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Abstract

A consequence relation is strongly classical if it has all the theorems and
entailments of classical logic as well as the usual meta-rules (such as
Conditional Proof). A consequence relation is weakly classical if it has
all the theorems and entailments of classical logic but lacks the usual
meta-rules. The most familiar example of a weakly classical consequence
relation comes from a simple supervaluational approach to modelling
vague language. This approach is formally equivalent to an account of
logical consequence according to which α1, . . . , αn entails β just in case
□α1, . . . ,□αn entails □β in the modal logic S5. This raises a natural
question: If we start with a different underlying modal logic, can we
generate a strongly classical logic? This paper explores this question.
In particular, it discusses four related technical issues: (1) Which base
modal logics generate strongly classical logics and which generate weakly
classical logics? (2) Which base logics generate themselves? (3) How can
we directly characterize the logic generated from a given base logic? (4)
Given a logic that can be generated, which base logics generate it? The
answers to these questions have philosophical interest. They can help
us to determine whether there is a plausible supervaluational approach
to modelling vague language that yields the usual meta-rules. They can
also help us to determine the feasibility of other philosophical projects
that rely on an analogous formalism, such as the project of defining
logical consequence in terms of the preservation of an epistemic status.
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2 Supervaluationism, Modal Logic, and Weakly Classical Logic

1 Introduction

A consequence relation is called “broadly classical” if it has all of the classical
theorems and entailments. A consequence relation is called “strongly classical”
if, in addition, it obeys the usual meta-rules (Conditional Proof, Reasoning by
Cases, Reductio ad Absurdum, and Contraposition).1 Finally, a consequence
relation is called “weakly classical” if it is broadly classical but not strongly
classical.2

The most familiar example of a weakly classical consequence relation comes
from supervaluational approaches to modelling vague language.3 For simplicity,
we can restrict attention to propositional logic with the addition of a single one-
place operator “det”. On a simple supervaluational approach, a model for this
language consists of a set of assignments of truth values to atomic sentences.
Given an assignment in a model, we can assign truth values to non-atomic
sentences using the standard classical clauses for the logical connectives. A
sentence of the form “detα” is true on an assignment in a model just in case α is
true on every assignment in the model. A sentence is supertrue in a model just
in case it is true on every assignment in the model. We define the consequence
relation, ⊢, so that for a set of sentences Γ and a sentence α, Γ ⊢ α just in
case in every model, if every member of Γ is supertrue, so is α.4 The idea
behind this account of consequence is that consequence is to be understood in
terms of truth-preservation, and truth is identified with supertruth. The det
operator is the way of capturing truth in the object language.

Given these definitions, it is easy to show that the resulting consequence
relation is broadly classical: Since the classical theorems and entailments pre-
serve truth on each assignment, they preserve supertruth. It is also easy
to show that it is weakly classical: p ⊢ det p but ⊬ p → det p, so Condi-
tional Proof fails. Similarly, p ⊢ det p ∨ det¬p and ¬p ⊢ det p ∨ det¬p but
p∨¬p ⊬ det p∨ det¬p, so Reasoning by Cases fails. Moreover, p∧¬ det p ⊢ ⊥
but ⊬ ¬(p ∧ ¬ det p), so Reductio ad Absurdum fails. Finally, p ⊢ det p but
¬det p ⊬ ¬p, so Contraposition fails.5,6

This simple supervaluational approach is equivalent to an approach based
on modal logic.7 We can think of each assignment in a supervaluational model
as a world.8 The accessibility relation between worlds is the universal relation.
The det operator plays the role of a modal operator □. □α is true at a world

1I’ll provide a more elegant characterization below.
2I borrow this terminology from [10].
3See, for example, [11], though Fine is no longer a supervaluationist.
4This is what [41, p. 148], calls “global validity”.
5These examples appear in [41, pp. 151–2], as part of an argument that “supervaluations inval-

idate our natural mode of deductive thinking.” [23, pp. 51–3] argues against supervaluationism
on the ground that Conditional Proof and Reductio ad Absurdum fail. [11, p. 290], notes that
Conditional Proof fails for supervaluationism, but doesn’t view that as a problem.

6Let Replacement of Equivalents be the following: If α ⊢ β and β ⊢ α then δ ⊢ δ′, where δ′ is
the result of replacing an occurrence of α in δ with β. This fails, too, since p ⊢ det p and det p ⊢ p
but p → p ⊬ p → det p.

7See [41, pp. 149–50].
8It may be more philosophically natural for the “worlds” in such a model not to be assignments,

but to be packages of semantic rules or practices that induce such assignments (or, perhaps,
package-world pairs).
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just in case α is true at all accessible worlds, that is, at all worlds. A sentence
α is a consequence of a set of sentences Γ just in case in all modal models, if
□γ is true at a world for every γ ∈ Γ, then □α is true at the world, too.

Moving from a model-theoretic to a more proof-theoretic approach, let ⊢S5

be the consequence relation for the modal logic S5. Then the weakly classical
modal consequence relation characterized above can be defined as follows:
Γ ⊢ α just in case □Γ ⊢S5 □α, where □Γ is the set {□γ | γ ∈ Γ}. This
consequence relation can be axiomatized by starting with an axiomatization
for S5 and adding the rule of inference p/□p.9

This raises a question: What happens if we start with a modal logic other
than S5?10 That is, suppose we have an arbitrary strongly classical normal
modal logic ⊢base and we generate a consequence relation as follows: Γ ⊢ α just
in case □Γ ⊢base □α.11 (In the model theory, the idea is that logical consequence
is defined, not in terms of what’s true at all worlds, but in terms of what’s true
at all accessible worlds, where the accessibility relation need not be universal.)
When do we generate a weakly classical consequence relation and when do we
generate a strongly classical consequence relation? When do we generate the
very same consequence relation that we started with? Is there a simple way to
directly characterize ⊢? Given a consequence relation that can be generated,
which strongly classical normal modal logics generate it? The purpose of this
paper is to answer these questions.

This paper focuses on these technical questions. But it is worth noting that
these questions have philosophical significance. For instance, sticking with the
topic of vagueness, it is natural to think that it is a serious problem facing
the supervaluational approach sketched above that it yields a weakly classical
consequence relation. Logical consequence is plausibly closely tied to reasoning,
and in our reasoning, we freely make use of Conditional Proof, Reasoning by
Cases, Reductio ad Absurdum, and the like. So having to give up these meta-
rules would seem to be a serious cost of the view.12 If we could modify the
standard supervaluational apparatus by adding an accessibility relation in such
a way to enable us to retain the meta-rules, that would neatly sidestep the
problem.13

There are, of course, other potential responses to the difficulty. For instance,
a different response would be to make use of an alternative account of logical
consequence, such as defining consequence so that Γ ⊢ α just in case for all

9See [8] for this result, which is proved in a different way below.
10See [41, pp. 158–9] for discussion of this suggestion.
11This is essentially equivalent to what [7, p. 302] calls “regional validity”.
12Indeed, if one is an inferentialist about the logical constants, it is tempting to say that Con-

ditional Proof, Reasoning by Cases, and Reductio ad Absurdum constitute or help to determine
the meaning of the conditional, disjunction, and negation, respectively.

13There is also a second motivation for modifying the standard supervaluational approach. One
might worry that the simple supervaluational approach presented above does not properly handle
higher-order vagueness, since it rules out the possibility that it can be indeterminate whether
something is determinately the case. Perhaps if we start with a base logic other than S5, there is
a supervaluational approach that will handle higher-order vagueness properly.
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worlds in all models, if every member of Γ is true at the world, so is α.14

This way of defining consequence would yield a strongly classical consequence
relation. A worry facing this approach, however, is that it gives up on the idea
of defining logical consequence in terms of the preservation of truth, at least
when truth is identified with supertruth.15

A different response would be to try to motivate the acceptability of a
weakly classical consequence relation, or even to try to claim that being forced
to endorse a weakly classical logic is a feature rather than a bug.16 On such
a response, one would presumably replace Conditional Proof (and the other
meta-rules) with other, weaker meta-rules. For instance, on one version of this
approach, one might replace Conditional Proof with the following meta-rule: If
Γ∪{α} ⊢ β then Γ ⊢ detα→ β. (One would do something similar to the other
familiar meta-rules).17 One worry facing this proposal is that the resulting list
of meta-rules is logically fairly weak. A second worry is that it requires us
to sprinkle det operators throughout our reasoning, which seems awkward in
practice. On a different – and perhaps more elegant – version of this approach,
one might restrict Conditional Proof (and the other meta-rules) so that only
classical logical inferences can be used within the relevant subproof.18,19 A
worry facing this approach is that it potentially makes reasoning much clunkier
– one has to keep track of what rules one is and is not permitted to use within

14This is what [41, pp. 147–8] calls “local validity”. See [37] and [2] for defenses of local validity,
and [33] for a defense of the analogue of local validity for an account of vagueness that is formally
similar to supervaluationism. See [17] for an argument for a kind of pluralism according to which
both global and local validity are both legitimate notions of consequence. [37] discusses seven
different (inequivalent) potential definitions of logical consequence for a supervaluational model
theory – four versions of global validity, local validity, and two versions of collective validity. Varzi’s
list doesn’t include any versions of regional validity, so there are plenty of options to choose from.

15See [41, p. 148] and [43] for articulations of this worry. But see [24] for a view on which logical
consequence involves the preservation of truth, understood as disquotational truth.

16See [11, p. 290] and [18, pp. 178–9] for the claim that violations of the meta-rules are just to
be expected, in part because det is a non-classical notion.

17This is the approach suggested by [18, pp. 179–80].
18See [25] for a proposal in this ballpark. More precisely, this paper suggests that the reasoning

inside Conditional Proof should be restricted to “modes of inference that are known to preserve
truth in each acceptable model” (p. 135). See [9] and [13] for a related suggestion: Each of these
two papers suggests that the argument in [44] that supervaluationism is inconsistent with higher-
order vagueness is mistaken because it applies the rule of inference p/ det p within a subproof.
Their diagnosis of why this is a problem is that this rule preserves truth, but permits inferring from
an indeterminate premise to a false conclusion, and a conditional that can have an indeterminate
antecedent and a false consequent is not a validity. One might think that this diagnosis suggests
not restricting Conditional Proof but rather moving to an account of consequence according to
which some premises entail a conclusion just in case if the premises are true the conclusion is
guaranteed to be true and if the conclusion is false the conjunction of the premises is guaranteed
to be false. However, [43, p. 526 n. 6] points out that this alternative definition of consequence still
does not permit accepting an unrestricted version of Conditional Proof (and has other problems,
besides). Perhaps a better alternative would be to move to a definition of consequence where truth
takes wide scope: For instance, some premises entail a conclusion just in case the conditional
that has the conjunction of premises as the antecedent and the conclusion as the consequent is
guaranteed to be true.

19One might think that the problems for Conditional Proof only involve sentences containing
the det operator, so we only need to rule out the use of inferences crucially involving det. However,
[41, p. 152, p. 295-6 n. 25] points out that supervaluationists typically try to use their apparatus
in providing an account of other parts of language, so the difficulty will be more general. [12,
sec. 2] argues that if the relevant notion of consequence is not logical consequence but a more
general type of consequence suitable for everyday reasoning, there will be failures of Conditional
Proof even if the language does not contain any special vagueness-related operators. [43] provides
additional potential examples of this phenomenon.



Supervaluationism, Modal Logic, and Weakly Classical Logic 5

a subproof. It also seems in tension with a natural thought about consequence:
If β really is a consequence of α, why can’t one reason from α to β even
within a subproof? And if one can do that, why can’t one go ahead and use
Conditional Proof (or Reasoning by Cases or Reductio ad Absurdum)?

