful comprehensions of
the fields of social science and biology.
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Theories about dysgenics are of course perceived classically, by which genes are
discrete units. When we think about genetic inheritance, we usually think about it in
the Mendelian way. So be it. This only works for traits that are simple, however. Some
of the more complex genetic traits which are of high relevance to human behaviour
and intelligence are held in control by a plethora of genes that interact in various ways
with other genes and even the environment of which they are in. All of this fails to take
in account of the role of quantum mechanics in biological processes. Even Schrödinger
himself knew that there was a probable role of it in biology.

We will be studying dysgenics in various ways, such as under field theoretic frame-
works and stochastic processes. We will seek to understand how dysgenic traits operate
by due of their dynamism, which we will try to unveil the quantum properties of.
Remember that we are working as physicists, and not as biologists or chemists. This
means that whatever we do will not necessarily align with some of the common beliefs
held by professionals in those areas, yet those professionals should thank us for at
least trying to open their eyes from a different perspective.

2 Dysgenic Field Theory

What follows is a set of different yet closely related field theories that I have created
in order to interpret dysgenics. We shall begin with the first field theory of dysgenics,
which will approach dysgenics very generally. Some of these theories will be tested
using computational mathematics software such as MATLab. Let us now begin.

2.1 Dysgenic Field Theory I

Dysgenes may be described by ϕ(x) which is a complex scalar field, x being a four-
dimensional spacetime coordinate. Given a gauge field Aµ(X), dysgenes may also hold
interaction with that gauge field. Note that µ = 0, 1, 2, 3, 4. The gauge field is the
representative of the environmental or social factors which the dysgenes are affected
by. The action for the dysgene field is given by

S[ϕ,A] =

∫
d4x

(
−1

4
FµνF

µν + |Dµϕ|2 − V (|ϕ|)
)
, (1)

where Fµν = ∂µAν − ∂νAµ is the gauge field’s field strength tensor while Dµ =
∂µ − ieAµ is the covariant derivative, e is the coupling constant between the gauge
field and the dysgenes, and V (|ϕ |) is the potential function for the dysgene field. The
potential that will be used for the dysgene field has been selected to be

V (|ϕ|) = λ

4
(|ϕ|2 − v2)2, (2)

where λ is a positive constant while v is also a constant albeit one that is non-zero. Two
degenerate minima at ϕ = ±v can be found in the potential. Due to this, the dysgene
field is able to possess two possible vacuum states, both of which would correspond to
two different phases of dysgenics.
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The action S[ϕ,A] is invariant under local U(1) gauge transformations of the form

ϕ(x) → eiα(x)ϕ(x), Aµ(x) → Aµ(x) +
1

e
∂µα(x), (3)

where a(x) is an arbitrary function of spacetime. The very fact that the phase of the
dysgene field can not be physically observed and yet can be transformed by a local
change of reference frame is reflected by this symmetry.

We still have to obtain the equations of motion for the dysgene field and the gauge
field. We may do so by varying the action with respect to ϕ∗ and Aµ, respectively.
Thus we may write the equations of motion as

DµD
µϕ+

∂V

∂ϕ∗
= 0, ∂νF

νµ + ejµ = 0. (4)

The current density of the dysgene field is given by

jµ = i(ϕ∗Dµϕ− ϕDµϕ∗). (5)

It is also crucial to add that the action that we are working with S[ϕ,A] has a global
U(1) symmetry, with that itself being a subgroup of the local U(1) symmetry with
a(x) being a constant. In our case, this corresponds to a global phase rotation of the
dysgene field. That would imply that the dysgenes have a conserved charge associated
to them. This charge density is given by p = j0. The total charge is given by

Q =

∫
d3xρ =

∫
d3xi(ϕ∗D0ϕ− ϕD0ϕ∗). (6)

Now, since we are deciding that this system is going to be defined on a four-dimensional
manifold with boundaries, the boundary conditions associated with the fields must be
compatible with the gauge symmetry and variational principle. Thus, we must select
a boundary condition that is appropriate, otherwise we will run into trouble. If we
wanted to, we could impose Dirchlet boundary conditions on both fields, which be

ϕ|∂M = 0, Aµ|∂M = 0, (7)

in which ∂M is the boundary condition of the manifold M . We could even impose
Neumann boundary conditions on those two fields, thus

nµDµϕ|∂M = 0, nνFνµ|∂M = 0, (8)

where nµ is the outward-pointing normal vector to the boundary. Such boundary
conditions are important because can indeed ensure that the fields have zero normal
derivatives at the boundary or vanish, respectively speaking.
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2.1.1 Quantisation

We have to quantise the gauge and dysgene field. In order to do this, we are going to
have use the canonical quantisation method. This is formed by imposing commutation
relations on the conjugate momenta of the fields and the fields themselves at equal
times. We define the conjugate momenta as

Π(x) =
δS

δϕ̇(x)
= D0ϕ

∗(x), Eµ(x) =
δS

δȦµ(x)
= F 0µ(x). (9)

The commutation relations are given by

[ϕ(x),Π(y)] = iδ3(x− y) (10)

[Aµ(x), Eν(y)] = iδνµδ
3(x− y) (11)

[ϕ(x), ϕ(y)] = [Π(x),Π(y)] = [Aµ(x), Aν(y)] = [Eµ(x), Eν(y)] = 0. (12)

These commutation relations give the implication to us that the conjugate momenta
and the fields that they associate with are indeed operators that act on a Hilbert space
of quantum states.

We now have to solve the equations of motions that we were dealing with for the
fields. We will have to use the mode expansion method. Assuming that the manifold
M is a four-dimensional box with sides L (so that periodicity can be satisfied by
the boundary conditions) and that the gauge field is in the temporal gauge, that is,
A0(X) = 0, then the mode expansions for the fields are given by

ϕ(x) =
1

L3/2

∑
k

1√
2ωk

(
ake

−ikx + a†−ke
ikx
)

(13)

Ai(x) =
1

L3/2

∑
k

1√
2|k|

(
bi,ke

−ikx + b†i,−ke
ikx
)

(14)

Additionally, our reason for choosing that particular gauge A0(X) = 0 is that it would
simplify the equations of motion whilst also eliminating the constrain equation that
A0 adheres to. The annihilation operators that reside within the mode expansions
satisfy the following commutation relations:

[ak, a
†
k′ ] = [bi,k, b

†
j,k′ ] = δk,k′δij (15)

[ak, ak′ ] = [bi,k, bj,k‘] = [ak, bi,k′ ] = [ak†, bi,k′†] = 0. (16)

The Hamiltonian for the system can be obtained by integrating the energy density
over the spatial volume, so

H =

∫
d3x

(
1

2
EiE

i + |Diϕ|2 + V (|ϕ|)
)
. (17)
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The time now comes in to use the field mode expansions that we previously derived.
By the field mode expansions, we write the Hamiltonian as:

H =
∑
k

(
ωka

†
kak + |k|b†i,kbi,k

)
+H0, (18)

in which H0 is a constant term wherein it holds dependence to the potential parame-
ters. The Hamiltonian is diagonal in terms of the annihilation and creation operators.
It is also good to note that it has a simple spectrum of eigenvalues. Given the vacuum
state |0⟩, which is the system’s ground state, the equation

ak|0⟩ = bi,k|0⟩ = 0, ∀k, i (19)

is satisfied. Thence, we are able to obtain the excited states of the system by applying
the creation operators to the vacuum state while having energies that are multiples of
ωk or |k|. We interpret the quantum states of the system as superpositions of different
numbers and types of quanta or particles. These are the excitations of the gauge or
dysgene fields.

2.1.2 Dysgenic Phase Transition and Symmetry Breaking

This quantum field theoretic dysgenic theory so far is quite interesting in that we
may observe a symmetry breaking phenomenon along with a phase transition which it
exhibits. We take the potential parameter v to be the control parameter for the field
theory. The depth along with the shape of the potential well for the dysgene field is
determined by that. The global U(1) symmetry is the symmetry that is broken. This
corresponds to the dysgene field’s global phase rotation. When v crosses over some
critical value vc that is dependent on the other potential parameter λ and the coupling
constant e, then the symmetry breaking occurs. Under that critical below is when the
system happens to be in a symmetric phase. This results in the ground state of the
dysgene field being ϕ = 0 but having the global U(1) symmetry preserved. However,
when we start going above this critical value, then the state is in a broken phase. In
that broken phase, the ground state of the dysgene field is ϕ = ±v, and the global
U(1) symmetry becomes spontaneously broken.

We should try to understand this symmetry breaking and phase transition better.
We will have to take into account of an effective potential, which being a function that
describes the system’s energy as a function of the expectation value associated with
the dysgene field. o obtain this, we have to integrate out the quantum fluctuations of
the fields around their classical values. Methods like perturbation theory can be used
to do that. For our case, the effective potential is given by

Veff(ϕ) = V (|ϕ|) + ∆V (|ϕ|). (20)

The quantum correction term ∆V (|ϕ|) takes the form

∆V (|ϕ|) = a

2
|ϕ|2 − b

4
|ϕ|4 + c

6
|ϕ|6 + · · · , (21)
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where a, b, and c are constants that are positive and also depend on our parameters.
The form that has just been ascribed to the quantum correction term allows the
apprehension of the primary characteristics that the quantum correction term has.
These include

• The evenness under ϕ→ −ϕ
• The convexity at small values of |ϕ|
• Non-analyticity at large values of |ϕ|

and some others.
With the effective potential, the degeneracy and the stability of the system’s ground

state can be determined. The ground state corresponds to the minimum or in some
other cases the minima of the effective potential. The energy gap that is in between the
excited states and the ground state corresponds to the second derivative of the effective
potential at the minimum (or minima). The shape and position of the minimum or
minima of the effective potential depend on the value of v. If it happens to be case
that v ≤ vc, then the effective potential has two degenerate minima at ϕ = ±v′ , where
v′ ≤ v , and the ground state is twofold degenerate and thus broken. The critical value
vc is determined by the condition that the second derivative of the effective potential
at ϕ = 0 vanishes:

V ′′
eff(0) = λv2 + a− bv2 + cv4 + · · · = 0. (22)

The transcendental equation for vc is satisfied by that condition.
Due to the symmetry breaking and phase transitions that we have been analysing,

we can come to understand a few yet important consequences. Two possible scenarios
for dysgenics is implied, depending on whether v ≤ vc or v ≥ vc but we will not go
further into this.

2.1.3 Quantum Fluctuations and Dissipation of Dysgenes

We will look into the dissipation and quantum fluctuations of dysgenes. We will employ
the Langevin equation for this task. The Langevin equation is an SDE that describes
the evolution of an open quantum system that is coupled to a reservoir or a bath. It
takes the form

˙̂x(t) = f̂(x̂(t)) + ξ̂(t). (23)

The stochastic forces that are present in the form of the Langevin equation are related
to the reservoir operators by

⟨Rϕ(s)⟩ = ⟨RAi
(s)⟩ = 0 (24)

⟨Rϕ(s)Rϕ(s′)†⟩ = Nϕ(s− s′)I (25)

⟨Rϕ(s)†Rϕ(s′)⟩ =Mϕ(s− s′)I (26)

⟨RAi
(s)RAj

(s′)†⟩ = NAi
(s− s′)δij (27)

⟨RAi
(s)†RAj

(s′)⟩ =MAi
(s− s′)δij . (28)

These statistical properties imply that the stochastic forces hold to be Markovian,
Gaussian, and zero-mean. Both the dysgene field and the gauge field are open quantum
systems and they are coupled to different reservoirs. The reservoirs represent the social

6



and environmental noise of which the fields are affected by. The reservoirs are in a
thermal equilibrium at some temperature T and that the system-reservoir coupling is
weak and linear. We can thus write

ϕ̇(x) = D0ϕ
∗(x) + ξϕ(x) (29)

Ȧi(x) = −Ei(x) + ξAi(x) (30)

The stochastic forces for the dysgene field and the gauge field (respectively) ξϕ(x) and
ξAi

(x) are related to the reservoir operators by

ξϕ(x) =

∫ t

0

dsKϕ(t− s)Rϕ(s) (31)

ξAi
(x) =

∫ t

0

dsKAi
(t− s)RAi

(s), (32)

where Kϕ(t−s) and KAi
(t−s) are respectively the kernel functions for the dysgene

field and the gauge field. Rϕ(s) and RAi
(s) are also respectively the reservoir operators

for the dysgene field and the gauge field. Quantum effects such as tunneling and
diffusion can induce transitions between different states or phases of dysgenics, and
affect the stability and robustness of dysgenic patterns.