There is doubtless much more that could be said about all of this. But the
moral of the discussion is that it is a very natural question whether we can
adjust the standard supervaluational semantics to yield a strongly classical
logic. And the obvious approach – adding a (not necessarily universal) acces-
sibility relation, taking truth = supertruth to be truth in all accessible worlds,
and retaining the definition of consequence in terms of truth-preservation – is
a natural one to consider.20 Indeed, Williamson writes that this is a “natural
line of thought from a standard supervaluationist perspective. If supervalua-
tionists abandon it, they incur the suspicion that they are not serious about
their identification of truth with supertruth.”21

The technical questions considered here also arise in other areas. Con-
sider epistemic logic. One might read “□” as an epistemic status such as “one
is in a position to know that” or “one is rationally committed to its being
the case that”. Some philosophers have proposed characterizing validity, or a
related notion, in terms of the preservation of an epistemic status.22 It is nat-
ural to investigate the features of the resulting consequence relation, including
whether it is strongly or weakly classical and how it can be axiomatized. (And
similarly for other possible interpretations of “□”.)

This paper will proceed as follows. In the next section, I present the rele-
vant background on consequence relations, weakly and strongly classical logic,
and modal logic. In section 3, I provide results on when specific rules are admis-
sible in a modal logic that will be relied upon later in the paper. In section
4, I consider the question of when a consequence relation generated as above
from a finitary strongly classical normal modal logic is itself strongly classical.
I provide necessary and sufficient conditions for generating a strongly classi-
cal consequence relation. This result tells us that many familiar modal logics,
such as K, KD, K5, and KG, generate strongly classical consequence relations.
I also show that many familiar modal logics, such as KT, K4, KB, and GL
generate weakly classical consequence relations. Indeed, I show that the only
consistent finitary strongly classical normal extension of KT that generates a
strongly classical consequence relation is Triv. I also identify the weakest fini-
tary strongly classical normal extensions of K4 and KB (among many other
modal logics) that generate a strongly classical consequence relation. In section

20What is the accessibility relation supposed to represent? On one picture, each world in a
model does two things: (i) it specifies a privileged assignment and (ii) it specifies a set of admissible
assignments with the privileged assignment located in the middle (in some sense) of the admissible
assignments. The accessibility relation links each world to those worlds that have one of the
admissible assignments as their privileged assignment. Given this kind of picture, the accessibility
relation will presumably be reflexive. Thanks to Stephan Krämer for suggesting this approach.

21See [43, p. 525].
22This is common among inferentialists in the Dummett-Prawitz tradition. For instance, [35,

p. 950] characterizes validity in terms of the preservation of knowledge. [27, p. 73] characterizes
“legitimate inference” as the kind of inference that preserves the property having conclusive
evidence for. [4, p. 168] characterizes “committive inference” as the kind of inference that preserves
the property being committed to.
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5, I consider the question of when a finitary strongly classical normal modal
logic generates itself. I provide necessary and sufficient conditions for a finitary
strongly classical normal modal logic to be self-generating. I identify the weak-
est finitary strongly classical normal extensions of KT, K4, and KB (among
many other modal logics) that are self-generating. I also examine the question
of when a finitary strongly classical normal modal logic generates a logic with
the very same theorems, but perhaps has additional derivable rules. In section
6, I turn to the question of how to directly characterize modal logics generated
from finitary strongly classical normal modal logics. I show that if we have a
finitary strongly classical normal modal logic that extends KB or KT, we can
provide a straightforward characterization of the modal logic it generates. I also
show how to directly characterize the modal logics generated from many other
modal logics. In section 7, I consider the other direction: Given a broadly clas-
sical normal modal logic, which strongly classical normal modal logics generate
it? Section 8 concerns the question of generating modal logics from finitary
weakly classical normal modal logics. In particular, for many familiar strongly
classical normal modal logics, I determine what happens when we start with
that modal logic, generate a modal logic from it, generate a modal logic from
it, and iterate until we hit a fixed point. In section 9, I briefly discuss two ways
to generalize the discussion. First, I discuss the generation of modal logics in
a multiple-conclusion setting. Second, I discuss alternative ways of generating
modal logics from modal logics. Finally, in section 10, I conclude by briefly
discussing the philosophical significance of the results.

2 Background

2.1 Syntax

In this paper, we’ll work with a specific language for propositional modal logic.
The language has an infinite stock of atomic sentences, the familiar logical
connectives ¬, ∧, ∨, →, ↔, a one-place operator □, and the parentheses, (
and ). We use p, q, r, and s to stand for distinct atomic sentences. We use α,
β, γ, δ, ϕ, and ψ, sometimes with subscripts, to stand for arbitrary sentences.
We use Γ and ∆ to stand for arbitrary sets of sentences.

The formation rules for non-atomic sentences are the usual ones: If α and
β are sentences, so are ¬α, (α ∧ β), (α ∨ β), (α → β), (α ↔ β), and □α.
Nothing else is a sentence. We omit parentheses in sentences when there is no
danger of confusion. In particular, ∧ has a higher precedence than ∨ which
has a higher precedence than →. So, for instance, α ∨ β ∧ γ → δ abbreviates
((α ∨ (β ∧ γ)) → δ). We use ⊤ as an abbreviation for p → p and ⊥ as an
abbreviation for ¬⊤. We use □Γ as an abbreviation for {□γ | γ ∈ Γ}.

A substitution σ is a function from the atomic sentences to sentences. We
write σα to stand for the result of uniformly substituting every atomic sentence
in α with the result of applying σ to that atomic sentence. We write σΓ to
stand for the set {σγ | γ ∈ Γ}.
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2.2 Consequence Relations

A consequence relation, ⊢, is a relation holding between sets of sentences and
individual sentences such that the following conditions obtain for every α, β,
Γ, ∆, and σ:

Identity. {α} ⊢ α
Weakening. If Γ ⊢ α then Γ ∪ ∆ ⊢ α
Cut. If Γ ⊢ α and ∆ ∪ {α} ⊢ β then Γ ∪ ∆ ⊢ β
Uniform Substitution. If Γ ⊢ α then σΓ ⊢ σα

A consequence relation is thus required to be single conclusion. It is also
required to be structural in the sense of [22]. (In section 9, we’ll briefly loosen
these restrictions.) Notice that a consequence relation may be characterized
proof-theoretically, model-theoretically, or in some other way. We use “logic”
as a synonym for “consequence relation”.

For ease of reading, we often drop the set brackets on the left-hand side of
⊢. We also write Γ; α as an abbreviation for Γ ∪ {α}.

A consequence relation ⊢ is finitary (i.e., compact) just in case if Γ ⊢ α
then there is a finite Γ0 ⊆ Γ such that Γ0 ⊢ α.

Suppose ⊢ and ⊢′ are consequence relations. We say that ⊢′ extends ⊢ just
in case for every Γ and α, if Γ ⊢ α then Γ ⊢′ α. We say that a consequence
relation ⊢∗ is between ⊢ and ⊢′ just in case ⊢′ extends ⊢∗ and ⊢∗ extends ⊢.

Let ⊢ be a consequence relation. We say that α is a consequence of Γ in ⊢
just in case Γ ⊢ α. Equivalently, we say that Γ entails α in ⊢. We say that α
is a theorem of ⊢ just in case ∅ ⊢ α. As usual, we write ⊢ α for ∅ ⊢ α.

A rule is an ordered pair containing a set of sentences and a sentence. For
simplicity, we’ll typically write the rule ⟨Γ, α⟩ as Γ/α. We use θ to stand for a
rule and Θ to stand for a set of rules. Given a consequence relation ⊢, the rule
Γ/α is derivable in ⊢ just in case Γ ⊢ α. (By Uniform Substitution, it follows
that σΓ/σα is also derivable in ⊢ for every substitution σ.) The rule Γ/α is
admissible in ⊢ just in case for every substitution σ, if every member of σΓ is
a theorem of ⊢, so is σα. In other words, an admissible rule does not yield any
new theorems when added to a consequence relation.23 A rule that is derivable
in ⊢ is always admissible in ⊢, but not vice versa. For example, in the normal
modal logic K, the rule p/□p is admissible but not derivable. A consequence
relation is structurally complete just in case every admissible rule is derivable.

A meta-rule is an ordered pair containing a set of rules and a rule. A
consequence relation ⊢ obeys the meta-rule ⟨{⟨Γ1, α1⟩, . . . , ⟨Γn, αn⟩}, ⟨∆, β⟩⟩
just in case for every substitution σ, if σΓ1 ⊢ σα1 and . . . and σΓn ⊢ σαn,
then σ∆ ⊢ σβ. (And similarly for the infinite case.) Equivalently, we say that
the meta-rule obtains in ⊢. For reasons of familiarity, we’ll typically write the
meta-rule as: if Γ1 ⊢ α1 and . . . and Γn ⊢ αn then ∆ ⊢ β.

For a given consequence relation, there will be many different proof-
theoretic formal systems that can be used to characterize it. (Such formal
systems include Hilbert-style axiomatizations, systems of natural deduction,

23The notion of an admissible rule is due to [21].
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sequent calculi, and so forth.) We’ll occasionally talk about the formal systems
axiomatizing a given consequence relation. In this context, it will be impor-
tant to distinguish between rules of inference and rules of proof. A rule of
inference specifies that in the formal system, certain premises directly imply
a certain conclusion, and similarly for applications of arbitrary substitutions.
We again write a rule of inference as Γ/α. This rule of inference says that for
every substitution σ, the formal system permits directly inferring from σΓ to
σα. A rule of proof specifies that the formal system permits directly infer-
ring from certain sentences taken to be theorems (that is, derivable from no
assumptions) to a certain sentence also taken to be a theorem, and similarly
for applications of arbitrary substitutions. We write a rule of proof as: If ⊢ α1

and . . . and ⊢ αn then ⊢ β. This rule of proof says that for every substitution
σ, if σα1, . . . , σαn are theorems, the formal system permits directly inferring
from them to σβ which is then a theorem, too.24

2.3 Weakly and Strongly Classical Consequence Relations

Given a consequence relation ⊢ in a language that contains at least the usual
logical connectives (¬, ∧, ∨, →, and ↔) we say that ⊢ is broadly classical just
in case it has all of the classical theorems and entailments. For a consequence
relation to be broadly classical, it suffices that (i) all of the classical validities
are theorems and (ii) the rule Modus Ponens (p, p → q/p) is derivable. (By
Uniform Substitution, it follows that α, α → β/β is derivable for any α and
β.) A broadly classical consequence relation ⊢ is strongly classical just in case,
in addition, it obeys the following meta-rule:

Conditional Proof. If Γ; α ⊢ β then Γ ⊢ α→ β.

It is weakly classical just in case it is broadly classical but not strongly
classical.25,26

In a language that contains only the usual logical vocabulary, if a conse-
quence relation is broadly classical it will also be strongly classical. That is
what the familiar proof of the Deduction Theorem tells us. But if there are
additional operators in the language, such as a modal operator, there will be
broadly classical logics that are not strongly classical.

In addition to Conditional Proof, there are other familiar meta-rules:

Reasoning by Cases. If both Γ; α ⊢ δ and Γ; β ⊢ δ then Γ; α ∨ β ⊢ δ.
Reductio ad Absurdum. If Γ; α ⊢ ⊥ then Γ ⊢ ¬α.
Contraposition. If Γ; α ⊢ β then Γ; ¬β ⊢ ¬α.

24For discussions of the distinction between rules of inference and rules of proof, see [34, p.
130], [36, p. 135], and [1, p. 134]. I don’t know who first explicitly drew this distinction, but it
was already familiar in the 1940s. See, for example, [26, sec. 8].

25This is a more restrictive notion of weak classicality than appears in [28], which permits
weakly classical logics to be non-structural.

26These definitions can be generalized to languages that contain a set of connectives that are
expressively adequate in classical logic – we can treat any missing connectives as defined rather
than primitive.
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Section 1 characterized a strongly classical consequence relation as a
broadly classical consequence relation that obeys all of these meta-rules. This
is equivalent to the characterization in terms of Conditional Proof alone. In a
broadly classical logic, these meta-rules turn out to be equivalent.