2.1.4 Entropic Uncertainty Relations and Entanglement Measures
for Dysgenes

Using the Wehrl entropy, that being defined as

SW (ρ) = −
∫
d2αρW (α) log ρW (α), (33)

we may measure the uncertainty for the dysgene field. We drive the entropic
uncertainty relation as

SW (ρX) + SW (ρP ) ≥ 2 logL, (34)

which would mean that a trade-off exists between the precision of measuring the
momentum and position of the dysgene field. That trade-off is dependent on the topol-
ogy that constitutes the field space. The quantum mutual information for measuring
of the quantum correlation and quantum non-classicality of the dysgene field is defined
as

I(ρAB) = S(ρA) + S(ρB)− S(ρAB). (35)

The von Neumann entropy S(ρ) is defined as

S(ρ) = −Tr(ρ log ρ). (36)

We will also make use of quantum discord, which we define as

D(ρAB) = I(ρAB)− C(ρAB), (37)
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where C(ρAB) is the classical correlation, that itself being defined as

C(ρAB) = max
Mi

(
S(ρA)−

∑
i

piS(ρA|i)

)
. (38)

The entropic uncertainty relations and entanglement measures respectively take the
forms

SW (ρX) + SW (ρP ) ≥ 2 logL+ I(ρAB) (39)

and
SW (ρX) + SW (ρP ) ≥ 2 logL+D(ρAB). (40)

2.2 Dysgenic Field Theory II

We will approach things with a different but related account, more so on genetic traits
themselves and how they interact within populations. Given a quantum number n and
a helicity λn , each trait may be represented. Note that these variables are discrete,
so they take values that are within a finite set. Let n = 1, 2, . . . N and λn = ±1. Each
individual within a population may be described by a quantum state |Ψ(t)⟩. This is a
superposition of particle and antiparticle states that have different quantum numbers
and helicities. If it happens to be that one state with one particle with trait n = 1
and helicity λ1 = ±1 along with one antiparticle with trait n = 2 and a helicity of
λ2 = −1 , then we can write

|Ψ(t)⟩ = a†1(t)b
†
2(t)|0⟩. (41)

The creation operators satisfy

[an(t), a
†
m(t)] = [bn(t), b

†
m(t)] = δnm (42)

[an(t), b
†
m(t)] = [an(t), bm(t)] = [a†n(t), b

†
m(t)] = 0. (43)

The annihilation operators are to be defined as the Hermitian conjugates of the
creation operators

an(t) = (a†n(t)
† (44)

bn(t) = (b†n(t)
† (45)

Thus, we can define the number operator for particles and anti particles with a
quantum number n and helicity λn as

Nn,λn
(t) = a†n(t)an(t) + b†n(t)bn(t), (46)

which counts the amount of individuals with a trait n and helicity λn in the quantum
state |Ψ(t)⟩. Given the expectation value of the operator

⟨Nn,λn
(t)⟩ = ⟨Ψ(t)|Nn,λn

(t)|Ψ(t)⟩, (47)
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we are able to measure the average numbers of individuals with the trait n and its
corresponding helicity. We then turn to the Hilbert space of quantum states for the
population. We find it being given by the tensor product of Fock spaces for each trait

H =

N⊗
n=1

Fn, (48)

where Fn is the Fock space for trait n. This is then spanned by states that take
the form

|n1, n2, . . . , nN ⟩ =
(a†1)n1(b

†
1)n1(a

†
2)n2(b

†
2)n2 . . . (a

†
N )nN (b†N )nN√

n1!n2! . . . nN !
|0⟩, (49)

We define the inner product on H as

⟨Ψ1(t)|Ψ2(t)⟩ =
∏

n = 1N ⟨ψ1,n(t)|ψ2,n(t)⟩, (50)

and the norm of a state |Ψ(t)⟩ as

∥Ψ(t)∥ =
√

⟨Ψ(t)|Ψ(t)⟩. (51)

2.2.1 Propagation of Quantum States

The propagation of quantum states for each trait is described by the Weyl equation
on a four-dimensional spacetime that is a product of two two-dimensional manifolds:
M = M1 ×M2, where M1 is a smooth orientable 2-dimensional manifold and M2 is
a complex curve endowed with a mereomorphic one-form ω. The metric on M can be
give by

ds2 = g00dx
0dx0 + g11dx

1dx1 + 2g01dx
0dx1 + dzdz̄, (52)

where g00, g11, g01 and g01 are functions of (x
0, x1) only, with that being the coordinates

on M1. The one-form ω has poles at some points on M2 which would correspond to
singularities in the spacetime.

For our case, the Weyl equation is given by

(γµDµ − iqnAµ)ψn = 0. (53)

Select the Dirac matrices as

γ0 =

(
0 1
−1 0

)
(54)

γ1 =

(
0 −i
−i 0

)
(55)

γz =

(
i 0
0 −i

)
(56)

γz̄ =

(
−i 0
0 i

)
(57)
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Define the chirality as

γ5 =

(
1 0
0 −1

)
. (58)

We can then decompose the spinor field ψn into two components

ψn = (ψ+
n , ψ

−
n ). (59)

Now it is possible to write the Weyl equation as a system of two coupled equations

(∂0 + ∂1 − iqnA0 − iqnA1)ψ
+
n + (∂z − iqnAz)ψ

−
n = 0 (60)

(∂0 − ∂1 − iqnA0 + iqnA1)ψ
−
n + (∂z̄ − iqnAz̄)ψ

+
n = 0. (61)

We can solve these equations by using the method of characteristics, which would
involve finding curves on M along which the spinor components hold to be constant.
In particular, such curves are called null geodesics. They satisfy

dx0

dτ
= g

−1/2
00 (62)

dx1

dτ
= λng

−1/2
11 (63)

dz

dτ
= eiλnθ. (64)

θ is a function of (x0, x1) defined by

eiθ =
g
1/4
00 + ig

1/4
11√

2
. (65)

Indeed we may now derive the solutions to the Weyl equation which are

ψ+
n (x0, x

1, z, z̄) = f+n (z − eiλnθ(x0 + λnx
1) + iqn

∫
Azdτ) (66)

ψ−
n (x0, x

1, z, z̄) = f−n (z̄ − e−iλnθ(x0 − λnx
1) + iqn

∫
Az̄dτ). (67)

The initial conditions of the spinor field at some initial time t = 0 can be determined
by using these functions that we have just derived. The spinor field ψn then may be
expanded in terms of creation and annihilation operators

ψn(x
0, x1, z, z̄) =

∑
k

(
an,k(t)un,k(x

0, x1, z, z̄) + b†n,k(t)vn,k(x
0, x1, z, z̄)

)
, (68)

taking k to be the discrete index that labels the modes of the spinor field. The mode
functions un,k(x

0, x1, z, z̄) + b†n,k(t) and vn,k(x
0, x1, z, z̄) are solutions of the Weyl
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equation equation with specific normalisation factors and boundary conditions. The
annihilation operators satisfy

[an,k(t), a
†
m,l(t)] = [bn,k(t), b

†
m,l(t)] = δnmδkl (69)

[an,k(t), b
†
m,l(t)] = [an,k(t), bm,l(t)] = [a†n,k(t), b

†
m,l(t)] = 0. (70)

We previously defined a number operator and we will do so again but this time for
particles and antiparticles with a quantum number n and mode k

Nn,k(t) = a†n,k(t)an,k(t) + b†n,k(t)bn,k(t), (71)

with the expectation value

⟨Nn,k(t)⟩ = ⟨Ψ(t)|Nn,k(t)|Ψ(t)⟩. (72)

Using everything that we have derived, we can model the diversity and complexity of
dysgenic traits that are present within a population of any size.

2.2.2 The Gauge Field and the Action

The gauge field A that couples different traits via four-dimensional Chern-Simons
theory is a one-form on M that takes values in a Lie algebra g. This is a vector space
with a bilinear operation called the Lie bracket. We take g to be equipped with a non-
degenerate, invariant, and symmetric bilinear form. Choose g to be the Lie algebra of
U(N), the group of N ×N . This has a basis that is given by

Ta =
1√
2N

δa0I +
i√
2
λa, (73)

The Gell-Mann matrices λa are the generators of SU(N). The Lie bracket and the
bilinear form are given by

[Ta, Tb] = ifabcTc (74)

⟨Ta, Tb⟩ =
1

2
δab (75)

Define the structure constants fabc of SU(N) as

[λa, λb] = 2ifabcλc. (76)

Now we can write the gauge field A as

A = Aµdx
µ = AaµTadx

µ, (77)

and the gauge field transformation under a gauge transformation as

A 7→ A′ = g−1Ag + g−1dg, (78)
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of which g is a smooth function on M that takes values in U(N). The gauge trans-
formation corresponds to a change of basis for the spinor field ψn which transforms
as

ψn 7→ ψ′
n = g−1ψn. (79)

From this account particularly, the action can be given by the sum of the Chern-Simons
action for the gauge field and the spinor field’s Dirac action

S = SCS + SD, (80)

where

SCS =
k

4π

∫
M

⟨A ∧ dA+
2

3
A ∧A ∧A⟩ (81)

SD = −i
N∑
n=1

∫
M

ψ̄n(γµDµ− iqnAµ)ψn. (82)

Obtain the equations of motion by varying the action with respect to both A and ψn.
In respect to A, the variation with it gives

dA ⋆ F = j, (83)

where
dA = d+ i[A] (84)

and
F = dA + iA ∧A. (85)

With respect to ψn, we get from the variation with it

(γµDµ − iqnAµ)ψn = 0, (86)

which is the Weyl equation. Now we have a descriptive account of how genetic traits
interact and evolve in a population.

2.2.3 The Expectation Value of the Number Operator

It is crucial for our theory that we can calculate the expectation value of the number
operator. This quantity is the measurement of the average number of individuals with
trait n and helicity λn as you might recall but it is indeed the reflection of the effects of
dysgenics on distribution of traits that reside in a population. Recall the expectation
value of the number operator in (39). Writing the state |Ψ(t)⟩ as

|Ψ(t)⟩ =
∑

k1,k2,...,kN

ck1,k2,...,kN (t)|k1, k2, . . . , kN ⟩, (87)

we have that ki is the mode index for a trait i. The basis states |k1, k2, . . . , kN ⟩ of the
Hilbert space H are given by

|k1, k2, . . . , kN ⟩ = a†1,k1(0)b
†
1,k1

(0)a†2,k2(0)b
†
2,k2

(0) . . . a†N,kN (0)b†N,kN (0)|0⟩. (88)
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The normalisation condition ∑
k1,k2,...,kN

|ck1,k2,...,kN (t)|2 = 1 (89)

is satisfied by the coefficients ck1,k2,...,kN (t) in (79). Wick’s theorem will have to be
utilised in order for us to calculate the expectation value. It states that

m∏
i=1

ai

n∏
j=1

bj =
∑
P

N(P )

m∏
i=1

ai

n∏
j=1

bj . (90)

Suppose that m = n = 2. Then

a1a2b1b2 = N((1, 3), (2, 4))a1a2b1b2 +N((1, 4), (2, 3))a1a2b1b2 = a1b1a2b2 − a1b2a2b1.
(91)

The number operator can be written as

Nn,λn
(t) =: Nn,λn

(t) : +
∑
k,l

(un,k(t)vn,l(t) + vn,k(t)un,l(t)) , (92)

with the normal ordered part being given by

: Nn,λn
(t) := a†n(t)an(t) + b†n(t)bn(t). (93)

In (85), the second term is the vacuum expectation value of the number operator. This
is the contributing factor of the vacuum fluctuations to the number of individuals. In
our comprehension, this is the measure of quantum uncertainty in the distribution of
traits. Using the Schrödinger equation given by

i
d

dt
|Ψ(t)⟩ = H|Ψ(t)⟩, (94)

we may calculate the expectation value. Take the Hamiltonian operator to be

H = −i
N∑
n=1

∫
M

ψ̄n(γµDµ− iqnAµ)ψn, (95)

and express it in terms of creation and annihilation operators

H =
∑
n,k,l

(
En,k,la

†
n,k(t)an,l(t) + En,k,lb

†
n,k(t)bn,l(t) + Fn,k,la

†
n,k(t)bn,l(t) + Fn,k,lb

†
n,k(t)an,l(t)

)
.

(96)
Then by the Schrödinger equation

i
d

dt
ck1,k2,...,kN (t) =

∑
l1,l2,...,lN

Hk1,k2,...,kN ;l1,l2,...,lN cl1,l2,...,lN (t), (97)
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where the matrix elements are given by

Hk1,k2,...,kN ;l1,l2,...,lN = δk1l1δk2l2 . . . δkN lNEn,kn,ln + δk1l1δk2l2 . . . δkn−1ln−1Fn,kn,ln + δkn+1ln+1δkn+2ln+2 . . . δkN lNFn,kn,ln +O(F 2)

(98)
By using matrix exponentiation which involves finding the matrix U(t) that satisfies

i
d

dt
U(t) = HU(t), (99)

we can derive the solution as
U(t) = e−iHt. (100)

Using

⟨Nn,λn
(t)⟩ =

∑
k1,k2,...,kN

|ck1,k2,...,kN (t)|2⟨k1, k2, . . . , kN |Nn,λn
(t)|k1, k2, . . . , kN ⟩, (101)

the expectation value can be calculated. By orthogonality of the mode functions and
using the normal ordered expression of the number operator, the matrix elements are
computed to become

⟨k1, k2, . . . , kN |Nn,λn
(t)|k1, k2, . . . , kN ⟩ = (δknln + |un,kn(t)|2 + |vn,kn(t)|2), (102)

where the first term represents the initial state of individuals and the second and
third terms are the vacuum fluctuation contributions. By comparing this quantity with
different initial states and different values of n and λn, we can observe how dysgenics
affects different traits and different helicities in different cases.

2.2.4 The Rate of Change of the Number of Individuals

The rate of change of the number of individuals in a given population is given by the
time derivative of the expectation value, which is

d

dt
⟨Nn,λn

(t)⟩ = d

dt
⟨Ψ(t)|Nn,λn

(t)|Ψ(t)⟩. (103)

The Heisenberg picture is to be employed in order to calculate that derivative.
The Heisenberg picture is related to the Schrödinger picture by the following
transformation:

Nn,λn(t) = U†(t)Nn,λn(0)U(t). (104)

In the Heisenberg picture, the time derivative of the number operator is given by

d

dt
Nn,λn(t) = i[H,Nn,λn(t)]. (105)
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Using the re-expression of the Hamiltonian and Wick’s theorem, we calculate the
commutator as

d
dtNn,λn(t) = i

∑
m,k,l

(
Em,k,l[a

†
m,k(t)am,l(t), Nn,λn(t)] + Em,k,l[b

†
m,k(t)bm,l(t), Nn,λn(t)] +Fm,k,l[a

†
m,k(t)bm,l(t), Nn,λn(t)] + Fm,k,l[b

†
m,k(t)am,l(t), Nn,λn(t)]

)
.

(106)
Simplifying [a, b] leads to

d
dtNn,λn

(t) = i
∑

k,l

(
En,k,l(a

†
n,k(t)an,l(t)− a†n,l(t)an,k(t)) + En,k,l(b

†
n,k(t)bn,l(t)− b†n,l(t)bn,k(t)) +Fn,k,l(a

†
n,k(t)bn,l(t)− b†n,l(t)an,k(t)) + Fn,k,l(b

†
n,k(t)an,l(t)− a†n,l(t)bn,k(t))

)
.

(107)
Now we have a description of how the number of individuals with a given trait and
helicity change over time because of interactions with other traits. By solving the
equation through a numerical or analytical method, we obtain a time evolution of the
amount of individuals. in the population and then we can compare it afterwards with
different initial conditions and values of n and λn.

2.3 Dysgenic Field Theory III

Consider a society as a collection of N individuals. Each individual will have a set
of phenotypic traits that are influenced by their genotypes and also environmental
factors. We will write the phenotypic trait vector of an individual i as

pi = (pi1, pi2, . . . , pim), (108)

where m is the number of traits that are considered. The traits will be continuous and
normalised to [0, 1]. There exists a latent variable θ that represents the genetic quality
of an individual. Denote the θ factor of an individual by

θi (109)

which is also normalised to [0, 1]. We hold that g is positively correlated with the
phenotypic traits. Higher values of θ would imply that there are a higher values of the
traits. Consider also that θ is heritable. Then we have a quantum field ψ(x, t) that
describes the state of the society at position x and time t. The quantum field is a
complex-valued function and it satisfies the Weyl equation in the form

σµ∂µψ(x, t) = 0. (110)

The left-handed and right-handed spinors of the quantum field are the states of the
individuals in a society. ψ+(x, t) is the state of an individual with positive θ whereas
ψ−(x, t) is the state of an individual with negative θ. Such a quantum field ψ(x, t) is
subjected to stochastic fluctuations because of the presence of arbitrary environmental
influences. We could model this using the Weyl equation. To do that we would have
to add a stochastic term, such that

σµ∂µψ(x, t) = η(x, t), (111)
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where D is the diffusion constant and δ is the Dirac delta function. The stochastic
term η(x, t) represents the random perturbations of the quantum field ψ(x, t) because
of factors that are external in nature, like epidemic or wars. The quantum field ψ(x, t)
holds interactions with itself. It does this by way of a nonlinear potential V (ψ) which
models the self-organisation and collective behaviour of the society. We can set V (ψ)
equal to the Chern-Simons theory. The gauge field A can be expressed in terms of the
quantum field ψ as

A = ψ†σµdψ. (112)

The Chern-Simons potential V (ψ) is a bit interesting in regards to its properties.
Firstly, it has gauge invariance

ψ(x, t) → U(x, t)ψ(x, t). (113)

It also has a parity violation

V (ψ(x, t)) → −V (ψ(−x,−t)). (114)

The gauge A even features a topological quantisation condition

k = n, (115)

where k is a coupling constant and n is an integer. We take V (ψ) to be the diversity
and complexity of a society. Values of V (ψ) that are higher mean that there is a
higher presence of collectivisation of the society. The gauge invariance implies that the
society is robust to local changes of individual states while the parity violation means
that the society is asymmetric and biased towards certain directions and conditions.
The topological quantisation means would entail to us that the society can only exist
in discrete phases or regimes. Combining the Weyl equation with V (ψ) yields

σµ∂µψ(x, t) = η(x, t)− k

4π
ψ†(x, t)σµdψ(x, t) ∧ dψ†(x, t)σµψ(x, t). (116)

For this field theoretic interpretation specifically, this equation is the master equation.
It could be labelled as the ”quantum dysgenics equation”. This is a non-linear stochas-
tic partial differential equation for ψ(x, t). It will describe the evolution of the society
under dysgenics. It captures the dynamics of the society under the influences of
dysgenes, environmental fluctuations, and so forth.

2.3.1 The Quantum Dysgenics Equation I

In the case of a homogeneous and isotropic society, in which the quantum field ψ(x, t)
would not depend on the spatial coordinate x, we will analyse some of the properties
of this equation. Due to these circumstances, (116) reduces to

∂ψ(t)

∂t
= η(t)− k

4π
ψ†(t)

∂ψ(t)

∂t
∧ ∂ψ†(t)

∂t
ψ(t). (117)
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The evolution of a society under dysgenics is now described in one-dimension. We can
then rewrite this equation in terms of the components of the quantum field ψ(t) =
(ψ+(t), ψ−(t)). The equation (117) then becomes

∂ψ+(t)

∂t
= η+(t)−

k

4π
|ψ−(t)|2

∂ψ+(t)

∂t
(118)

∂ψ−(t)

∂t
= η−(t)−

k

4π
|ψ+(t)|2

∂ψ−(t)

∂t
. (119)

This set of equations show that the evolution of each component of the quantum field
ψ(t) has dependence on its own noise term and the square modulus that the other
component possesses. What does this mean? There is a feedback mechanism between
the positive and negative g in society, such that the fluctuations and growth rates of
each factor are influenced by the presence and magnitude of the other factor. In order
for us to solve the set of equations, we will use stochastic averaging. We have to make
the assumption that there is a separation of time scales between the quantum field

ψ(t) and its own derivative ∂ψ(t)
∂t such that∣∣∣∣∂ψ(t)∂t

∣∣∣∣≪ |ψ(t)| . (120)

This means now that the quantum field ψ(t) transforms much slower than its deriva-
tive, and thus we may neglect the higher order terms that are present in the
equations. By applying stochastic averaging to these equations, we obtain the following
approximate solutions for the quantum field components

ψ+(t) ≈ ψ+(0)e
∫
0
tη+(τ)dτ− k

8π |ψ−(0)|2t (121)

ψ−(t) ≈ ψ−(0)e
∫
0
tη−(τ)dτ− k

8π |ψ+(0)|2t (122)

Indeed we observe that because of this, the components of the quantum field grow or
decay exponentially. This depends on the sign and magnitude of the noise terms. If
η+(t) then we have exponential growth, but if we have η−(t) then we have exponential
decay. Note also that this now shows that a negative feedback term proportional to the
square modulus of the initial value of the other component affects the quantum field
components. This represents the effect of dysgenics on the society that we are dealing
with. The coupling constant k is the determinant of the strength of this particular
feedback term. Higher values of k imply stronger dysgenic effects.

2.3.2 The Quantum Dysgenics Equation II

The equation (116) remains unchanged but the problem is that it is more challenging
to solve analytically. To cope with this, we will have to solve the equation numerically.
Let ψ(x, t) be a smooth and continuous quantum field in the space-time domain [0, L]×
[0, T ] where L is the length or duration of the society and T is the duration of the
simulation. We then proceed to discretise this domain into a grid of Nx × Nt points
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where Nx is the number of spatial points and Nt being temporal points. Denote the
spatial step size and the temporal step size respectively by

∆x =
L

Nx
(123)

∆t =
T

Nt
. (124)

The value of the quantum field ψ(x, t) at the grid point (i, j) can then be denoted by
ψi,j , in which i = 0, 1, . . . , Nx − 1 and j = 0, 1, . . . , Nt − 1. Simply for the purposes of
the convenience, the following notation will be used

ψi+1,j = ψ(xi +∆x, tj), ψi−1,j (125)

ψi−1,j = ψ(xi −∆x, tj) (126)

ψi,j+1 = ψ(xi, tj +∆t) (127)

ψi,j−1 = ψ(xi, tj −∆t). (128)

Now are able to approximate the partial derivatives of the quantum field by using
finite difference formulas, such as

∂ψ(x, t)

∂x
≈ ψi+1,j − ψi−1,j

2∆x
(129)

∂ψ(x, t)

∂t
≈ ψi,j+1 − ψi,j−1

2∆t
(130)

∂2ψ(x, t)

∂x2
≈ ψi+1,j − 2ψi,j + ψi−1,j

∆x2
(131)

∂2ψ(x, t)

∂t2
≈ ψi,j+1 − 2ψi,j + ψi,j−1

∆t2
. (132)

Substituting those formulas into the equation (116) yields

ψi,j+1 − ψi,j−1

2∆t
= ηi,j−

k

4π
ψ†
i,j

ψi,j+1 − ψi,j−1

2∆t
∧
ψ†
i,j+1 − ψ†

i,j−1

2∆t
ψi,j+

i

2

ψi+1,j − 2ψi,j + ψi−1,j

∆x2
.