Proposition 2.1 (Folklore). If ⊢ is a broadly classical logic, then if ⊢ obeys
any one of Conditional Proof, Reasoning by Cases, Reductio ad Absurdum, or
Contraposition, then it obeys all of them.27,28

Proof We show that Reasoning by Cases, Reductio ad Absurdum, and Contraposi-
tion are each equivalent to Conditional Proof.

Reasoning by Cases: Suppose Γ; α ⊢ δ and Γ; β ⊢ δ. By Conditional Proof,
Γ ⊢ α → δ and Γ ⊢ β → δ. In a broadly classical logic, α → δ, β → δ ⊢ α ∨ β → δ.
By Cut, Γ ⊢ α ∨ β → δ. By Modus Ponens and Cut, Γ; α ∨ β ⊢ δ.

For the other direction, suppose Γ; α ⊢ β. In a broadly classical logic, β ⊢ α→ β.
So by Cut, Γ; α ⊢ α→ β. In a broadly classical logic, ¬α ⊢ α→ β. So by Weakening,
Γ; ¬α ⊢ α → β. By Reasoning by Cases, Γ; α ∨ ¬α ⊢ α → β. In a broadly classical
logic, ⊢ α ∨ ¬α. So by Cut, Γ ⊢ α→ β.

Reductio ad Absurdum: Suppose Γ; α ⊢ ⊥. By Conditional Proof, Γ ⊢ α → ⊥.
In a broadly classical logic, α→ ⊥ ⊢ ¬α. By Cut, Γ ⊢ ¬α.

For the other direction, suppose Γ; α ⊢ β. By Weakening, Γ; α,¬β ⊢ β. By
Identity and Weakening, Γ; α,¬β ⊢ ¬β. In a broadly classical logic, β,¬β ⊢ ⊥. By
Cut, Γ; α,¬β ⊢ ⊥. In a broadly classical logic, α ∧ ¬β ⊢ α and α ∧ ¬β ⊢ ¬β. So by
Cut, Γ; α∧¬β ⊢ ⊥. By Reductio ad Absurdum, Γ ⊢ ¬(α∧¬β). In a broadly classical
logic, ¬(α ∧ ¬β) ⊢ α→ β. By Cut, Γ ⊢ α→ β.

Contraposition: Suppose Γ; α ⊢ β. By Conditional Proof, Γ ⊢ α→ β. In broadly
classical logic, α → β ⊢ ¬β → ¬α. By Cut, Γ ⊢ ¬β → ¬α. By Modus Ponens and
Cut, Γ; ¬β ⊢ ¬α.

For the other direction, suppose Γ; α ⊢ β. By the same reasoning as for Reductio
ad Absurdum, Γ; α ∧ ¬β ⊢ ⊥. By Contraposition, Γ; ¬⊥ ⊢ ¬(α ∧ ¬β). In a broadly
classical logic, ⊢ ¬⊥ and ¬(α ∧ ¬β) ⊢ α→ β. By Cut, Γ ⊢ α→ β. □

Indeed, we can show that if ⊢ is a broadly classical logic obeying Condi-
tional Proof, it obeys every classically valid meta-rule – that is, every meta-rule
that is valid in classical propositional logic with no additional vocabulary. The

27See [32, pp. 601–2] for this result and [43, p. 526 n. 5] for one direction of it (showing that
Conditional Proof is derivable from each of the other listed meta-rules).

28 Let General Replacement of Equivalents be the generalization of Replacement of Equivalents
(from footnote 6) that permits side formulas. That is: If Γ; α ⊢ β and Γ; β ⊢ α then Γ; δ ⊢ δ′,
where δ′ is the result of replacing an occurrence of α in δ with β. We can also show that if ⊢
obeys General Replacement of Equivalents, then it obeys Conditional Proof: Suppose Γ; α ⊢ β.
In a broadly classical logic, Γ; α ⊢ α and α, β ⊢ α ∧ β. So by Cut, Γ; α ⊢ α ∧ β. In a broadly
classical logic, Γ; α ∧ β ⊢ α. So by General Replacement of Equivalents, Γ; α → α ⊢ α → α ∧ β.
In a broadly classical logic, ⊢ α → α and α → α ∧ β ⊢ α → β. So by Cut, Γ ⊢ α → β. We don’t
necessarily get the other direction, or even Replacement of Equivalents. For a simple example,
consider a consequence relation ⊢ in the language with the usual classical logical connectives as
well as the operator O. Suppose ⊢ is characterized model-theoretically, where the usual connectives
are treated in the usual way and where Oα is true in a model just in case α contains an occurrence
of q. ⊢ will be strongly classical. We’ll have q → q ⊢ p → p and p → p ⊢ q → q, but O(q → q) ⊬
O(p → p).
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proof of this fact relies on the well-known fact that classical propositional logic
is structurally complete.29

Proposition 2.2. Suppose there is a classically valid meta-rule of the follow-
ing form: if Γ1 ⊢ α1 and . . . and Γn ⊢ αn then ∆ ⊢ β (where each Γi is finite
and ∆ is finite). Then if ⊢ is a broadly classical consequence relation obeying
Conditional Proof, it obeys this meta-rule.30

Proof Let ⊢cl be the classical consequence relation in a propositional language with
the usual logical connectives but no additional vocabulary. Let γn be the conjunction
of the members of Γn and let δ be the conjunction of the members of ∆. By Condi-
tional Proof and Modus Ponens, if ⊢cl γ1 → α1, . . . , and ⊢cl γn → αn then ⊢cl δ → β.
By the structural completeness of classical logic, γ1 → α1, . . . , γn → αn ⊢cl δ → β.
Since this is an entailment, it holds in any broadly classical logic.

Now suppose Γ1 ⊢ α1 and . . . and Γn ⊢ αn. So ⊢ γ1 → α1, . . . , and ⊢ γn → αn.
By the result in the previous paragraph, γ1 → α1, . . . , γn → αn ⊢ δ → β. By Cut,
⊢ δ → β. So ∆ ⊢ β. □

These results tell us that whether a broadly classical consequence relation
is strongly classical depends on whether it obeys Conditional Proof. In the
case of a finitary broadly classical consequence relation, we can simplify things
still further.

Proposition 2.3. A finitary broadly classical consequence relation obeys Con-
ditional Proof just in case it obeys Conditional Proof with no side formulas: If
α ⊢ β then ⊢ α→ β.

Proof Suppose Γ; α ⊢ β. Since ⊢ is finitary, for some finite {γ1, . . . , γn} ⊆ Γ,
γ1, . . . , γn, α ⊢ β. So γ1 ∧ . . . ∧ γn ∧ α ⊢ β. By Conditional Proof with no side for-
mulas, ⊢ γ1 ∧ . . . ∧ γn ∧ α→ β. In a broadly classical logic, γ1 ∧ . . . ∧ γn ∧ α→ β ⊢
γ1 ∧ . . .∧ γn → (α→ β). By Cut, ⊢ γ1 ∧ . . .∧ γn → (α→ β). By Modus Ponens and
Cut, γ1 ∧ . . . ∧ γn ⊢ α → β. So γ1, . . . , γn ⊢ α → β. So by Weakening, Γ ⊢ α → β.
The other direction is trivial. □

29Intuitionist propositional logic and classical predicate logic are not structurally complete, so
the corresponding proofs do not work in those cases.

30This result is compatible with the fact that obeying Conditional Proof does not guarantee
obeying General Replacement of Equivalents, or even Replacement of Equivalents. This is because
instances of Replacement of Equivalents may crucially involve vocabulary beyond the usual logical
connectives – that is, they may not be substitution instances of a classically valid meta-rule.
Consider the example in footnote 28. In that example, ⊢ obeys Conditional Proof but not the
following meta-rule: if p ⊢ q and q ⊢ p then Op ⊢ Oq. This meta-rule does not count as “classically
valid” in the sense defined above, and is not a substitution instance of a classically valid meta-
rule. By contrast, the result will apply to Reasoning by Cases, since the following meta-rule is
classical valid: if s, p ⊢ r and s, q ⊢ r then s, p ∨ q ⊢ r. Obeying Conditional Proof will guarantee
obeying a version of General Replacement of Equivalents restricted so that α, β, δ, and Γ do not
contain any vocabulary beyond the usual vocabulary of classical propositional logic. Thanks to
an anonymous referee for raising this issue.
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Thus, to show that a finitary broadly classical consequence relation is
strongly classical, all we need to show is that it obeys Conditional Proof with
no side formulas.

Indeed, in a finitary broadly classical logic, Conditional Proof with no side
formulas is equivalent to Reasoning by Cases with no side formulas, Reductio
ad Absurdum with no side formulas, and Contraposition with no side formu-
las.31 The proof is the same as the proof for the case of side formulas – all one
has to do is to replace Γ with the empty set in the proof.

2.4 Modal Logic

A modal logic is a broadly classical consequence relation in a language that
contains a one-place operator □ in addition to the usual logical connectives.
We use ♢ as an abbreviation for ¬□¬. We use □n as an abbreviation for a
sequence of n □s and ♢n as an abbreviation for a sequence of n ♢s

We say that a modal logic is normal just in case it has the following
property:

Normal. If Γ ⊢ α then □Γ ⊢ □α.

For the case of a finitary strongly classical modal logic, this is equivalent to the
following more familiar characterization: A finitary strongly classical modal
logic is a normal modal logic just in case it has the following principle as a
theorem:

K □(p→ q) → (□p→ □q)

and obeys the following meta-rule:

Necessitation. If ⊢ α then ⊢ □α.32

For the case of non-finitary strongly classical modal logics, Normal entails the
familiar constraint but not vice-versa. (In a strongly classical logic, the familiar
constraint is equivalent to Normal restricted to finite Γ.) The main reason
we use Normal rather than the familiar constraint is that Normal is a more
natural constraint for weakly classical modal logics. A second, more technical
reason will emerge in the next section.

The weakest strongly classical normal modal logic is called “K”. K can be
axiomatized taking the axioms to be all of the classical tautologies and all
substitution instances of the modal principle K, taking Modus Ponens to be
the sole rule of inference and Necessitation to be the sole rule of proof.

Many familiar normal modal logics can be characterized as the weakest
normal modal logic extending K that has a modal principle or principles as
theorems. Familiar modal principles include the following:

T □p→ p
4 □p→ □□p

31Conditional Proof with no side formulas also follows from Replacement of Equivalents.
32Necessitation is equivalent to the claim that the following rule is admissible: p/□p. In most

modal logics of interest, this rule is not derivable.
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5 ♢p→ □♢p
D □p→ ♢p
B p→ □♢p
G ♢□p→ □♢p
W □(□p→ p) → □p

It will also be useful to name the following family of modal principles:

Tn □np→ p (for n ≥ 1)

For instance, T2 is □□p→ p.
When a modal logic is the weakest normal modal logic that extends K and

has one or more of these principles as theorems, the modal logic is typically
referred to using “K” followed by a list of the relevant modal principles. For
instance, KT is the normal modal logic that results from taking K and extend-
ing it by T. KDB is the normal modal logic that results from taking K and
extending it by D and B. For historical reasons, “S4” is an alternate name
for KT4 and “S5” is an alternate name for KT5. (S5 is also the same logic
as KT45 and KDB4, among others). “S4.2” is an alternate name for KT4G.
“GL” is an alternate name for KW. (GL is also the same logic as K4W.)

All of the principles listed above are conditionals. We can use the subscript
“c” to refer to their converse. So, for instance, 4c is □□p → □p. We can use
a “!” to refer to the strengthening of the conditional to a biconditional. So,
for instance, 4! is □p↔ □□p. Interestingly, it turns out that KB! is the same
modal logic as KT2!. Finally, we can use “□” to refer to the result of prefixing
a modal principle with a □. So, for instance, □4 is □(□p→ □□p).

There are two additional normal modal logics that deserve note. Triv is the
extension of K by T! (i.e., □p ↔ p). Ver is the extension of K by □⊥. These
are notable because every consistent strongly classical normal modal logic is
extended by either Triv or Ver (or both).

Every normal modal logic named so far has been strongly classical. Using a
variant of the standard proof of the Deduction Theorem, it is straightforward
to show that any modal logic that is the result of adding some modal principles
to K is also strongly classical. One way to generate a weakly classical normal
modal logic is to add a rule of inference to K (or to a stronger normal modal
logic) without adding the corresponding conditional. (We must also make sure
the conditional does not end up a theorem.) For instance, if we add the rule of
inference p/□p to K, the result will be a weakly classical normal modal logic.

In what follows, we’ll make use of the standard (Kripkean) relational model
theory for strongly classical normal modal logics. To summarize: A model M
is a triple ⟨W,R, V ⟩, where W is a non-empty set (the set of worlds). R is
a binary relation on W (the accessibility relation). V assigns to each atomic
sentence a subset of W (the valuation function).

For worlds w, v ∈W , we inductively define wRnv as follows: wR0v just in
case w = v. wRn+1v just in case there is a u ∈ W such that wRnu and uRv.
We write R(w) for the set {v | wRv} and Rn(w) for the set {v | wRnv}.
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A frame F is a pair ⟨W,R⟩. We say that the model ⟨W,R, V ⟩ is based on
the frame ⟨W,R⟩. We inductively define truth at the world w in the model M
as follows: An atomic sentence p is true at w just in case w ∈ V (p). The clauses
for the logical constants are just what one would expect. For instance, α∧β is
true at w just in case both α is true at w and β is true at w. □α is true at w
just in case for every world v ∈W , if wRv then α is true at v. That is, α is true
at all worlds accessible from w. We say that a sentence α is valid on a class of
models just in case α is true at all worlds in all models in that class. We say
that a set of sentence Γ entails the sentence α on a class of models just in case
at all worlds in all models in that class if all the members of Γ are true, so is α.

Given a model M = ⟨W,R, V ⟩ and a set of worlds S ⊆ W we write MS

for the submodel of M generated by the set S. MS = ⟨WS , RS , VS⟩, where
WS = {v | wRnv for any w ∈ S and n ∈ N}, RS = R ∩ WS × WS , and
VS(p) = V (p) ∩WS . If w ∈ W , we write Mw for M{w}, and similarly for Ww,
Rw, and Vw. An important feature of generated submodels is that for every
w ∈WS , what’s true at w in MS is exactly the same as what’s true at w in M .

Given a strongly classical normal modal logic ⊢, we say that it is sound
with respect to a class of models just in case if ⊢ α then α is valid on that
class. (This is equivalent to the condition that if Γ ⊢ α then Γ entails α on that
class.) We say that ⊢ is weakly complete with respect to a class of models just
in case if α is valid on the class then ⊢ α. We say that ⊢ is strongly complete
with respect to a class of models just in case if Γ entails α on the class then
Γ ⊢ α. We say that ⊢ is weakly determined with respect to a class of models just
in case ⊢ is sound and weakly complete with respect to the class of models.
We say that ⊢ is strongly determined with respect to a class of models just
in case ⊢ is sound and strongly complete with respect to the class of models.
Similarly, we say that ⊢ is sound (weakly complete, strongly complete, weakly
determined, or strongly determined) with respect to a class of frames just in
case ⊢ is sound (weakly complete, strongly complete, weakly determined, or
strongly determined, respectively) with respect to the class of all models based
on a frame in the class.

Given a strongly classical normal modal logic ⊢, the canonical model for ⊢
is defined as follows: The set of worlds, W , is the set of all maximally consistent
(in ⊢) sets of sentences. wRv just in case whenever □α ∈ w, α ∈ v. V (p) is
the set of worlds that contain the atomic sentence p. It is straightforward to
show that if ⊢ is a finitary strongly classical normal modal logic, ⊢ is strongly
determined with respect to the singleton of the canonical model for ⊢.

We say that a strongly classical normal modal logic ⊢ corresponds to a
class of frames just in case ⊢ is strongly determined with respect to the class
of frames and ⊢ is not strongly determined with respect to any proper super-
class of the class of frames. Not every strongly classical normal modal logic
corresponds to a class of frames. For instance, GL does not correspond to any
class of frames. But all of the other strongly classical normal modal logics that
will be discussed here correspond to a class of frames. For instance, KT corre-
sponds to the class of reflexive frames, K4 corresponds to the class of transitive
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frames, KD corresponds to the class of serial frames, KB corresponds to the
class of symmetric frames, S4 corresponds to the class of transitive and reflex-
ive frames, S5 corresponds to the class of frames in which R is an equivalence
relation, and Triv corresponds to the class of frames in which each world is
accessible from itself and from no other world. Instead of correspondence with
a class of frames, we sometimes talk about the frame condition for ⊢. For
instance, KT has the frame condition that R is reflexive. One way to show
that a finitary strongly classical normal modal logic corresponds to a class of
frames is to show that the modal logic is sound with respect to the class of
frames, it is not sound with respect to any proper superclass of the class of
frames, and the canonical model for the logic is based on a frame in that class.
The Sahlqvist correspondence theorem ([30]) is a general result that enables
us to determine the classes of frames corresponding to a wide range of strongly
classical normal modal logics.

Although GL does not correspond to a class of frames, it is weakly deter-
mined with respect to a class of frames. In particular, it is weakly determined
with respect to the class of frames with finitely many worlds and a transitive
and irreflexive accessibility relation. Not every strongly classical normal modal
logic is weakly determined with respect to a class of frames.

3 The Admissibility of Specific Rules

The central questions of this paper are equivalent to questions about admissible
rules. For instance, as we will see, a finitary strongly classical normal modal
logic ⊢base generates a strongly classical logic just in case □p→ □q/□(p→ q) is
admissible in ⊢base. Similarly, ⊢base generates itself just in case □p→ □q/p→ q
is admissible in ⊢base. So it will be useful to be able to tell when some specific
rules are admissible in a finitary strongly classical normal modal logic.

There are two literatures concerning the admissibility of rules in modal log-
ics. The earlier literature focuses on specific, philosophically interesting rules
and tries to answer the question of which finitary strongly classical normal
modal logics these rules are admissible in.33 The later (and more technically
sophisticated) literature focuses on a more general question. For a wide range
of finitary strongly classical normal modal logics extending K4, it shows that
whether a rule is admissible is decidable. It also generates explicit bases for
the set of admissible rules for many such logics.34

The results on admissible rules in this section make use of the techniques
from the earlier literature on admissible rules in modal logics. This is for two
reasons. First, what is of interest here is not the question of which rules are
admissible in a given modal logic, but rather given a specific rule, which modal
logics it is admissible in. Second, we will not be restricting our attention to
modal logics extending K4.

33For example, see [19, pp. 94–5], [20, pp. 44–9, 79–81], [39], [40], [6], and [42].
34This literature stems from the work of Rybakov (culminating in [29]). For an important

contribution to this literature, see [16]. For a recent survey, see [15].
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In particular, we will prove three simple results about the admissibility of
rules. Each result will have the same basic form: A rule in a specified family
of rules is admissible in a finitary strongly classical normal modal logic just in
case the canonical model for the modal logic has a certain first-order property
just in case the modal logic is weakly determined with respect to a class of
models that has a related property.

Proposition 3.1. Suppose ⊢ is a finitary strongly classical normal modal logic
and n and m are natural numbers. Then the following are equivalent:

� The rule □np/□mp is admissible in ⊢.
� The canonical model for ⊢ has the following property: ∀w(∃uuRmw →

∃u∗ u∗Rnw).35

� ⊢ is weakly determined with respect to a class C of models that has the
following related property: For every modelM = ⟨W,R, V ⟩ in C and w ∈W ,
if ∃u ∈W uRmw then there is an M ′ = ⟨W ′, R′, V ′⟩ in C (perhaps identical
to M) such that M ′

w = Mw and ∃u∗ ∈W ′ u∗R′nw.

Proof Suppose the rule □np/□mp is admissible in ⊢. Suppose for some world w in
the canonical model for ⊢, there is a world u such that uRmw. We show that the
set {♢nα | α ∈ w} is consistent in ⊢. Suppose not. Then ⊢ ¬(♢nα1 ∧ . . . ∧ ♢nαk)
for some α1, . . . , αk ∈ w. So ⊢ □n¬α1 ∨ . . . ∨ □n¬αk. So ⊢ □n¬(α1 ∧ . . . ∧ αk). By
the admissible rule, ⊢ □m¬(α1 ∧ . . . ∧ αk). So □m¬(α1 ∧ . . . ∧ αk) ∈ u. But since
uRmw, ¬□m¬(α1 ∧ . . . ∧ αk) ∈ u. So u is inconsistent. Contradiction! So the set is
consistent. So it is a subset of a maximal consistent set u∗. The set u∗ is a world in
the canonical model. By the definition of the canonical model, u∗Rnw.

Suppose the canonical model for ⊢ has the specified property. Since ⊢ is weakly
determined with respect to the singleton of its canonical model, ⊢ is weakly
determined with respect to a class of models that has the related property.

Suppose ⊢ is weakly determined with respect to a class C of models that has
the related property. Suppose ⊬ □mα for some sentence α. So there is a model
M = ⟨W,R, V ⟩ in C and a world u ∈ W such that □mα is false at u in M . So
there is a w such that uRmw and α is false at w. By the property of C, there is a
model M ′ = ⟨W ′, R′, V ′⟩ in C such that M ′

w = Mw and ∃u∗ ∈ W ′ u∗R′nw. Since
M ′

w = Mw, α is false at w in M ′. So □nα is false at u∗ in M ′. Since ⊢ is weakly
determined with respect to C, ⊬ □nα. So the rule □np/□mp is admissible in ⊢. □

Notice that, by Necessitation, if n ≤ m, the rule □np/□mp is admissible in
any broadly classical normal modal logic.

Proposition 3.2. Suppose ⊢ is a finitary strongly classical normal modal logic
and l, m, n, and o are natural numbers. Then the following are equivalent:

� The rule □o(□np→ □nq)/□l(□mp→ □mq) is admissible in ⊢.
� The canonical model for ⊢ has the following property: ∀w, v, x(wRlv ∧
vRmx→ ∃u, u∗(uRou∗ ∧ u∗Rnx ∧Rn(u∗) ⊆ Rm(v))).

35The quantifiers here range over the set of worlds in the model.
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� ⊢ is weakly determined with respect to a class C of models that has the follow-
ing related property: For every model M = ⟨W,R, V ⟩ in C and w, v, x ∈W ,
if wRlv and vRmx then there is an M ′ = ⟨W ′, R′, V ′⟩ in C (perhaps iden-
tical to M) such that M ′

v = Mv and ∃u, u∗ ∈W ′ such that uR′ou∗, u∗R′nx,
and R′n(u∗) ⊆ R′m(v).