(133)
Now we have obtained a finite difference equation for the quantum field ψi,j . This
equation is non-linear and implicit for ψi,j , which holds dependence on its values at the
next time steps as well as those which are prior, along with the neighbouring spatial
points. To solve the equation, we find the roots of a non-linear equation by using an
iterative procedure. Let (133) be differentiable with a unique solution for each grid
point (i, j). The solution can be marked as ψ∗

i,j with the initial guess being ψ0
i,j . The

notation

f(ψ) =
ψ − ψi,j−1

2∆t
−ηi,j +

k

4π
ψ†
i,j

ψ − ψi,j−1

2∆t
∧
ψ† − ψ†

i,j−1

2∆t
ψ− i

2

ψi+1,j − 2ψ + ψi−1,j

∆x2
(134)
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f ′(ψ) =
1

∆t
+

k

4π
|ψ|2 + k

4π
|ψi,j−1|2 − i

ψ†
i,j−1

∆t
− i

ψ†

∆t
+ i

ψi+1,j − 2ψ + ψi−1,j

∆x2
(135)

will be used. These represent the function and its derivative which we want to find
the root of. The procedure goes as follows

1. Start with an initial guess ψ0
i,j for the solution ψ

∗
i,j . This may be arbitrarily selected

or it may be derived from some heuristic.
2. Compute the value of the function f(ψ0

i,j) and its derivative f ′(ψ0
i,j) using the

formulas that are presented above.
3. Update the guess by means of subtraction of the ratio of the function and its

derivative, such that

ψ1
i,j = ψ0

i,j −
f(ψ0

i,j)

f ′(ψ0
i,j)

. (136)

4. Iterate the process until we arrive at the point in which we have reached a satis-
factory level of accuracy or a maximum number of iterations. The final guess is to
be written as ψni,j , where n is the number of iterations. This guess is used as an
approximation for the solution ψ∗

i,j , such that

ψ∗
i,j ≈ ψni,j . (137)

By this procedure, we have the ability to solve (133) for each grid point (i, j) and thus
obtain for the quantum field ψ(x, t) an approximation at each time step. Afterwards,
we may use this approximation to compute a variety of quantities that would be of
an interest to us, such as the mean g, the entropy of g, and so on. Plotting ψ(x, t) as
a function of space and time is also a possible option so that we may visualise how it
evolves under dysgenics. Consider the following parameters

• L = 10, T = 10, Nx = 100, Nt = 1000,∆x = 0.1,∆t = 0.01
• k = 1, D = 0.001

• η(x, t) = 0.01e
−(x−5)2

2 e−
t
10 (cos(t) + i sin(t))

• ψ(x, 0) = e
−x2

2 (cos(x) + i sin(x))
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Fig. 1 Plot of the initial condition ψ(x, 0) = e
−x2

2 (cos(x) + i sin(x)) as a function of x

This is the initial condition for the quantum field ψ(x, t) at time t = 0, which
represents the initial state of the society. This function is an example of a complex-
valued function of a Gaussian curvature and a sinusoidal phase. Interpret the function
as a superposition of two quantum states, one with positive g and the other with
negative g. Then we can plot this function as a function of x to visualise its phase and
shape. This code was employed

1

2 % param
3 L = 10;
4 T = 10;
5 Nx = 100;
6 Nt = 1000;
7 dx = L/Nx;
8 dt = T/Nt;
9 k = 1;

10 D = 0.01;
11 % define both the x and t range
12 x = linspace(0,L,Nx);
13 t = linspace(0,T,Nt);
14 % define the noise term
15 eta = @(x,t) 0.01 * exp(-(x-5) .^2/2) .* exp(-t/10) .* (cos(t) + 1i * sin(t));
16 % define the initial condition
17 psi0 = @(x) exp(-x.^2/2) .* (cos(x) + 1i * sin(x));
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18 % initialize the psi matrix
19 psi = zeros(Nx,Nt);
20 % set initial condition at t=0
21 psi(:,1) = psi0(x);
22 % set boundary condition at x=0 and x=L
23 psi(1,:) = psi(1,1);
24 psi(end ,:) = psi(end ,1);
25 % solve the finite difference equation
26 for j=2:Nt % loop over time steps
27 for i=2:Nx -1 % loop over spatial points
28 % define the function and its derivative
29 f = @(psi) (psi - psi(i,j-1))/(2*dt) - eta(x(i),t(j)) + (k/(4*pi)) * psi(i,

j-1)’ * (psi - psi(i,j-1))/(2*dt) * (psi ’ - psi(i,j-1) ’)/(2*dt) * psi - (1i/2)
* (psi(i+1,j) - 2*psi + psi(i-1,j))/(dx^2);

30 fp = @(psi) 1/dt + (k/(4*pi)) * abs(psi)^2 + (k/(4*pi)) * abs(psi(i,j-1))^2
- 1i * psi(i,j-1)’ / dt - 1i * psi ’ / dt + (1i/2) * (psi(i+1,j) - 2*psi + psi

(i-1,j))/(dx^2);
31 % initial guess
32 psi0 = psi(i,j-1);
33 % maximum tolerance and iterations
34 tol = 1e-6;
35 maxiter = 100;
36 % error and iteration initialisation
37 err = inf;
38 iter = 0;
39 % loop start
40 while err > tol && iter < maxiter
41 % update guess by subtracting ratio of function and derivative
42 psi1 = psi0 - f(psi0)/fp(psi0);
43 % compute error
44 err = abs(psi1 - psi0);
45 % update iteration
46 iter = iter + 1;
47 % update previous guess
48 psi0 = psi1;
49 end
50 % set final guess as approximation for solution
51 psi(i,j) = psi0;
52 end
53 end
54 % modulus plotting and phase of quantum field
55 figure (2)
56 pcolor(x,t,abs(psi)’)
57 shading interp
58 hold on
59 quiver(x,t,real(psi)’,imag(psi)’, ’k’)
60 hold off
61

62 xlabel(’x’)
63 ylabel(’t’)
64 zlabel(’|\psi(x,t)|’)
65 c = colorbar;
66 c.Label.String = ’Modulus ’;

The blue curve shows the real part of the function, the red curve shows the imaginary
part of the function, and the green curve shows the modulus of the function. The
phase of the function is indicated by the color gradient from blue to red. This plot
shows that the initial condition ψ(x, 0) has a maximum modulus at x = 0 , which
would mean that there is a higher concentration of individuals with positive θ at the
center of the society. As x move away from 0, the modulus decreases, meaning that
there is a lower concentration of individuals with negative θ at the edges of the society.
The phase of the function varies from 0 to π as x increases from negative to positive
values. That means that there is a phase difference between positive and negative g
at various regions of the society itself.
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2.3.3 The θ Factor

We can get the average θ by obtaining the mean genetic quality of a population.
The average value phenotypic traits that are influenced by θ determine that. We can
compute the average θ from the quantum field ψ(x, t) by taking the expectation value
of its modulus over space and time

⟨θ⟩ = 1

LT

∫ L

0

∫ T

0

|ψ(x, t)|dxdt. (138)

Our formula shows that the average θ is proportional to the average modulus of the
quantum field ψ(x, t) in which the average probability of finding an individual with
a given θ in a given region of space and time is represented. The average θ is the
measure of the overall well-being or performance of a society. Higher θ simply means
that there are higher levels of intelligence, health, and so on.

We get the heterogeneity of genetic quality in a population by taking the variance
of g. This is determined by the dispersion of the phenotypic traits that g influences.
We can compute variance of g using the formula

Var(θ) =
1

LT

∫ L

0

∫ T

0

|ψ(x, t)|2dxdt− ⟨θ⟩2. (139)

The variance of θ is the measure of the diversity and complexity of a given society,
with higher Var(θ) meaning higher levels of differentiation and variation among groups
and individuals in a society.

The uncertainty or disorder of genetic quality can be acquired by finding the
entropy of θ. Unpredictability or randomness of phenotypic traits influenced by θ is
the determinant here. By taking the expectation value of the Wehrl entropy of the
quantum field, we arrive at

S(θ) = − 1

LT

∫ L

0

∫ T

0

|ψ(x, t)|2 log |ψ(x, t)|2dxdt. (140)

The Wehrl entropy is defined as

W (ψ) = −|ψ|2 log |ψ|2. (141)

This is the measure of quantum uncertainty, satisfying the following inequality

W (ψ) ≥ 1, (142)

where equality holds for pure states and inequality holds for mixed states. The entropy
of θ is the measure of the stochasticity and disorder that a society has. Higher S(θ)
means more randomness and unpredictability among the patrons of a society.
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2.3.4 The Intelligence Quotient

The average IQ will measure the mean cognitive ability or intelligence of a population.
It is important to note that the average value of IQ is influenced by θ. We compute
the average IQ from the average θ by means of a linear transformation

⟨IQ⟩ = a⟨θ⟩+ b, (143)

where a and b are constants that depend on the scale and units of an IQ test. Let us
say that we are using the Stanford-Binet Intelligence Scale. That has a mean of 100,
a standard deviation of 15. So we can then substitute these values into a and b . Thus

a = 15 (144)

b = 100. (145)

The average IQ is proportional to the average θ which is proportional to the average
modulus of the quantum field ψ(x, t). We can then proceed to derive the variance of
IQ as

Var(IQ) = a2Var(g), (146)

and the entropy of IQ, which would be

S(IQ) = S(θ) + log(a). (147)
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Fig. 2
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Fig. 3

2.4 Dysgenic Field Theory IV

Let there be some society of which N agents constitute. Each agent is to be charac-
terised by a set of variables that represent their intelligence, earnings, dysgenic traits,
etc. Such variables are continuous and bounded. The intelligence of an agent is mea-
sured by a single factor, denoted by g. The value of g is usually distributed normally
in a population, with a mean and standard deviation respectively: µg, σg. Consider
an agent’s occupation. This is determined by a function f(g) that maps the value of
g to one of M discrete levels of occupational status. Denote this by

s1 ≤ s2 ≤ · · · ≤ sM . (148)

The function f(g) is monotonic and increasing, with higher values of g corresponding
to higher levels of occupational status. Determine the earnings of an agent by the
function h(s). This maps the occupational status level s to a positive number in R,
denoted by e. The same function properties of f(g) apply here. Higher values of h(s)
are correspondent to higher levels of occupational status. The dysgenic traits of an
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agent are represented by a vector

d = (d1, d2, . . . , dx), (149)

in which each component dk measures the degree of a specific dysgenic trait that is
present within an agent. The value adhering to dk is normally distributed. The dysgenic
traits are negatively correlated with the value of g such that higher values of dk imply
lower values of g. We will write the correlation coefficient between dk and g as

ρdkg. (150)

Agents interact with each other. They do this through social processes like migration,
reproduction, employment, and so on. These processes affect the values of the variables
that characterise the agents and also the quantum state of the system. Model the
society as a quantum state composed of N agents

ψ(x1,x2, . . . ,xN ), (151)

where
xi = (gi, si, ei, di) (152)

is the vector of variables of which an agent i is characterised by. The wave function
satisfies

iℏ
∂ψ

∂t
= Hψ. (153)

The Hamiltonian is constituted by two terms: a kinetic term and a potential term. The
kinetic term represents the intrinsic energy of each agent due to their intelligence and
dysgenic traits. The potential term represents the interaction energy between agents
due to their occupation and earnings. The Hamiltonian operator for this is given by

H = −
N∑
i=1

ℏ2
2m

∇i2 + V (x1,x2, . . . ,xN ). (154)

The potential function is taken to have the following form

V (x1,x2, . . . ,xN) =
∑

i = 1NV0(xi) +
∑

i < jV1(xi,xj), (155)

The single agent potential V0(xi) are external factors and forces that act on each agent.
The two-agent potential V1(xi, xj) represents the internal forces which emerge from
interaction between agent to agent, like cooperation or competition. The single-agent
potential takes the form

V0(xi) = Vg(gi) + Vd(di), (156)

The potential due to the intelligence of agent i is represented by Vg(gi) while the poten-
tial due to the dysgenic traits is Vd(di). Suppose that the potential due to intelligence
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is a harmonic oscillator potential. We give this by

Vg(gi) =
1

2
mω2(gi − µg)

2. (157)

So what we now have is that agents have some tendency to oscillate around their
mean intelligence levels. Higher deviations from the mean would have to require higher
energy. The potential due to dysgenic traits is a linear combination of harmonic
oscillator potentials. This is given by

Vd(di) =
∑

k = 1Kak
1

2
mω2

k(dik − µdk)
2, (158)

where ak are positive coefficients that measure the relative importance of each dys-
genic trait. Agents tend to oscillate around their mean dysgenic trait levels. The
coefficients ak and the frequencies ωk are negatively correlated with the correlation
coefficients ρdkg. That means that more dysgenic traits have higher importance and
lower frequencies.