Proof Suppose the rule □o(□np → □nq)/□l(□mp → □mq) is admissible in ⊢. Sup-
pose for three worlds w, v, x in the canonical model for ⊢, wRlv and vRmx. We show
that the set {♢o(□nα ∧ ♢nβ) | □mα ∈ v and β ∈ x} is consistent in ⊢. Suppose
not. Then ⊢ ¬(♢o(□nα1 ∧♢nβ1)∧ . . .∧♢o(□nαk ∧♢nβk)) for □

mα1, . . . ,□
mαk ∈ v

and β1, . . . , βk ∈ x. So ⊢ □o(□nα1 → □n¬β1) ∨ . . . ∨ □o(□nαk → □n¬βk).
So ⊢ □o(□n(α1 ∧ . . . ∧ αk) → □n¬(β1 ∧ . . . ∧ βk)). By the admissible rule,
⊢ □l(□m(α1 ∧ . . . ∧ αk) → □m¬(β1 ∧ . . . ∧ βk)). So this sentence is a member of w.
Since wRlv, □m(α1∧ . . .∧αk) → □m¬(β1∧ . . .∧βk) ∈ v. The antecedent of this con-
ditional is a member of v, so the consequent is, too. Since vRmx, ¬(β1∧ . . .∧βk) ∈ x.
But β1 ∧ . . . ∧ βk ∈ x. So x is inconsistent. Contradiction! So the set is consistent.
So it is a subset of a maximal consistent set u.

Now consider the set {□nα | □mα ∈ v} ∪ {♢nβ | β ∈ x} ∪ {γ | □oγ ∈ u}. (The
first set in this union is what will ensure that Rn(u∗) ⊆ Rm(v), the second is what
will ensure u∗Rnx, and the third is what will ensure that uRou∗.) We show that this
set is consistent. Suppose not. Then ⊢ ¬(□nα1∧ . . .∧□nαi∧♢nβ1∧ . . .∧♢nβj ∧γ1∧
. . .∧ γk) for some □mα1, . . . ,□

mαi ∈ v, β1, . . . , βj ∈ x, and □oγ1, . . . ,□
oγk ∈ u. So

⊢ □n(α1 ∧ . . .∧αi)∧♢n(β1 ∧ . . .∧ βj) → ¬(γ1 ∧ . . .∧ γk). By the construction of u,
♢o(□n(α1 ∧ . . . ∧ αi) ∧ ♢n(β1 ∧ . . . βj)) ∈ u. So there is a world z such that, uRoz
and □n(α1 ∧ . . .∧ αi)∧ ♢n(β1 ∧ . . . βj) ∈ z. □n(α1 ∧ . . .∧ αi)∧ ♢n(β1 ∧ . . .∧ βj) →
¬(γ1∧. . .∧γk) ∈ z. So ¬(γ1∧. . .∧γk) ∈ z, But □o(γ1∧. . .∧γk) ∈ u. So γ1∧. . .∧γk ∈ x.
Contradiction! So the set is consistent. So it is a subset of a maximal consistent set
u∗. It is straightforward to show that uRou∗, u∗Rnx, and Rn(u∗) ⊆ Rm(v).

Suppose the canonical model for ⊢ has the specified property. Since ⊢ is weakly
determined with respect to the singleton of its canonical model, ⊢ is weakly
determined with respect to a class of models that has the related property.

Suppose ⊢ is weakly determined with respect to a class C of models that has the
related property. Suppose ⊬ □l(□mα→ □mβ). Then there is a modelM = ⟨W,R, V ⟩
in C and w, v, x ∈W such that wRlv, vRmx, α is true at every world in Rm(v), and β
is false at x. By the property of C, there is a modelM ′ = ⟨W ′, R′, V ′⟩ in C such that
M ′

v =Mv and ∃u, u∗ ∈W ′ such that uR′ou∗, u∗R′nx, and R′n(u∗) ⊆ R′m(v). Since

M ′
v =Mv and α is true at every world in Rm(v), α is true at every world in R′m(v).

Since R′n(u∗) ⊆ R′m(v), α is true at every world in R′n(u∗), and so □nα is true at
u∗ in M ′. Since u∗R′nx, □nβ is false at u∗ in M ′. So □nα → □nβ is false at u∗ in
M ′. Since uR′ou∗, □o(□nα → □nβ) is false at u in M ′. So ⊬base □o(□nα → □nβ).
So the rule □o(□np→ □nq)/□l(□mp→ □mq) is admissible in ⊢.36 □

Proposition 3.3. Suppose ⊢ is a finitary strongly classical normal modal logic
and l, m, and n are natural numbers. Then the following are equivalent:

� The rule □np→ □nq/p ∧ ♢l□mp→ q is admissible in ⊢.

36Part of this proof follows the strategy of [39, p. 306] for the case of the rule □p → □q/p → q.
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� The canonical model for ⊢ has the following property: ∀w, v(wRlv →
∃u(uRnw ∧Rn(u) ⊆ Rm(v) ∪ {w})).

� ⊢ is weakly determined with respect to a class C of models that has the
following related property: For every model M = ⟨W,R, V ⟩ in C and w, v ∈
W , if wRlv then there is an M ′ = ⟨W ′, R′, V ′⟩ in C (perhaps identical to
M) such that M ′

w = Mw and ∃u ∈ W ′ such that uR′nw and R′n(u) ⊆
R′m(v) ∪ {w}.

Proof Suppose the rule □np→ □nq/p ∧ ♢l□mp→ q is admissible in ⊢. Suppose for
two worlds w, v in the canonical model for ⊢, wRlv. We show that the set {□nα |
□mα ∈ v and α ∈ w} ∪ {¬□n¬β | β ∈ w} is consistent in ⊢. (The first set in this
union is what will ensure that Rn(u) ⊆ Rm(v) ∪ {w} and the second is what will
ensure uRnw.) Suppose not. Then ⊢ ¬(□nα1∧ . . .∧□nαj ∧¬□n¬β1∧ . . .∧¬□n¬βk)
for some α1, . . . , αj such that for each αi, □

mαi ∈ v and αi ∈ w, and β1, . . . , βk ∈ w.
So ⊢ □n(α1 ∧ . . . ∧ αj) → □n¬(β1 ∧ . . . ∧ βk). By the admissible rule, ⊢ α1 ∧ . . . ∧
αj ∧ ♢l□m(α1 ∧ . . . ∧ αj) → ¬(β1 ∧ . . . ∧ βk). So α1 ∧ . . . ∧ αj ∧ ♢l□m(α1 ∧ . . . ∧
αj) → ¬(β1 ∧ . . . ∧ βk) ∈ w. α1 ∧ . . . ∧ αj ∈ w. □m(α1 ∧ . . . ∧ αj) ∈ v. Since

wRlv, ♢l□m(α1 ∧ . . . ∧ αj) ∈ w. So α1 ∧ . . . ∧ αj ∧ ♢l□m(α1 ∧ . . . ∧ αj) ∈ w. So
¬(β1 ∧ . . . ∧ βk) ∈ w. But β1 ∧ . . . ∧ βk ∈ w. Contradiction! So the set is consistent.
So it is a subset of a maximal consistent set u. It is straightforward to show that
uRnw and Rn(u) ⊆ Rm(v) ∪ {w}.

Suppose the canonical model for ⊢ has the specified property. Since ⊢ is weakly
determined with respect to the singleton of its canonical model, ⊢ is weakly
determined with respect to a class of models that has the related property.

Suppose ⊢ is weakly determined with respect to a class C of models that has the
related property. Suppose ⊬ α ∧ ♢l□mα→ β. Then there is a model M = ⟨W,R, V ⟩
in C and worlds w, v ∈W such that wRlv, α is true at every world in Rm(v)∪ {w},
and β is false at w. By the property of C, there is a model M ′ = ⟨W ′, R′, V ′⟩ in C
such that M ′

w = Mw and ∃u ∈ W ′ such that uR′nw and R′n(u) ⊆ R′m(v) ∪ {w}.
Since M ′

w = Mw and α is true at every world in Rm(v) ∪ {w}, α is true at every
world in R′m(v) ∪ {w} in M ′. Since R′n(u) ⊆ R′m(v) ∪ {w}, □nα is true at u in
M ′. Since uR′nw, □nβ is false at u in M ′. So □nα → □nβ is false at u in M ′. So
⊬ □nα→ □nβ. So the rule □np→ □nq/p ∧ ♢l□mp→ q is admissible in ⊢. □

These results can be generalized further, but they are (more than) sufficient
for the results to follow.37

4 Strongly Classical Generated Consequence
Relations

Suppose ⊢base is a broadly classical normal modal logic and ⊢ is generated from
it as follows: Γ ⊢ α just in case □Γ ⊢base □α. It is straightforward to show that

37For instance, it is straightforward albeit tedious to unify and generalize the three results
to cover all rules α/β, where α and β are each equivalent to sentences built only using atomic
sentences and their negations, ⊤, ⊥, ∨, □, and ♢, with the proviso that a □ never occurs within
the scope of a ♢. It would be interesting to see just how far this result can be generalized.
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⊢ is a broadly classical normal modal logic. In fact, we can show something
stronger:

Theorem 4.1. If ⊢ is generated from a broadly classical normal modal logic
⊢base, then ⊢ is a broadly classical normal modal logic that extends ⊢base. If
⊢base is finitary, so is ⊢.

Proof Identity, Weakening, Cut, and Substitution Invariance for ⊢ all follow from
the corresponding properties for ⊢base. So ⊢ is a consequence relation.

Suppose Γ ⊢base α. Since ⊢base is normal, □Γ ⊢base □α. So Γ ⊢ α. So ⊢ extends
⊢base.

Since ⊢base is broadly classical and ⊢ extends ⊢base, ⊢ is broadly classical.
Suppose Γ ⊢ α. So □Γ ⊢base □α. Since ⊢base is normal, □□Γ ⊢base □□α. So

□Γ ⊢ □α. So ⊢ is normal, too.
If ⊢base is finitary, it easily follows that ⊢ is finitary, too. □

This result explains why we define normality for broadly classical logics as we
do.

For the rest of this section (and for the following two), we’ll assume that
⊢base is a finitary strongly classical normal modal logic. We make this assump-
tion so we can make use of the standard (Kripkean) relational model theory
for ⊢base. We’ll also assume that ⊢ is generated from ⊢base as above. So ⊢ is
a finitary broadly classical normal modal logic extending ⊢base. The question
we’ll be considering in the remainder of this section is: When is ⊢ also strongly
classical?

Our first result provides necessary and sufficient conditions for ⊢base to
generate a strongly classical logic. Some definitions will be useful. We say that
a model is single-minded just in case ∀v∃u(R(u) = {v}). We say that a model
is quasi-single-minded just in case ∀w, v(wRv → ∃u(R(u) = {v}). In other
words, a model is single-minded just in case for every world v, there is a world
u such that v and only v is accessible from u. A model is quasi-single-minded
just in case for every world v that is accessible from any world, there is a world
u such that v and only v is accessible from u.

We say that a class of models is single-minded just in case it has the
following property: If M is a model in the class and v is a world in M then
there is a model M ′ in the class such that M ′

v = Mv and there is a world u
in M ′ such that R(u) = {v}. We say that a class of models is quasi-single-
minded just in case it has the following property: If M is a model in the
class and v is a world in M accessible from some world in M then there is
a model M ′ in the class such that M ′

v = Mv and there is a world u in M ′

such that R(u) = {v}. (In both cases, M may be identical to M ′.) Notice
that any class of single-minded models is a single-minded class of models (but
not necessarily vice-versa), and any class of quasi-single-minded models is a
quasi-single-minded class of models (but not necessarily vice-versa).
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Theorem 4.2. Suppose ⊢base is a finitary strongly classical normal modal logic
and ⊢ is generated from ⊢base. Then the following are equivalent:

� ⊢ is strongly classical.
� The rule □p→ □q/□(p→ q) is admissible in ⊢base.
� The canonical model for ⊢base is quasi-single-minded.
� ⊢base is weakly determined with respect to a quasi-single-minded class of

models.

Proof Since ⊢ is finitary, ⊢ is a strongly classical logic just in case if □α ⊢base □β
then ⊢base □(α→ β). Since ⊢base is strongly classical, this obtains just in case if ⊢base

□α → □β then ⊢base □(α → β). This is equivalent to the rule □p → □q/□(p → q)
being admissible in ⊢base.

The remainder of the result follows from Proposition 3.2, for the case where
m = o = 0 and l = n = 1. □

We can leverage the familiar frame correspondence results to show that
various modal logics are weakly determined with respect to a quasi-single-
minded class of models, and thus generate strongly classical logics.

Corollary 4.3. The modal logics K, KD, KTn
c for any n > 0, and KTn! for

any n > 0 each generate a strongly classical logic.

Proof K corresponds to the class of all frames. The class of models based on this
class of frames is quasi-single-minded.

KD corresponds to the class of serial frames. The class of models based on this
class of frames is quasi-single-minded.

KTn
c corresponds to the class of frames in which for all worlds w, v, if wRnv

then w = v. We can show that the class of models based on this class of frames is
quasi-single-minded. Let M be a model in the class and w, v be worlds in M such
that wRv. We show that there is a model M ′ in the class just like M except that
there is a world u from which v and only v is accessible. Since wRv, either (i) v is
only accessible from w, or (ii) v is accessible from an additional world, x, too. In the
former case, let u = w. In the latter case, there is no world z such that vRn−1z,
since if there were, both z = w and z = x. So if we define M ′ as the result of adding
a world u to M such that u is not accessible from any world, and v and no other
world is accessible from u, M ′ will be in the class of models.

KTn! corresponds to the class of frames in which for all worlds w, v, wRnv just
in case w = v. These frames include single reflexive worlds, loops with size a factor
of n, and disjoint unions of such frames. Every model based on this class of frames
is quasi-single-minded. □

It follows from this result that K, KD, KTn
c for any n > 0, and KTn! for any

n > 0 all generate strongly classical logics.
We could continue in this way, going through modal logics one at a time

and showing that many of them generate strongly classical logics. But there
is a more general result we can prove. Call a sentence a ♢□-sentence if it is
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of the form ♢ϕ1 ∧ . . . ∧ ♢ϕm → □ψ1 ∨ . . . ∨ □ψn for m,n ≥ 0, where ϕi and
ψi are arbitrary sentences.38 (By convention, a conjunction with no conjuncts
is ⊤. A disjunction with no disjuncts is ⊥.) Notice that each ♢□-sentence is
logically equivalent to a sentence of the form □δ1 ∨ . . .∨□δk (and vice-versa).

Proposition 4.4. Suppose ⊢base is a finitary strongly classical normal modal
logic that generates a strongly classical logic. Suppose ⊢+

base is the weakest
strongly classical normal modal logic extending ⊢base that has a given set ∆ of
♢□-sentences as theorems. Then ⊢+

base also generates a strongly classical logic.

Proof Since ⊢base generates a strongly classical logic, by Theorem 4.2, its canonical
model,M , is quasi-single-minded. LetM+ be the canonical model for ⊢+

base. We show
that M+ is quasi-single-minded, too.

Suppose w, v are worlds in M+ such that wRv. Since ⊢+
base extends ⊢base, M

+

is a submodel of M . So w, v are worlds in M . Since M is quasi-single-minded, there
is a world u in M such that v and only v is accessible from u. To show that M+

is quasi-single-minded, we show that u is a member of M+. To do that, we show
that {β | ⊢+

base β} ⊆ u. To do that, we show that ∆∗ ⊆ u, where ∆∗ is the smallest
set that contains all substitution instances of members of ∆ and is closed under the
operation of prefixing a sentence with a □.

Choose an arbitrary member of ∆∗. This sentence will be logically equivalent to
a sentence of the form ♢ϕ1 ∧ . . . ∧ ♢ϕm → □ψ1 ∨ . . . ∨ □ψn. We work in the model
M . Suppose ♢ϕ1∧ . . .∧♢ϕm is true at u. Since v is the only world accessible from u,
ϕ1, . . . , ϕm are true at v. Since wRv, ♢ϕ1 ∧ . . . ∧ ♢ϕm is true at w. Since w is also a
world inM+, ♢ϕ1∧. . .∧♢ϕm → □ψ1∨. . .∨□ψn ∈ w. So ♢ϕ1∧. . .∧♢ϕm → □ψ1∨. . .∨
□ψn is true at w. So □ψ1∨ . . .∨□ψn is true at w. So at least one of ψ1, . . . , ψn is true
at v. So at least one of □ψ1, . . . ,□ψn is true at u. So ♢ϕ1∧. . .∧♢ϕm → □ψ1∨. . .∨□ψn

is true at u. So ♢ϕ1 ∧ . . .∧♢ϕm → □ψ1 ∨ . . .∨□ψn ∈ u. Since we chose an arbitrary
member of ∆∗, ∆∗ ⊆ u. So M+ is quasi-single-minded. By Theorem 4.2, ⊢+

base

generates a strongly classical logic. □

Corollary 4.5. Any modal logic that is the result of extending K, KD, KTn
c ,

or KTn! (for any n > 0) with one or more ♢□-sentences generates a strongly
classical normal modal logic.

Many familiar modal principles are ♢□-sentences. Such principles include
5, G, Dc, and any other principle of the form ♢α → □β. Any principle of the
form □α, such as □T and □4, is logically equivalent to a ♢□-sentence. So any
modal logic that is the result of extending K, KD, KTn

c , or KTn! (for any
n > 0) with one or more of these principles generates a strongly classical logic.
For instance, Triv and Ver each generate a strongly classical logic.

We can also find strongly classical normal modal logics such that every
extension of them generates a strongly classical logic. A simple example is that
if ⊢base is an extension of KKc, then ⊢ is strongly classical. This is because
in such a modal logic, □p → □q/□(p → q) is derivable and so admissible. It

38The notion of a ♢□-sentence is unrelated to the notion of a □♢-formula in [29, p. 247].
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is easy to show that KDc is the same logic as KKc. So any extension of KDc

generates a strongly classical logic.
For a more interesting example, for any fixed n > 0, consider the two

principles ♢p → ♢n□p and □n♢⊤. We can show that if ⊢base is a finitary
strongly classical normal modal logic that has these two principles as theorems,
then it generates a strongly classical logic. The argument is as follows: By the
Sahlqvist correspondence theorem, these two principles are canonical. The first
principle corresponds to the frame condition ∀w, v(wRv → ∃u(wRnu∧R(u) ⊆
{v})). The second principle corresponds to the frame condition of quasin-
seriality ∀w, v(wRnv → ∃uvRu). Suppose in the canonical model for ⊢base

there are two worlds w, v such that wRv. Then by the first condition, there is
a world u such that wRnu, and if any world is accessible from u, it is v. By
the second condition, there is a world accessible from u. So v and only v is
accessible from u.39

As we’ve already seen, though, not every generated consequence relation ⊢
is strongly classical. The example presented above was the consequence relation
generated from the modal logic S5, but there are many other examples. In what
follows, for several familiar modal logics, we’ll identify the weakest strongly
classical normal modal logic that extends the logic and generates a strongly
classical logic. We’ll start with KT.

For most applications of a generated modal logic, it is natural to take the
base modal logic to extend KT. For instance, if “□” is interpreted as “it is
determinately true that” or “one is in a position to know that”, it is difficult to
see how one could avoid accepting T. But we can show that there is only one
consistent strongly classical normal modal logic extending KT that generates
a strongly classical logic.

Proposition 4.6. The only consistent strongly classical normal modal logic
extending KT that generates a strongly classical logic is Triv.40,41

Proof Suppose ⊢base is a consistent strongly classical normal modal logic that extends
KT. Suppose ⊢ is strongly classical. So □p → □q/□(p → q) is admissible in ⊢base.
□(α∧¬□α) → □⊥ is a theorem of KT. So ⊢base □(α∧¬□α) → □⊥. By the admissible
rule, ⊢base □(α ∧ ¬□α → ⊥). By T and Modus Ponens, ⊢base α ∧ ¬□α → ⊥. So
⊢base α → □α. This is Tc, so ⊢base is an extension of Triv. There is no consistent
strongly classical normal modal proper extension of Triv, so ⊢base must be identical
to Triv.42 □

39One might try to generalize this result by finding a modal principle that defines the class
of quasi-single-minded models. Unfortunately, there is no such principle because the property of
being a quasi-single-minded model is not preserved by taking generated submodels.

40[41, p. 297 n. 32] shows that KT generates a weakly classical logic. Also see [43, p. 526] for a
version of this result.

41We can extend this result further. Suppose ⊢base is a consistent broadly classical normal modal
logic that extends K such that □α/α is a derivable rule. Then if ⊢base generates a strongly classical
logic, ⊢base is Triv. Proof □(α ∧ ¬□α) ⊢base □α. □(α ∧ ¬□α) ⊢base □¬□α. □¬□α ⊢base ¬□α.
{□α,¬□α} ⊢base □⊥. So □(α ∧ ¬□α) ⊢base □⊥. Since ⊢base generates a strongly classical logic,
⊢base □(α ∧ ¬□α → ⊥). So ⊢base α ∧ ¬□α → ⊥. So ⊢base α → □α. By analogous reasoning,
□(¬α∧□α) ⊢base □⊥, so ⊢base □(¬α∧□α → ⊥), so ⊢base ¬α∧□α → ⊥, and so ⊢base □α → α.

42The proof follows the same strategy as a proof of a related result in [39, pp. 301–2].
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The modal logic Triv is not suitable for most applications, since in this logic
α and □α are logically equivalent.

It follows from this result that many familiar modal logics, such as KT,
KTB, S4, S4.2, and S5, generate weakly classical consequence relations.

There are similar results for other modal logics. For example:

Proposition 4.7. The weakest strongly classical normal modal logic extending
KB that generates a strongly classical logic is KB□Bc.

Proof Suppose ⊢base is a strongly classical normal modal logic that extends KB.
Suppose ⊢ is strongly classical. So □p → □q/□(p → q) is admissible in ⊢base. Since
□α → □♢□α is a theorem of KB, ⊢base □α → □♢□α. By the admissible rule,
⊢base □(α → ♢□α). Substituting ¬α for α, it follows that ⊢base □(□♢α → α). This
is the principle □Bc. So ⊢base is an extension of KB□Bc.

We can show that KB□Bc generates a strongly classical logic model-theoretically.
It is easy to show that this logic is strongly determined by the class of all models where
the accessibility relation is both (i) symmetric and (ii) is such that ∀w, v(wRv →
∃u(vRu∧R(u) ⊆ {v})). Any model satisfying these properties is quasi-single-minded.
So by Theorem 4.2, KB□Bc generates a strongly classical logic. □

Since □Bc is not a theorem of S5, it follows that no strongly classical normal
modal logic between KB and S5 generates a strongly classical logic.

Corollary 4.8. For each of the following pairs, the weakest strongly classical
normal modal logic extending the first that generates a strongly classical logic
is the second.

� KDB, KB!
� KB5, Triv

Proof KDB: Since this modal logic extends KB, any strongly classical normal modal
logic extending it that generates a strongly classical logic must extend KDB□Bc. It
is straightforward to show that KDB□Bc is the same modal logic as KB!. It is also
straightforward to show that it is the same modal logic as KT2!, which by Corollary
4.3 generates a strongly classical logic.

KB5: Since this modal logic extends KB, any strongly classical normal modal
logic extending it that generates a strongly classical logic must extend KB5□Bc. It is
straightforward to show that KB5□Bc is the same modal logic as Triv. Triv generates
a strongly classical logic. □

For extensions of K4, the following result is useful:

Proposition 4.9. Suppose ⊢base is a finitary strongly classical normal modal
logic that generates a strongly classical logic. Let ⊢+

base be the weakest strongly
classical normal modal logic extending ⊢base that has □(α → β) as a theorem
(for given sentences α and β). Then the weakest strongly classical normal
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modal logic extending ⊢base that has □α→ □β as a theorem and that generates
a strongly classical logic is ⊢+

base.