We give the two-agent potential by the form

V1(xi,xj) = Vs(si, sj) + Ve(ei, ej), (159)

where Vs(si, sj) is the potential due to the occupational status (PDOS) of agents i
and j while Ve(ei, ej) is the potential due to earnings (PDE). The PDOS is given by

Vs(si, sj) =
q

4πϵ0

sisj
rij

, (160)

where we have the entailment that agents with a similar OS have a tendency to repel
each other, while agents with a different OS have a tendency to attract each other.
The PDE is given by

Ve(ei, ej) = 4ϵ

[(
σ

eij

)12

−
(
σ

eij

)6
]
. (161)

Agents ith low earnings have a tendency to form stable bonds with each other, but
agents with high earnings have a tendency of avoiding each other. The parameters ϵ
and σ are positively correlated with the mean intelligence µg yet negatively correlated
with the mean dysgenic trait levels µdk . More intelligent and less dysgenic societies
have stronger and longer-rage interactions.

2.4.1 Dynamics

Recall the equation (153). Its Hamiltonian may be written as

H = −iℏc
3∑

µ=0

σµ∂µ + e

3∑
µ=0

σµAµ. (162)
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To calibrate the Hamiltonian for our purposes, we will set Aµ = 0 and we will also set
c = 1. We can then write the wave function as a product of single-agent wave functions

ψ(x1,x2, . . . ,xN) =
∏

i = 1Nψi(xi), (163)

. We can proceed to decompose the spinor ψi(xi) as

ψi(xi) =

(
ui(xi)
vi(xi)

)
. (164)

Now we write for each agent

iℏ
∂ψi
∂t

= −iℏ
3∑

µ=0

σµ∂µψi. (165)

In component form, this is expressed as

iℏ
∂ui
∂t

= −iℏ

(
∂ui
∂gi

+
∂vi
∂si

+
∂vi
∂ei

+

K∑
k=1

∂vi
∂dik

)
(166)

iℏ
∂vi
∂t

= −iℏ

(
∂vi
∂gi

− ∂ui
∂si

− ∂ui
∂ei

−
K∑
k=1

∂ui
∂dik

)
(167)

The equations are homogeneous and linear, so normalisation and superposition of the
wave function is thus preserved.

2.4.2 Operators and Observables

Such a theory must be in need of measuring properties that a society has. The num-
ber of agents, mean intelligence, and mean dysgenic trait level for a trait k can be
respectively represented as

N =

N∑
i=1

1, (168)

ḡ =
1

N

N∑
i=1

gi, (169)

and

d̄k =
1

N

N∑
i=1

dik. (170)

We are going to have to now introduce some operators that represent the creation
and annihilation of agents and their variable transformation. At a given state ψ, the
creation operator â†i (xi) will create an agent i with variables xi. We can define the
action for that easily. To do that, we will write

â†i (xi)ψ = ψi(xi)ψ, (171)
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For the action of the annihilation operator, it will be defined as

âi(xi)ψ =

∫
dx′

iδ(xi − x′
i)
ψi(x

′
i)

ψi(xi)
ψ, (172)

of which the Dirac delta function ensuring only that agents with variables xi are
annihilated. The anti-commutation relations

âi(xi), â
†
j(xj) = δijδ(xi − xj) (173)

âi(xi), âj(xj) = 0 (174)

â†i (xi) (175)

â†j(xj) = 0 (176)

are satisfied by both operators. By the Pauli exclusion principle, no two agents can
have the same exact set of variables. The change of variable operator b̂i(x,x

′) will
change the variables of an agent i from x to x′. This operator has the action

b̂i(xi,x
′
i)ψ =

ψi(x
′
i)

ψi(xi)
ψ. (177)

Now we can introduce the observables, which will be written as

N̂ =

N∑
i=1

â†i (xi)âi(xi) (178)

ˆ̄g =
1

N̂

∑
i = 1Ngiâ

†
i (xi)âi(xi) (179)

ˆ̄dk =
1

N̂

∑
i = 1Ndikâ

†
i (xi)âi(xi). (180)

These operators are not Hermitian, but as long as we can take care of the complex
conjugation and normalisation, then we can calculate the system’s statistics.

2.4.3 Observable Expectation Values

Using Wick’s theorem again, we can contract two operators by

ÂB̂ÂB̂ = ⟨ÂB̂⟩ − ⟨Â⟩⟨B̂⟩, (181)

with the theorem being such that

Â1Â2 . . . Ân =: Â1Â2 . . . Ân : +
∑

i < j : Â1ÂÂ1Â2 . . . ÂiÂÂi . . . ÂjÂÂj . . . Ân : + . . . ,

(182)
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so now we can re-express the expectation values as

⟨N⟩

=

N∑
i=1

⟨â†i (xi)âi(xi)⟩

=
∑

i = 1N : â†i (xi)âi(xi) : +
∑

i = 1N â†i (xi)ââ
†
i (xi)âi(xi)

=
∑

i = 1N : â†i (xi)âi(xi) : +
∑

i = 1N ⟨â†i (xi)âi(xi)⟩ − ⟨â†i (xi)⟩⟨âi(xi)⟩

= N +
∑

i = 1N (⟨n̂i⟩ − |⟨âi(xi)⟩|2)

(183)

2.5 Dysgenic Field Theory V

Let N be the number of agents in a population. The state of an agent i at time t can
be written as

xi(t) = (xi1(t), xi2(t), . . . , xin(t)) (184)

where n is the number of variables, such as dysgenic traits, cognitive ability, etc. Each
variable xij(t) takes values in a finite setXij . Those values depend on the measurement
scale and nature of the variable though. Some Binary variable would may take values
Xij = {0, 1} while a continuous variable may take values in Xij = [0, 1]. There is a
network of interactions among these agents. This is how they get influenced by each
other’s states. The network can be written by a weighted adjacency matrix

A = (aij). (185)

Do note that aij ≥ 0 is the interaction strength from some agent j to another agent i.
A is symmetric for all i, j and A has zero diagonal entries for all i. It is sparse. Most
agents have only a few direct connections with other agents. Now let us consider some
external factors that can affect the network and the state of agents. We can write this
as

u(t) = (u1(t), u2(t), . . . , um(t)). (186)

Finite values are also taken for each factor. A set of parameters should be added now.
The vector parameter

θ = (θ1, θ2, . . . , θp) (187)

will denote this. We have p as the number of parameters. The final state of this system
yields to be

s(t) = (x1(t), x2(t), . . . , xN (t), A, u(t), θ) . (188)

A stochastic process {s(t)}t≥0 will be what evolves this system.

2.5.1 Dynamical Rules

Taking a density operator ρ̂i(t) acts on some Hilbert spaceHi, we can have an evolution
equation for density operators

dρ̂i(t)

dt
= −i[Ĥi(t), ρ̂i(t)] +

∑
j = 1NLij(t)(ρ̂j(t)) +Di(t)(ρ̂i(t)). (189)
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This is only associated for one agent i. For a population, we shall write

dρ̂(t)

dt
= −i[Ĥ(t), ρ̂(t)] +

N∑
i=1

Tr−i
(∑

j = 1NLij(t)(ρ̂j(t)) +Di(t)(ρ̂i(t))
)
. (190)

Social influence can affect the dynamics of dysgenic traits by decreasing or even
increasing the adoption or rejection of these traits among populations. This can be
modelled as

Lij(t)(ρ̂j(t)) =
∑

k = 1naijθijk(x̂jk(t)ρ̂j(t)x̂
†
jk(t)−

1

2
x̂†jk(t)x̂jk(t), ρ̂j(t)). (191)

The Genetic correlation which we will describe as a degree measure to which two
traits are influenced by the same genes can affect whether there is a co-occurrence or
trade-off of traits. Write this as

Ĥi(t) =
∑

j, k = 1nu1(t)θijkx̂ij(t)x̂ik(t). (192)

A measurement error will exists by which prediction of a dysgenic trait will be limited
either negatively or positively

Di(t)(ρ̂i(t)) =
∑

j = 1nwij(t)(x̂ij(t)ρ̂i(t)x̂
†
ij(t)−

1

2
x̂†ij(t)x̂ij(t), ρ̂i(t)). (193)

Mutation of genes will take the form

Ĥi(t) =
∑

j = 1nu2(t)θij(x̂ij(t)− x̂†ij(t)). (194)

3 Molecular and Genetic Aspects of Dysgenics

Assume that we are working with a set of individuals of which each individual has a
set of genes that determine their genetic quality. These could be things such as IQ,
fertility, and so forth. Denote the strategy of an agent (or individual) i by si and
the corresponding quantum state by |ψi⟩. The observable that measure the strategy
is denoted by S. The observable S itself has non-degenerate and discrete eigenvalues
and eigenvectors. Each gene corresponds to a quantum state that can be described by
a density matrix ρ. Diagonalising the density matrix leads to

ρ =
∑
i

pi|ψi⟩⟨ψi| (195)

By the Liouville-von Neumann equation given in the form

d

dt
ρ = −i[H, ρ] + L(ρ)], (196)

we can have the density matrix ρ evolve in time.
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3.1 Modelling Dysgenic Trait Evolution

Let the initial state of i be a pure state that is given by

|ψi(0)⟩ = |si⟩ (197)

The initial density matrix of i is given by

ρi(0) = |ψi(0)⟩⟨ψi(0)| = |si⟩⟨si.| (198)

The initial average density matrix of all individuals/agents is given by

ρ̄(0) =
1

N

N∑
i=1

ρi(0) =
1

N

N∑
i=1

|s+ i⟩⟨si| (199)

where N is the total number of individuals/agents in a population. By the McKean-
Vlasov equation

d

dt
ρi = −i[Hi + V (ρ̄), ρi] + L(ρi) (200)

we get the evolution of the density matrix of some individual i. The Hamiltonian
operator Hi is the descriptor for the energy and dynamics of some individual i in
isolation. Assume that it takes the form

Hi = E(si)S (201)

where E(si is a representative function of i’s energy with strategy si. The eigenvalues
and eigenvectors of Hi are then given by

Hi|sj⟩ = E(sj)sj |sj⟩ (202)

where j is any index from 1 to n. The HamiltonianHi assigns a numerical value to each
strategy based on its reproductive success. The potential energy term V (ρ̄) describes
the interaction between i and other individuals because of their mean behaviour. Let
the potential energy term be given by the form

V (ρ̄) = −JS̄S, (203)

where J is a coupling constant that measures the strength of the interaction, and S̄
is the mean value of the observable S over all agents. This is given by

S̄ = Tr(ρ̄S) =
1

N

N∑
i=1

Tr(ρiS) =
1

N

N∑
i=1

si. (204)

The potential energy term V (ρ̄) is the quantum version of social influence. We define
social influence to be when the behaviour of some agent or individual happens to
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be affected by the mean behaviour of other individuals/agents. Eigenvalues and
eigenvectors are attached to the potential energy term and this is given by

V (ρ̄)|sj⟩ = −JS̄sj |sj⟩ (205)

The Linbald operator L(ρ) of the McKean-Vlasov equation takes the following form

L(ρ) =
∑
k

(
AkρA

†
k −

1

2
A†
kAkρ−

1

2
ρA†

kAk

)
, (206)

and it describes the non-unitary evolution of the system in light of the case that dissi-
pation would occur. Using the McKean-Vlasov equation, we can model the evolution
of dysgenic traits in a population. The Linbald operator L(ρi) of the equation is what
acts as the external factors on an individual i. We take the McKean-Vlasov equation
to be the quantum version of evolutionary game theory (an important branch of game
theory that studies how strategies evolve in population due to natural section and
mutation). Now we will use it to calculate the expectation value of the observable S
for an individual i in a given state ρi(t) as so

⟨S⟩i(t) = Tr(ρi(t)S) =
∑
j

sj⟨j |ρi(t)|sj⟩. (207)

The inner product of the equation are the diagonal elements of the density matrix ρi(t).
Using this expectation value, we may derive a mean value of an agent’s strategy at
time t. Variance of the observable, quantum entropy, and observable-wide correlation
may also be calculated should we wish to do so.