Proof Suppose ⊢′
base is a strongly classical normal modal logic extending ⊢base that

has □α → □β as a theorem and that generates a strongly classical logic. So □p →
□q/□(p → q) is admissible in ⊢′

base. Since ⊢′
base □α → □β, ⊢′

base □(α → β). So
any strongly classical normal modal logic extending ⊢base that has □α → □β as a
theorem and that generates a strongly classical logic must extend ⊢+

base. By K and
Modus Ponens, ⊢+

base has □α→ □β as a theorem. Moreover, since □(α→ β) begins
with a □, by Proposition 4.4, ⊢+

base generates a strongly classical logic. □

We can use this result to show the following:

Corollary 4.10. For each of the following pairs, the weakest strongly classical
normal modal logic extending the first that generates a strongly classical logic
is the second.

� K4, K□Tc

� KD4, KD□Tc

� KG4, KG□Tc

� KDG4, KDG□Tc

� K45, K5□Tc

� KD45, KD5□Tc

� GL, K□2⊥

Proof Each of these cases immediately follows from Proposition 4.9, except for the
case of GL. By Proposition 4.9, the weakest strongly classical normal modal logic
extending GL that generates a strongly classical logic is K with the addition of the
theorem □((□p → p) → p). A substitution instance of this is □((□⊥ → ⊥) → ⊥),
which is logically equivalent to □2⊥. K□2⊥ extends GL since it corresponds to the
class of frames in which ∀wR2(w) = ∅, and GL is valid on all such frames. Since □2⊥
begins with a □, by Proposition 4.4, K□2⊥ generates a strongly classical logic. □

This result tells us that the weakest strongly classical normal modal logic
extending K4 that generates a strongly classical logic is K□Tc. Since □Tc is
not a theorem of S5, it follows that no strongly classical normal modal logic
between K4 and S5 generates a strongly classical logic.

Corollary 4.11. For each of the following pairs, the weakest strongly classical
normal modal logic extending the first that generates a strongly classical logic
is the second.

� K4c, K□T
� K5c, KD□Tc

Proof K4c: This follows from Proposition 4.9.
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K5c: □(♢α ∧ ¬α) → □⊥ is a theorem of K5c. So any strongly classical normal
modal logic extending K5c that generates a strongly classical logic has □(♢α∧¬α→
⊥) as a theorem. This sentence is logically equivalent to □(♢α→ α). Substituting ¬α
for α, it follows that □Tc is a theorem. K5c also has D as a theorem. So any strongly
classical normal modal logic extending K5c that generates a strongly classical logic
extends KD□Tc. KD□Tc extends K5c. By Corollary 4.5, KD□Tc is strongly classical.

□

5 Self-Generating Consequence Relations

When a finitary strongly classical normal modal logic ⊢base generates a strongly
classical logic ⊢, in some cases ⊢base generates itself and in some cases it does
not. When is ⊢base self-generating? We can provide necessary and sufficient
conditions, analogous to Theorem 4.2. Instead of quasi-single-mindedness, this
result instead concerns single-mindedness.

Theorem 5.1. Suppose ⊢base is a finitary strongly classical normal modal logic
and ⊢ is generated from ⊢base. Then the following are equivalent:

� ⊢ is identical to ⊢base.
� The rule □p→ □q/p→ q is admissible in ⊢base.
� The canonical model for ⊢base is single-minded.
� ⊢base is weakly determined with respect to a single-minded class of models.

Proof Suppose ⊢ is identical to ⊢base. Suppose ⊢base □α → □β. By Modus Ponens
and Cut, □α ⊢base □β. By the definition of ⊢, α ⊢ β. Since ⊢ is identical to ⊢base,
α ⊢base β. Since ⊢base is strongly classical, ⊢base α → β. So the rule □p → □q/p → q
is admissible in ⊢base.

For the other direction, suppose the rule □p → □q/p → q is admissible in ⊢base.
By Theorem 4.1, if Γ ⊢base α then Γ ⊢ α. To show if Γ ⊢ α then Γ ⊢base α, suppose
Γ ⊢ α. So □Γ ⊢base □α. Since ⊢base is finitary, □γ ⊢base □α for some conjunction γ
of members of Γ. Since ⊢base is strongly classical, ⊢base □γ → □α. By the admissible
rule, ⊢base γ → α. By Modus Ponens and Cut, γ ⊢base α. So Γ ⊢base α. So ⊢ is
identical to ⊢base.

The remainder of the result follows from Proposition 3.2, for the case where
l = m = o = 0 and n = 1. □

Notice that if the rule □p → □q/p → q is admissible in a modal logic, so is
the rule □p/p.

We can use this result to show that various modal logics generate
themselves.

Corollary 5.2. The modal logics K, KD, KDc, KDG, and KTn! for any
n > 0 are self-generating.

Proof K corresponds to the class of all frames. The class of models based on this
class of frames is single-minded.
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KD corresponds to the class of serial frames. The class of models based on this
class of frames is single-minded.

KDc corresponds to the class of frames in which at most one world is accessible
from each world. The class of models based on this class of frames is single-minded.

KDG corresponds to the class of serial and convergent frames. The class of models
based on this class of frames is single-minded.

KTn! corresponds to the class of frames in which wRnv just in case w = v. These
frames include single reflexive worlds, loops with size a factor of n, and disjoint unions
of such frames. Every model based on this class of frames is single-minded. □

We can also find strongly classical normal modal logics such that every
extension of them is self-generating. For any fixed n ≥ 0, consider the two prin-
ciples p → ♢n□p and □n♢⊤. We can show that if ⊢base is a finitary strongly
classical normal modal logic that has these two principles as theorems, then it
is self-generating. The argument is as follows: By the Sahlqvist correspondence
theorem, these two principles are canonical. The first principle corresponds
to the frame condition ∀v∃u(vRnu ∧ R(u) ⊆ {v}). The second principle cor-
responds to the frame condition of quasin-seriality ∀w, v(wRnv → ∃uvRu).
Suppose v is a world in the canonical model for ⊢base. By the first condition,
there is a world u such that wRnu, and if any world is accessible from u, it is
v. By the second condition, there is a world accessible from u. So v and only
v is accessible from u.

We can also show that many strongly classical normal modal logics are
not self-generating.43 As before, we do this by finding the weakest strongly
classical normal modal logic that extends a given logic that is self-generating.

Proposition 5.3.

� The only consistent strongly classical normal modal logic extending any of
KT, KTc, K4, K4c, K5, or K5c that is self-generating is Triv.44

� The weakest strongly classical normal modal logic extending KB that is self-
generating is KB!.45

� The weakest strongly classical normal modal logic extending KG that is self-
generating is KDG.

� The only strongly classical normal modal logic extending GL that is self-
generating is the inconsistent logic ⊥.

� The weakest strongly classical normal modal logic extending KTn
c that is

self-generating is KTn!.
� The only strongly classical normal modal logic extending Ver that is self-

generating is the inconsistent logic ⊥.

43Exercise 5.33 in [5, p. 182] asks one to show that the rule □p → □q/p → q is not admissible
in several familiar strongly classical normal modal logics, from which it follows by Theorem 5.1
that they are not self-generating.

44The case of KT is proved in [39, p. 305].
45The case of KB follows from Proposition 3.1 in [42, p. 186].
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Proof First note that Triv is self-generating. Triv extends KT, KTc, K4, K4c, K5,
and K5c. There is no consistent strongly classical normal modal logic that extends
Triv.

KT: By Proposition 4.6, the weakest strongly classical normal modal logic
extending KT that is self-generating is Triv.

KTc: □T is a theorem of KTc. Any self-generating logic that has □T as a theorem
has T as a theorem. By the result for KT, the weakest strongly classical normal
modal logic extending KT that is self-generating is Triv.

K4: By Theorem 5.1, any self-generating logic that has 4 as a theorem has Tc as
a theorem. By the result for KTc, the weakest strongly classical normal modal logic
extending KTc that is self-generating is Triv.

K4c: By Theorem 5.1, any self-generating logic that has 4c as a theorem has T as
a theorem. By the result for KT, the weakest strongly classical normal modal logic
extending KT that is self-generating is Triv.

K5: □T is a theorem of K5. Any self-generating logic that has □T as a theorem
has T as a theorem. By the result for KT, the weakest strongly classical normal
modal logic extending KT that is self-generating is Triv.

K5c: By Corollary 4.11, the weakest strongly classical normal modal logic extend-
ing 5c has □Tc as a theorem. Any self-generating logic that has □Tc as a theorem
has Tc as a theorem. By the result for KTc, the weakest strongly classical normal
modal logic extending KTc that is self-generating is Triv.

KB: □α → □♢□α is a theorem of KB. By Theorem 5.1, any self-generating
logic that has this sentence as a theorem has α→ ♢□α as a theorem. This sentence
is logically equivalent to Bc. Since KB! is the same modal logic as KT2!, KB! is
self-generating.

KG: □D is a theorem of KG. Any self-generating logic that has □D as a theorem
has D as a theorem. KDG is self-generating.

GL: 4 is a theorem of GL. By the result for K4, the weakest strongly classical
normal modal logic extending K4 is Triv. □(⊥ → ⊥) → □⊥ is a theorem of GL. In
Triv, this is equivalent to (⊥ → ⊥) → ⊥, which is equivalent to ⊥.

KTn
c : □

nTn is a theorem of KTn
c . Any self-generating logic that has □nTn as a

theorem has Tn as a theorem. KTn! is self-generating.
Ver: The case of Ver is obvious. □

Even if a finitary strongly classical normal modal logic is not self-
generating, it may generate a logic with the very same theorems as itself. (In
such a case, the generated logic will have additional derivable rules. These
rules will be admissible but not derivable in the base logic.) We can provide
simple necessary and sufficient conditions for ⊢base to generate a logic with the
very same theorems:

Theorem 5.4. Suppose ⊢base is a finitary strongly classical normal modal logic
and ⊢ is generated from ⊢base. Then the following are equivalent:

� ⊢ α just in case ⊢base α.
� The rule □p/p is admissible in ⊢base.
� The canonical model for ⊢base has the following property: ∀w∃uuRw.
� ⊢base is weakly determined with respect to a class of models C that has the

following property: For every model M = ⟨W,R, V ⟩ in C and w ∈W , there
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is an M ′ = ⟨W ′, R′, V ′⟩ in C (perhaps identical to M) such that M ′
w = Mw

and ∃u ∈W ′ such that uR′w.

Proof Suppose ⊢ α just in case ⊢base α. Suppose ⊢base □α. So ⊢ α. So ⊢base α. So the
rule □p/p is admissible in ⊢base.

For the other direction, suppose the rule □p/p is admissible in ⊢base. ⊢ α just
in case ⊢base □α. By Necessitation and the admissible rule, this obtains just in case
⊢base α.

The remainder of the result follows from Proposition 3.1, for the case where
m = 0 and n = 1. □

Corollary 5.5. Any finitary strongly classical normal modal logic that extends
KT or KDB generates a modal logic with the same theorems as itself. Each of
K4, KD4, KDG4, GL, K4c, and K5c generates a modal logic with the same
theorems as itself.46

Proof In any normal modal logic extending KT, □p/p is derivable and hence admis-
sible. The canonical model for any normal modal logic extending KDB is serial and
symmetric, so ∀w∃uuRw.

K4 corresponds to the class of all transitive frames. KD4 corresponds to the class
of serial transitive frames. KDG4 corresponds to the class of frames that are serial,
convergent, and transitive. GL is weakly determined with respect to the class of all
finite frames that have transitive and irreflexive accessibility relations. Consider the
class of models based on any of these classes of frames. Given any model M in the
class and world w in the model, consider the model that is just like M except for the
addition of a world u such that R(u) = R(w) ∪ {w}. This model will also be in the
class. So the class of models has the property listed in Theorem 5.4.