3.2 Heritability and Adaptability

Let ρ represent the quantum state for an individual in a population. This will be a
density matrix describing the probability distribution of the genetic states that they
have. The transferring of the quantum states that hold the genetic information of a
parent can be created by a quantum channel E

ρoffspring = E(ρparents) (208)

where we see that E as a quantum adaptive process. This essentially creates an opti-
misation of the quantum state of an offspring according to environmental conditions.
Decomposing E is possible. We get thence a unitary operator U of which genetic muta-
tion and recombination is encoded, a measurement operator M where the adaptation
and selection of genes can be represented, and a noise operator N that represents
fluctuations of genes. Now we write

E(ρ) = N(M(U(ρ))). (209)
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The heritability of a dysgenic trait xi can be estimated by comparing the correlation
function between the trait and the quantum state ρ for the offspring and parents. We
give this by

⟨xiρ⟩ = Tr(xiρ) (210)

and the heritability of xi by

h2i =
⟨xiρoffspring⟩
⟨xiρparents⟩

(211)

where h2i is some number between 0 and 1 that will be measuring the variation in
xi by due of genetic factors. Higher values indicate more heritability, but lower values
would indicate xi has more influence by factors from an environment.

3.3 Dysgenic Phenotypes

Dysgenic phenotypes being the manifestations of dysgenic traits or a genotype that is
observable could be described by an open quantum system. We will write ϕ to describe
the phenotypic density matrix for the representation of some individual’s phenotypic
information. The total quantum state of the individual and the environment is given
by

ϕtotal = ϕ⊗ σ (212)

and it will evolve under the Schrödinger equation as

d

dt
ϕtotal = −i[H,ϕtotal]. (213)

By tracing out the environment, however, we obtain a reduced quantum state

ϕ(t) = TrE(ϕtotal(t)) (214)

by which the master equation

d

dt
ϕ(t) = −i[HS , ϕ(t)] + L(ϕ(t)) (215)

is satisfied. We give the effect of environmental factors on xi by

ei = ⟨xiρ(t)⟩ − ⟨xiρ(0)⟩. (216)

3.4 Quantum Dysgenic Epistasis

Given various quantum fields X̂i(x, t) that correspond to different dysgenic traits Xi,
a cubic term on a potential function V (X̂1, . . . , X̂n, Ê) can be added, which yields

V (X̂1, . . . , X̂n, Ê) =
∑

i = 1nλiX̂iÊ +
∑

i, j, k = 1nhijkX̂iX̂jX̂k. (217)

where hijk are coupling constants that measure the strength of the interaction between
some two genetic traits Xi and Xj . What the cubic term that we just added will do is
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that it will create an epistatic effect of multiple quantum fields X̂j(x, t) and X̂k(x, t)

on one quantum field X̂i(x, t). The sign and magnitude of the coupling constants
will determine whether the epistatic effect is either positive or negative, and either
synergistic or antagonistic as how classical epistasis does. If the coupling constant is
positive, then X̂j(x, t) and X̂k(x, t) have a positive effect that they give onto X̂i(x, t).
This would mean that individuals who have high values of two traits will also have a
high value of some other dysgenic trait. A positive feedback loop could be created by
this where we would see that individuals with multiple dysgenic traits will have lower
fitness and reproductive success. They will be more likely to pass on their dysgenic
traits to their offspring. This can result in an increase in the frequency and severity
of dysgenic traits in the population over generations. But what about if the coupling
constant is negative? Well, if that is the case then those two quantum fields will
obviously have a negative effect on X̂i(x, t). What does this mean, though? Those same
two individuals will have a low value of another dysgenic trait. A negative feedback
loop could be lead because of this, whereby individuals with multiple dysgenic traits
will be more successful in fitness and reproductive while being less likely to pass on
their dysgenic traits. The frequency and severity of dysgenic traits can indeed be
lessened. Suppose we are in a stable and homogeneous environment. The epistatic
effect may be more pronounce and consistent because those two quantum fields will
take more of their influence from their intrinsic properties and interactions. If we were
in a dynamic and heterogeneous society, however, the circumstances and events of
the environment will be the influencers of those two quantum fields. Populations with
large genetic diversity usually hold to an epistatic effect that is of high complexity
and being able to vary because those quantum fields will have more variation. Smaller
genetic diversity in a population leads to a more uniform epistatic effect. High epistasis
will usually result in a single quantum field being affected by many genes or quantum
fields while lower epistasis will result in that particular quantum field being affected
by less genes.

3.5 Quantum Dysgenic Pleiotropic Dynamics

Consider two basis states |0⟩ and |1⟩ which will represent respectively the domi-
nant and recessive alleles of some gene. The interactions between different genes or
genetic variants can induce transitions between different states, and such transitions
can be represented by the operators: σx, σy, and σz. The first operator is induction
by mutation, the second by recombination, and the last one by selection.

The state of a single gene or genetic variant at any given time can be represented by
a state vector of either |ψ⟩ or a density matrix ρ. Represent the state of a population
of individuals with different genes as

|Ψ⟩ =
⊗
i

|ψi⟩ (218)

or
ρ =

⊗
i

|ρi⟩. (219)
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A Schrödinger equation of the form

d

dt
|ψ⟩ = −iH|ψ⟩ (220)

can describe the evolution of a single gene over time. For the population of individuals
with those genes, however, we can describe them by

d

dt
ρ = −i[H, ρ] +

∑
i

LiρL
†
i −

1

2
L†
iLi, ρ (221)

To calculate the probability of observing a recessive allele at any given time, use

P(0) = |⟨0|ψ⟩|2 = ρ00. (222)

For recessive traits, we can similarly write

P(1) = |⟨1|ψ⟩|2 = ρ11 (223)

Peculiar combinations of phenotypes or alleles in a population may be described by

P(Ψ) = |⟨Ψ|Ψ⟩|2 = ρΨΨ (224)

3.5.1 Pleiotropic Information

We can write a Wigner function of a single gene can be calculated as:

W (α) =
1

π

∑
n,m

ρnme
−|α|2Ln(2|α|2)Lm(2|α|2)ei(m−n)θ. (225)

For populations, the function takes a similar form

W (α⃗) =
1

πN

∑
n⃗,m⃗

ρn⃗m⃗e
−|α⃗|2Ln⃗(2|α⃗|2)Lm⃗(2|α⃗|2)ei(m⃗−n⃗)·θ⃗. (226)

3.5.2 Pleiotropic Noise

By the Langevin Equation

m
d2x

dt2
= F (x) + ξ(t) (227)

The position of a single gene can be given by

x =

√
ℏ

2mω
(ψ∗a+ ψa†) (228)

wherefore the Langevin equation is the position of a population

x⃗ = (

√
ℏ

2m1ω1
(ψ∗

1a1 + ψ1a
†
1), . . . ,

√
ℏ

2mNωN
(ψ∗
NaN + ψNa

†
N )). (229)
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For a single gene we can write

m
d2x

dt2
= −mω2x+ η(t) (230)

and

mi
d2xi
dt2

= −miω
2
i xi + ηi(t) (231)

for a population. Note that η(t) is what represents noise by which a transition is
induced between |0⟩ and |1⟩ for this oscillator model of pleiotropic noise.

4 Statistical Approaches

Diving off but not too far off from quantum interpretations of dysgenics, we will
attempt to go more classical in the following subsections for our analysis. Denote the
trait of an individual i by Xi and the corresponding random variable by Xi

4.1 Stochastic Interpretation

We derive an SDE that will interpret dysgenic traits as stochastic processes. Let the
trait of an individual i at time t be Xi(t). We write

dXi(t) = fi (Xi(t), t) dt+ gi (Xi(t), t) dWi(t) (232)

where the first term is a function (call it ”F1”) that represents a deterministic change
of Xi and the second term is a function (call it ”F2”) that represents the stochastic
part of Xi. The differential dWi(t) is of a Wiener process. It is a shock of the trait
Xi. Using the Ornstein-Ulhenbeck process, we can model dysgenic trait evolution in
a manner that is different than what we have done previously. Write

dXi(t) = α (µ−Xi(t)) dt+ σdWi(t). (233)

So natural selection can be modelled by this. We take µ to be a desired value of the
trait, α being the representative of the strength or the speed of the natural selection
process, while σ represents the variation that the particular trait exhibits. By this
process, Xi tends to revert to the mean value µ because of natural selection but
something else happens. It does so while exhibiting fluctuations around the mean value
µ.

The expectation value of Xi at t may be calculated as

E [Xi(t)] = µ+ (Xi(0)− µ) e−αt. (234)

This represents the mean value of a trait at time t.
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4.1.1 g Factor Dynamics and Transformation

For the g factor, we can write

dgt = µ(gt, t)dt+ σ(gt, t)dWt. (235)

The diffusion term σ(gt, t) may be decomposed into a double term equation

σ(gt, t) = σG(Gt, t) + σE(Et, t). (236)

The first term is the genetic component and the second term is the environmental
component. Then we can write the g factor SDE.

dgt = (µG(Gt, t) + µE(Et, t))dt+ (σG(Gt, t) + σE(Et, t))dWt (237)

We should probably transform the SDE from the original coordinate system that it
has to a new one that is more suitable to analyse g. We will have to make use of Ito’s
lemma to do that, which states that

dYt =

(
∂h

∂t
+ f

∂h

∂x
+

1

2
g2
∂2h

∂x2

)
dt+ g

∂h

∂x
dWt (238)

only under the condition that if Xt is a stochastic process that satisfies

dXt = f(Xt, t)dt+ g(Xt, t)dWt (239)

and Yt = h(Xt, t) is another stochastic process that is a function of Xt and t. Let us
now introduce some new coordinate system. This will be defined by two new variables:
Zt and Rt. The first variable represents a normalised g and the second one represents
the ratio of the genetic component to the total g. We can express the new variables
as functions of the original variables as

Zt =
gt − µg(t)

σg(t)
(240)

Rt =
Gt
gt

(241)

and then invert them to express the original variables as functions of the new variables

gt = µg(t) + σg(t)Zt (242)

Gt = Rtgt. (243)

By Ito’s lemma, the SDE for the standardised g factor Zt can be written as
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dZt =

(
µG(Rtgt, t) + µE((1−Rt)gt, t)

σg(t)
− Zt

σG(Rtgt, t) + σE((1−Rt)gt, t)

σg(t)
− Zt

dµg
dt

− dσg
dt

)
dt+ (σG(Rtgt, t) + σE((1−Rt)gt, t))dWt

(244)

and the SDE for the ratio of genetic component to total g factor Rt as

dRt =

(
µG(Rtgt, t)

gt
−Rt

µG(Rtgt, t) + µE((1−Rt)gt, t)

gt
+Rt(1−Rt)

σG(Rtgt, t)− σE((1−Rt)gt, t)

gt

)
dt+Rt(1−Rt)

σG(Rtgt, t)− σE((1−Rt)gt, t)

gt
dWt.

(245)

Now with these new SDEs for the new variables that we have imposed, relativised and
standardised g can be studied over the course of time within populations with different
genetic makeup under external influence.

4.1.2 Quantum Stochastic Interpretation

A quantum SDE will take the form

d|ψ(t)⟩ = − i

ℏ
Ĥ|ψ(t)⟩dt+

M∑
j=1

L̂j|ψ(t)⟩dWj, t. (246)

The Linbald operators L̂j satisfy

M∑
j=1

L̂†
jL̂j = Î (247)

and
[L̂j , Ĥ] = 0. (248)

Take some quantum field. It will be subjected to intrinsic noise and extrinsic noise.
Intrinsic noise occurs because of quantum fluctuations within a quantum field itself
while extrinsic noise is due to external sources of which the quantum field is affected
by. This is already implied by the names. Define the Lindbald operators for each
quantum field as

L̂j =
√
γj(φ̂j − Vj(x, t)), (249)

Understand that

• γj is some positive constant that measures the strength of noise for some genetic
trait xj

• Vj(x, t) is an environmental function that affects a genetic trait xj
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With the Linbald operators being defined, we can derive a Hamiltonian for the
quantum SDE

Ĥ =

M∑
j=1

∫
d3x

(
1

2

(
∂φ̂j
∂t

)2

+
1

2
(∇φ̂j)2 +

1

2
m2
j φ̂

2
j + Vj(x, t)φ̂j

)

+
∑

j, k = 1M
∫
d3x

(
gjkφ̂jφ̂k + hjk(∇φ̂j) · (∇φ̂k) + fjk(∇2φ̂j)(∇2φ̂k)

)
.

(250)

4.2 Quantised Fokker-Plank

For some quantum field ϕi, choose a basis of eigenstates {|n⟩}, then

P(ϕi) =
∑
n

|n⟩⟨n|ϕi|n⟩⟨n| (251)

The projection operator satisfies both

P2 = P (252)

and
[P, H] = 0 (253)

We lead ourselves to a set of ordinary differential equations which have been coupled
for the diagonal elements of a probability density matrix

d

dt
ρnn = −i

∑
m

(ωnm−ωmn)ρnm+
∑
m

Γnm(ρmm−ρnn)+
∑
m

Λnm(ρmn+ρnm). (254)

Choose a basis of coherent states |α⟩, for each field ϕi. Then

Dϕ =
∏
i

Dαi
∏
n

|αn⟩⟨αn|. (255)

The path integral measure satisfies ∫
Dϕ = 1 (256)

and ∫
Dϕ|ϕ⟩⟨ϕ| = 1. (257)

Expressing a probability density matrix as a path integral over quantum fields with
some approximations such as expanding in powers of coupling constants and applying
the stationary phase approximation yields

∂

∂t
ρ(ϕ, ϕ′, t) = −i(H(ϕ)−H(ϕ′))ρ(ϕ, ϕ′, t)+D(ϕ, ϕ′)

δ2

δϕδϕ′
ρ(ϕ, ϕ′, t)+F (ϕ, ϕ′)

δ

δϕ′
ρ(ϕ, ϕ′, t).

(258)
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4.3 Uncertainty in Dysgenic Systems

The probability distribution of Xi is P(X), but the probability of a unique value of
Xi will be written as

P(Xi = x). (259)

Using a normal distribution, we write

P(Xi = x) =
1√
2πσ

e−
(x−µ)2

2σ2 (260)

where µ is the mean and σ represents the standard deviation of Xi. This will be related
to the central limit theorem, but quantised for our case. Let each trait be influenced
by a large number of independent and identically distributed factors. Each trait then
tends to follow a normal distribution alongside some mean and standard deviation.

By normal distribution, the probability of a specific value or even a range of values
for each trait is

P(a < Xi < b) =

∫ b

a

= P(Xi = x) =
1√
2πσ

∫ b

a

e−
(x−µ)2

2σ2 dx. (261)

The probability of a specific value or range of values for each trait represents the
likelihood or frequency of observing that particular value or range in a population that
we are studying. The probability distribution of each dysgenic trait can be described
by a Bernoulli distribution

P(Xi = xi) = pxi
i (1− pi)

1−xi . (262)

and the g factor can be described by normal distribution

P(G = g) =
1√
2πσ2

e−
(g−µ)2

2σ2 (263)

5 Analysis

5.1 Hypotheses

• Dysgenes are quantum entangled states that exhibit non-local correlations and
violate classical inequalities.

• Dysgenes are influenced by external factors such as environment, stress, and noise,
which cause dissipation, decoherence, and mutation.

• Dysgenes are subject to natural selection and social influence, which cause reversion,
diffusion, and recombination.

• Dysgenes affect the genetic quality and fitness of individuals and populations, which
can be measured by observables such as but not limited to IQ.

• There is a relationship between dysgenic fertility and lack of selection pressures due
to technological factors.
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• A total wave function Ψ has a non-zero expectation value for any linear combination
of dysgenic traits; there is no pure state that corresponds to a completely dysgenic-
free or completely dysgenic-full population:

H0 : ⟨Ψ|A|Ψ⟩ ≠ 0 (264)

• Dysgenic traits have a negative impact on the energy and fitness of the society, as
they increase the energy and decrease the fitness over time.

• Social interactions have a positive feedback effect on dysgenic traits, as they increase
their value and their effect on energy and fitness over time.

• The entropy of IQ increases over time, which indicates an increase in the uncertainty
or disorder of cognitive ability or intelligence in the population.

5.2 Predictions

• Dysgenes will exhibit non-local correlations and violate classical inequalities when
measured by observables. We predict that there will be a violation of the Bell
inequality between IQ and health measured on two distant individuals with dys-
genes. This means that there will be a stronger correlation between IQ and health
than what is expected by classical theory.

• Exposure to harsh environment, high stress, or low noise will cause dysgenes to
lose energy, coherence, or change state. This means that there will be a decrease in
genetic quality or fitness due to external factors.

• Natural selection will favour individuals with higher genetic quality or fitness, and
social influence will favor individuals with similar traits. This means that there will
be a tendency for dysgenes to revert to the mean value, fluctuate around the mean
value, or exchange with other traits.

• Individuals with dysgenic traits will have lower IQ, health, or fertility than individu-
als without dysgenes and thus cause a negative impact of dysgenes on the individual
and population level.

6 Appendix

A Incomplete Dysgenic Field Theories

These are a set of field theories in relation to dysgenics that I have tried working on
but laid off for various reasons. You are free to expand onto them.

A.1 Dysgenic Field Theory A

Let there be a set of dysgenic traits,X1, X2, . . . Xn in which n is the number of dysgenic
traits considered. We can write the quantum field corresponding to the trait Xi by
X̂i(x, t). These quantum fields will be scalar by nature. They will also be coupled to an
environment, and such an environment. We can summarise everything by the action
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functional

S[X̂1, . . . , X̂n, Ê] =

∫
d4x

(∑
i = 1n

1

2
∂µX̂i∂

µX̂i −
1

2
m2
i X̂

2
i − V (X̂1, . . . , X̂n, Ê) + Lenv(Ê)

)
.

(265)

A.1.1 Potential Environment and Linear Potential

The potential function inside the action functional will be expressed as

V (X̂1, . . . , X̂n, Ê) =
∑

i = 1nλiX̂iÊ, (266)

thus making the action functional become

S[X̂1, . . . , X̂n, Ê] =

∫
d4x

(∑
i = 1n

1

2
∂µX̂i∂

µX̂i −
1

2
m2
i X̂

2
i + λiX̂iÊ +

1

2
∂µÊ∂µÊ − 1

2
M2Ê2

)
.

(267)
Varying the action functional for the dysgenic and environmental quantum fields and
setting the variations to zero yields

∂µ∂
µ +m2

i )X̂i(x, t)− λiÊ(x, t) = 0, (268)

(∂µ∂µ +M2)Ê(x, t)−
n∑
i=1

λiX̂i(x, t) = 0. (269)

These are the equations of motion.

A.1.2 Perturbative Analysis

We can start from a free system where the dysgenic and environmental fields do not
hold interactions with each other and then adding an interaction term as a small
perturbation. By doing so, we derive this action functional

S0[X̂1, . . . , X̂n, Ê] =

∫
d4x

(∑
i = 1n

1

2
∂µX̂i∂

µX̂i −
1

2
m2
i X̂i

2 +
1

2
∂µÊ∂µÊ − 1

2
M2Ê2

)
.

(270)
The equations of motion for this are

(∂µ∂
µ +m2

i )X̂i(x, t) = 0, (271)

(∂µ∂µ +M2)Ê(x, t) = 0. (272)

We can create a general solution for a dysgenic quantum field as

X̂i(x, t) =

∫
d3k

(2π)3

1√
2ωk

(
ai, ke−ikx + a†i,ke

ikx
)
, (273)
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with the satisfaction of the following commutation relations

[ai,k, aj,k′ ] = 0, (274)

[ai,k, a
†
j,k′ ] = (2π)3δijδ(k⃗ − k⃗′). (275)

For the environmental quantum field, it has a solution

Ê(x, t) =

∫
d3k

(2π)3

1√
2Ωk

(
bke

−ikx + b†ke
ikx
)
. (276)

A.1.3 Renormalisation

We will impose a cutoff Λ on both the dysgenic and environmental quantum fields,
with modes with only |⃗k| ≤ Λ being considered. Thus∫

d3k

(2π)3
→ 1

VΛ

∑
k⃗∈VΛ

. (277)

This procedure has now introduced a dependence on Λ in the solutions for both of
the quantum fields. This is unwanted, however. We have no use for this, so we have
to remove it. To do that, we would need to renormalise mi and M along with the
coupling constants λi by adding counterterms which will cancel out divergences. Thus

m2
i = m2

i (Λ) + δm2
i (Λ), (278)

M2 =M2(Λ) + δM2(Λ), (279)

λi = λi(Λ) + δλi(Λ). (280)

Now let us determine the counterterms by imposing some renormalisation conditions.

m2
i = −p2 − Σi(p

2), (281)

M2 = −p2 −Π(p2). (282)

The self-energy corrections for both of the quantum fields may be computed by various
methods. Using one-loop order, they are given by

Σi(p
2) = −iλ2i

∫
d4k

(2π)4

1

k2 −M2 + iϵ
, (283)

Π(p2) = −i
n∑
i=1

λ2i

∫
d4k

(2π)4

1

k2 −m2
i + iϵ

. (284)

We can not stop here, however. The integrals that are in both equations diverge once
we arrive at large values for k, so we are going to have to regularise them by imposing
Λ. Afterwards, we can find the counterterms by solving for them in terms of Λ and
the bare parameters. Thus
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δm2
i (Λ) = iλ2i

∫
|⃗k|<Λ

d4k

(2π)4

1

k2 −M2 + iϵ
, (285)

δM2(Λ) = i

n∑
i=1

λ2i

∫
|⃗k|<Λ

d4k

(2π)4

1

k2 −m2
i + iϵ

, (286)

δλi(Λ) = 0. (287)

The purpose of the last equation that we have written here is for it to serve as a
reminder λi are not renormalisable at one-loop order. They are finite and independent
of Λ. Now we have to adjust the fields themselves. This can be done by introducing
some wavefunction renormalisation factors Zi and ZE such that

X̂i(x, t) =
√
ZiX̂

R
i (x, t), (288)

Ê(x, t) =
√
ZEÊ

R(x, t). (289)

Now we have renormalised both the dysgenic and the environmental fields. We can
determine the wavefunction renormalisation factors by requiring that the residues of
the propagators are equal to one,

Zi =

(
1− ∂Σi

∂p2

)−1

, (290)

ZE =

(
1− ∂Π

∂p2

)−1

. (291)

Now we can obtain finite and meaningful results for whatever quantities that we choose
to hunt for. It is important, though, to check that the consistency and robustness of
whatever results we have by taking a limit

Λ → ∞ (292)

and undergo comparisons with different schemes.

A.1.4 Properties of the Dysgenic and Environmental Fields

The energy and momentum distributions for both of the fields are defined by

ρi(ω, k⃗) =
1

2π

∫
d4xeikx⟨[X̂i(x, t), X̂i(0, 0)]⟩, (293)

ρE(ω, k⃗) =
1

2π

∫
d4xeikx⟨[Ê(x, t), Ê(0, 0)]⟩. (294)

The propagators for both fields are

Gi(x− y) = ⟨X̂i(x, t)X̂i(y, t)⟩, (295)

GE(x− y) = ⟨Ê(x, t)Ê(y, t)⟩. (296)
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Now we can express the propagators in terms of the original spectral functions that
we derived at the beginning of this sub-subsection as

Gi(x− y) =

∫
d4k

(2π)4
e−ik(x−y)Gi(k), (297)

GE(x− y) =

∫
d4k

(2π)4
e−ik(x−y)GE(k). (298)

The Fourier transforms of both propagators are given by

Gi(k) =
i

k2 −m2
i + iϵ+Σi(k2)

, (299)

GE(k) =
i

k2 −M2 + iϵ+Π(k2)
. (300)

Those spectral functions can be obtained from the propagators by the following
relations

ρi(ω, k⃗) = − 1

π
ImGi(ω, k⃗), (301)

ρE(ω, k⃗) = − 1

π
ImGE(ω, k⃗). (302)

The spectral functions satisfy

ρi(ω, k⃗) = −ρi(−ω,−k⃗), (303)

ρE(ω, k⃗) = −ρE(−ω,−k⃗), (304)

ρi(ω, k⃗) ≥ 0, (305)

and
ρE(ω, k⃗) ≥ 0. (306)

Selecting a vacuum state reduces the spectral functions to

ρi(ω, k⃗) = 2πδ(ω2 − k⃗2 −m2
i ), (307)

ρE(ω, k⃗) = 2πδ(ω2 − k⃗2 −M2). (308)

Free quantum fields hold these spectral functions. We give them solutions by dispersion
relations

ω2 = k⃗2 +m2
i , (309)

ω2 = k⃗2 +M2. (310)

Selection of different quantum states like a thermal state will cause the spectral
functions to be given by

ρi(ω, k⃗) =
1

eβω − 1
2πδ(ω2 − k⃗2 −m2

i ), (311)
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ρE(ω, k⃗) =
1

eβω − 1
2πδ(ω2 − k⃗2 −M2). (312)

The average energy of the dysgenic quantum field in a given quantum state may be
calculated as

Ei =

∫
d3k

ωk
VΛ

⟨a†i,kai,k⟩ =
∫
d3k

ωk
VΛ

ρi(ωk, k⃗)

eβωk − 1
, (313)

whereas for the environmental field, we similarly calculate it as

EE =

∫
d3k

Ωk
VΛ

⟨b†kbk⟩ =
∫
d3k

Ωk
VΛ

ρE(Ωk, k⃗)

eβΩk − 1
. (314)

A.1.5 Intercorrelations of the Dysgenic and Environmental
Quantum Fields

The two-point correlation function of the dysgenic quantum field is defined as

Ci(x, y) = ⟨X̂i(x, t)X̂i(y, t)⟩, (315)

and for the environmental field as

CE(x, y) = ⟨Ê(x, t)Ê(y, t)⟩, (316)

with the cross-correlation ultimately being

CiE(x, y) = ⟨X̂i(x, t)Ê(y, t)⟩, (317)

which will measure the correlation or response of trait Xi for an individual located at
x⃗ at some time t with the environment at y⃗ at t. The definitions can be generalised,
if we choose to do so. Using the propagators that we derived earlier, we can calculate
these correlation functions as

Ci(x, y) = Gi(x− y), (318)

where the propagator for the dysgenic quantum field is given by

Gi(x− y) =

∫
d4k

(2π)4
e−ik(x−y)Gi(k), (319)

and the Fourier transform of the propagator being

Gi(k) =
i

k2 −m2
i + iϵ+Σi(k2)

. (320)

The correlation functions satisfy

Ci(x, y) = Ci(y, x), (321)
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CE(x, y) = CE(y, x), (322)

CiE(x, y) = CiE(y, x), (323)

Ci(x, y) = 0 if x0 < y0, (324)

CE(x, y) = 0 if x0 < y0, (325)

CiE(x, y) = 0 if x0 < y0. (326)

Selecting once again a vacuum state, we reduce the correlation functions to

Ci(x, y) =

∫
d4k

(2π)4
e−ik(x−y)

i

k2 −m2
i + iϵ

, (327)

CE(x, y) =

∫
d4k

(2π)4
e−ik(x−y)

i

k2 −M2 + iϵ
, (328)

CiE(x, y) = 0. (329)

A.2 Dysgenic Field Theory B

Take some quantum field ϕi to be that which represents each dysgenic trait that exists.
There are quartic interactions between different fields, which we can represent by

Lij = −gij
4!

(ϕ†iϕi)(ϕ
†
jϕj). (330)

This was selected to reflect how dysgenic traits can affect each other in a non-local
and non-linear form. Each field has an equation of motion that can be obtained by

(γµ∂µ +mi)ϕi −
∑
j

gij
3!

(ϕ†jϕj)ϕi = 0. (331)

A.3 Dysgenic Field Theory Γ

F = Fϕ⊗Fψ. (332)

LI = LB + LR + LE . (333)

LR =

M∑
i=1

αiϕi(x, t) +

M∑
i,j=1

δijϕi(x, t)ϕj(x, t), (334)

LB =

M∑
i=1

J∑
j=1

βijϕi(x, t)ψj(x, t) +

M∑
i=1

K∑
k=1

γikϕi(x, t)fk, (335)

LE =

J∑
j=1

Vj(x, t)ψj(x, t) +

J∑
j,k=1

ϵjkψj(x, t)ψk(x, t), (336)

L =

M∑
i=1

Lϕi +

J∑
j=1

Lψj + LI . (337)
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ϕi(x, t) =

N∑
k=1

(
aike

−iωkt+ikx + a†ike
iωkt−ikx

)
. (338)

ψj(x, t) =

N∑
k=1

(
bjke

−iωkt+ikx + b†jke
iωkt−ikx

)
, (339)

|Ψ⟩ =
∑

n1,n2,...,nN

cn1,n2,...,nN
|n1, n2, . . . , nN ⟩, (340)

|n1, n2, . . . , nN ⟩ =
J∏
j=1

N∏
k=1

(bjk†)njk√
njk!

|0⟩, (341)

iℏ
∂

∂t
|Ψ⟩ = Ĥ|Ψ⟩, (342)

Ĥ =

M∑
i=1

N∑
k=1

ωk

(
a†ikaik +

1

2

)
+

J∑
j=1

N∑
k=1

ωk

(
b†jkbjk +

1

2

)
+ ĤI , (343)

ĤI =

−
∑

i = 1M
J∑
j=1

N∑
k=1

βijVj(k)(aik + a†ik)(bjk + b†jk)−

M∑
i=1

K∑
k=1

γikfk(aik + a†ik)−

M∑
i=1

αi(aik + a†ik)−

M∑
i,j=1

δij(aik + a†ik)(ajk + a†jk)−

J∑
j=1

Vj(k)(bjk + b†jk)−
J∑

j,k=1

ϵjkVj(k)Vk(k)(bjk + b†jk)(bkk + b†kk)

. (344)

⟨Ĥ⟩ = ⟨Ψ|Ĥ|Ψ⟩ =
∑

n1,n2,...,nN

|cn1,n2,...,nN
|2En1,n2,...,nN

. (345)

Ĥ|ΦE⟩ = E|ΦE⟩, (346)

|ΦE(t)⟩ = e−iEt/ℏ|ΦE(0)⟩, (347)

|ΦE⟩ =
∑

n1,n2,...,nN

cn1,n2,...,nN
|n1, n2, . . . , nN ⟩, (348)

Ĥ = Ĥ0 + V̂ (t), (349)
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|Ψ⟩ =
∑
n

cn(t)e
−iEnt/ℏ|n⟩, (350)

iℏ
∂

∂t
ψj(x, t) = − ℏ2

2m
∇2ψj(x, t) + Vj(x, t)ψj(x, t), (351)

ċn(t) = − i

ℏ
∑
m

V nm(t)ei(Em−En)t/ℏcm(t), (352)

c(1)n (t) = − i

ℏ

∫ t

0

Vnn0
(t′)ei(En0

−En)t
′/ℏdt′, (353)

V̂ (t) = V̂0e
iωt + V̂ †

0 e
−iωt, (354)

Pn→m(t) =
2π

ℏ
|Vmn|2δ(Em − En − ℏω)t, (355)

Rn→m =
2π

ℏ
|Vmn|2δ(Em − En − ℏω), (356)

|α, ξ⟩ = Ŝ(ξ)|α⟩, (357)

Ŝ(ξ) = e
1
2 (ξ∗â

2−ξâ†2). (358)

A.4 Dysgenic Field Theory ∆

Define a Lagrangian density

L = ψ̄σµ∂µψ − 1

2

(
∂µϕ∂

µϕ+m2ϕ2
)
− gϕψ̄ψ (359)

where ψ is some spinor field that represents dysgenic traits and ϕ is a scalar field that
represents an environmental factor.

ψL

ψR

ϕ1

ϕ2

g

The probability amplitude for the process of which two dysgenic traits with opposite
chirality annihilate into two environmental factors with opposite frequency is given by
the equation

A = g2
∫
d4xei(p1+p2−q1−q2)−x. (360)

The cross section for this process can be calculated from this probability amplitude as

σ =
1

4

√
(p1 · p2)2 −m4

∫
d3q1d

3q2(2π)
4δ4 (p1 + p2 − q1 − q2) |A|2. (361)
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B Unused Equations

These are equations that I have created but not used yet. This, however, does not
mean that any of these equations hold no value. Do not hesitate to employ or expand
onto them in any dysgenic field theory in whatever way that seems appropriate.

B.1 Set A

E =

N∑
n=1

⟨Ψn|Hn|Ψn⟩+
N∑

n<m

⟨Ψn ⊗Ψm|Wnm|Ψn ⊗Ψm⟩, (362)

F =
1

N

N∑
n=1

⟨Ψn|Sn|Ψn⟩, (363)

Qj =
1

N

N∑
n=1

⟨Ψn|ϕj(n)|Ψn⟩. (364)

B.2 Set B

Tnm =

J∑
j=1

tjϕj(n)ϕj(m). (365)

B.3 Set Γ

Ψk(n∆t+
∆t

2
) = e−i

k2
2m

∆t
2 F [Ψ(x, n∆t)], (366)

Ψ(x, n∆t+∆t) = e−i[H0+HI ]∆tF−1[Ψk(n∆t+
∆t

2
)]. (367)

B.4 Set ∆

⟨Ω|ψ̂i(x)ψ̂†
j (y)|Ω⟩ = −⟨Ω|ψ̂†

j (y)ψ̂i(x)|Ω⟩ = Sij(x− y), (368)

Sij(x− y) = − i

4π2
(σµ)ij(x− y)µ(x− y)−2. (369)
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