K4c corresponds to the class of dense frames. K5c corresponds to the class of
frames such that for ∀w∃v(wRv ∧R(v) ⊆ R(w)). Consider the class of models based
on either of these classes of frames. Given any model M in the class and world w in
the model, consider the model that is just likeM except for the addition of a world u
such that uRu and uRw. This model will also be in the class. So the class of models
has the property listed in Theorem 5.4. □

We can show that many strongly classical normal modal logics do not
generate logics with the very same theorems. Again, we do this by finding
the weakest strongly classical normal modal logic extending a given logic that
generates a logic with the very same theorems as the given logic.

Corollary 5.6. For each of the following pairs, the weakest strongly classical
normal modal logic extending the first that generates a logic with the very same
theorems as itself is the second.

� K5, S5

46See [5, pp. 99–100, 168] for results concerning the admissibility of the rule □p/p in some
familiar modal logics. See [20, pp. 44–6, 79–90] for results concerning the admissibility of the
stronger rule of disjunction in some familiar modal logics.
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� KG, KDG
� KG4, KDG4
� KB, KDB
� KTn

c , KTn!
� Ver, ⊥

Proof K5: □T is a theorem of K5. So any strongly classical normal modal logic
extending K5 that generates a logic with the very same theorems has T as a theorem.
By Corollary 5.5, S5 generates a logic with the very same theorems.

KG: □D is a theorem of KG. So any strongly classical normal modal logic extend-
ing KG that generates a logic with the very same theorems has D as a theorem. By
Corollary 5.2, KDG is self-generating and so generates a logic with the very same
theorems.

KG4: By the case of KG, any strongly classical normal modal logic extending
KG4 that generates a logic with the very same theorems has D as a theorem. By
Corollary 5.5, KDG4 generates a logic with the very same theorems.

KB: □D is a theorem of KB. By Corollary 5.5, KDB generates a logic with the
very same theorems.

KTn
c : □

nTn is a theorem of KTn
c . So any strongly classical normal modal logic

extending KTn
c that generates a logic with the very same theorems has Tn as a

theorem. By Corollary 5.2, KTn! is self-generating and so generates a logic with the
very same theorems.

Ver: The case of Ver is obvious. □

In the next section, we’ll consider the issue of how to directly character-
ize the logic generated from a given finitary strongly classical normal modal
logic. But before we turn to that issue, there is a natural technical question
to consider. The results of this paper so far tell us for various modal logics (i)
what the weakest finitary strongly classical normal modal logic is extending
the given logic that generates a strongly classical logic, (ii) what the weak-
est finitary normal modal logic is extending the given logic that is strongly
classical and self-generating, and (iii) what the weakest finitary strongly clas-
sical normal modal logic is extending the given logic that generates a logic
with the very same theorems as itself. One might wonder if we can find still
weaker logics with the relevant properties if we permit the generating logic to
be non-finitary or weakly classical. It turns out that the answer is no:

Proposition 5.7. Suppose ⊢base is a broadly classical normal modal logic.
Then there is a finitary strongly classical normal modal logic ⊢−

base such that:
(i) ⊢base extends ⊢−

base.
(ii) ⊢−

base extends every finitary strongly classical normal modal logic that ⊢base

extends.
(iii) If ⊢base generates a strongly classical logic, so does ⊢−

base.
(iv) If ⊢base generates a strongly classical logic and self-generates, ⊢−

base also
self-generates.

(v) The logic generated from ⊢−
base has the very same theorems as the logic

generated from ⊢base.
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(vi) If ⊢base is finitary and generates a strongly classical logic, ⊢−
base generates

the very same logic.

Proof (i) Let ⊢−
base be defined as follows: Γ ⊢−

base α just in case ⊢base γ → α for some
conjunction γ of members of Γ. It is easy to see that ⊢−

base is a finitary strongly
classical normal modal logic and that ⊢base extends ⊢−

base.
(ii) Suppose ⊢base extends a finitary strongly classical normal modal logic ⊢given.

Suppose Γ ⊢given α. Since ⊢given is finitary and strongly classical, ⊢given γ → α, where
Γ is a conjunction of members of Γ. Since ⊢base extends ⊢given, ⊢base γ → α. By the
definition of ⊢−

base, Γ ⊢−
base α. So ⊢−

base extends ⊢given.
(iii) Suppose ⊢base generates a strongly classical logic. Suppose □α ⊢−

base □β.
Since ⊢base extends ⊢−

base, □α ⊢base □β. Since ⊢base generates a strongly classical
logic, ⊢base □(α → β). By the definition of ⊢−

base, ⊢−
base □(α → β). So, since ⊢−

base is
finitary, it generates a strongly classical logic.

(iv) Suppose ⊢base generates a strongly classical logic and self-generates. Suppose
□Γ ⊢−

base □α. Since ⊢base is finitary □γ ⊢−
base □α, where γ is a conjunction of members

of Γ. By the definition of ⊢−
base, ⊢base □γ → □α. Since ⊢base generates a strongly

classical logic, ⊢base □(γ → α). Since ⊢base self-generates, ⊢base γ → α. By the
definition of ⊢−

base, γ ⊢−
base α. So Γ ⊢−

base α. So ⊢−
base self-generates.

(v) Since ⊢base extends ⊢−
base, if ⊢−

base □α then ⊢base □α. By the definition of
⊢−

base, if ⊢base □α then ⊢−
base □α. So the logic generated from ⊢−

base has the very same
theorems as the logic generated from ⊢base.

(vi) Suppose ⊢base is finitary and generates a strongly classical logic. Suppose
□Γ ⊢base □α. Since ⊢base is normal and finitary, □γ ⊢base □α, where γ is a conjunction
of members of Γ. Since ⊢base generates a strongly classical logic, ⊢base □(γ → α). By
the definition of ⊢−

base, ⊢−
base □(γ → α). Since ⊢−

base is normal, □γ ⊢−
base □α, and so

□Γ ⊢−
base □α.

For the other direction, suppose □Γ ⊢−
base □α. Since ⊢base extends ⊢−

base, □Γ ⊢base

□α. So ⊢−
base generates the very same logic as ⊢base. □

6 Characterizing Generated Consequence
Relations

Given a finitary strongly classical normal modal logic ⊢base and a consequence
relation ⊢ generated from it, is there a way to directly characterize ⊢? We’ve
already seen cases in which ⊢ is identical to ⊢base. But what happens when it
is not? The task of this section is to investigate this question.

For a wide variety of base logics, we can provide a characterization of the
logics they generate by adding a meta-rule to ⊢base:

Theorem 6.1. Suppose ⊢base is a finitary strongly classical normal modal logic.
Let ⊢+ be the weakest broadly classical normal modal logic that extends ⊢base

such that the following meta-rule obtains for every α and β: if ⊢+ □α → □β
then α ⊢+ β. Then the following are equivalent:

� ⊢ is identical to ⊢+.
� □(□p→ □q)/□p→ □q is admissible in ⊢base.
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� The canonical model for ⊢base has the following property: ∀w, v(wRv →
∃u, u∗(uRu∗ ∧ u∗Rv ∧R(u∗) ⊆ R(w))).

� ⊢base is weakly determined with respect to a class C of models that has the
following related property: For every model M = ⟨W,R, V ⟩ in C and w, v ∈
W , if wRv then there is an M ′ = ⟨W ′, R′, V ′⟩ in C (perhaps identical to
M) such that M ′

w = Mw and ∃u, u∗ ∈ W ′ such that uR′u∗, u∗R′v, and
R′(u∗) ⊆ R′(w).

Proof Suppose the rule □(□p→ □q)/□p→ □q is admissible in ⊢base. We first show
that if Γ ⊢ α then Γ ⊢+ α. Suppose Γ ⊢ α. So □Γ ⊢base □α. Since ⊢base is finitary,
□γ ⊢base □α, where γ is the conjunction of some finite subset of Γ. Since ⊢base is
strongly classical, ⊢base □γ → □α. So ⊢+ □γ → □α. By the definition of ⊢+, γ ⊢+ α.
So Γ ⊢+ α.

We next show that if Γ ⊢+ α then Γ ⊢ α. Since ⊢ extends ⊢base, all we need to
show is that the meta-rule obtains for ⊢. Suppose ⊢ □α→ □β. So ⊢base □(□α→ □β).
By the admissible rule, ⊢base □α → □β. By Modus Ponens and Cut, □α ⊢base □β.
So α ⊢ β.

For the other direction, suppose ⊢ is identical to ⊢+. Suppose ⊢base □(□α→ □β).
So ⊢ □α → □β. So ⊢+ □α → □β. By the meta-rule, α ⊢+ β. Since ⊢ is identical to
⊢+, α ⊢ β. So □α ⊢base □β. So ⊢base □α→ □β.

The remainder of the result follows from Proposition 3.2, for the case where l = 0
and m = n = o = 1. □

Incidentally, notice that if ⊢base is a strongly classical normal modal logic,
the converse of the meta-rule (namely, if α ⊢ β then ⊢ □α → □β) obtains
for the generated logic ⊢. So if ⊢base satisfies the conditions listed in Theorem
6.1, α ⊢ β just in case ⊢ □α → □β. We also get the other direction: If ⊢base

is a finitary strongly classical normal modal logic such that α ⊢ β just in case
⊢ □α→ □β, the conditions listed in Theorem 6.1 are satisfied.

We can use Theorem 6.1 to characterize the logics generated from many
familiar modal logics:

Corollary 6.2. Suppose ⊢base is a finitary strongly classical normal modal
logic. Suppose ⊢base is an extension of KT, an extension of KB, or is one
of K4, KD4, KDG4, K45, KD45, GL, K4c, or K5c. Then ⊢ is the weakest
broadly classical normal modal logic that extends ⊢base such that the following
meta-rule obtains for every α and β: if ⊢ □α→ □β then α ⊢ β.

Proof Suppose ⊢base is an extension of KT or is one of K4, KD4, KDG4, GL, K4c,
or K5c. By Corollary 5.5, ⊢base generates a logic with the same theorems as itself.
So by Theorem 5.4, the rule □p/p is admissible in ⊢base. So □(□p → □q)/□p → □q
is admissible in ⊢base. So by Theorem 6.1, the result holds for these cases.

Suppose ⊢base is an extension of KB. The canonical model for ⊢base is symmetric.
Suppose wRv in the canonical model. Then by symmetry, vRw. Let u = v and
u∗ = w. Then uRu∗ ∧ u∗Rv ∧ R(u∗) ⊆ R(w). So by Theorem 6.1, the result holds
for these cases.
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Suppose ⊢base is K45 or KD45. These modal logics correspond to the class of
transitive and Euclidean frames and the class of serial, transitive, and Euclidean
frames, respectively. Let C be the class of models based on the appropriate class of
frames. SupposeM ∈ C and wRv inM . LetM ′ be a model that is just likeM except
for the addition of a new world u such that R′(u) = R(v) ∪ {v}. Then M ′ ∈ C. So
C has the related property (letting u∗ = v). So by Theorem 6.1, the result holds for
these cases, too.* □

It is not always the case that ⊢ can be characterized as the weakest broadly
classical normal modal logic that extends ⊢base such that the meta-rule obtains.
For instance, if ⊢base is an extension of K5 that is not an extension of K4,
then □(□p → □□p) is a theorem of ⊢base but □p → □□p is not, so □(□p →
□q)/□p→ □q is not admissible.

When ⊢ can be characterized in this way, such a characterization can be
useful for providing a sequent calculus for axiomatizing ⊢. We can axiomatize
⊢ by adding the following sequent rule to a sequent calculus for ⊢base:

⇒ □α→ □β
α⇒ β

For other purposes, though, it would be good to be able to characterize ⊢ as
the result of adding a derivable rule (or rules) to ⊢base. In many cases, we can
do exactly that.

There is a simple way to characterize ⊢ when it is generated from an exten-
sion of KT. In fact, it suffices that □(□p → □q) → (□p → □q) is a theorem
of ⊢base.

47 (Notice that this is the conditional corresponding to the admissible
rule appearing in Theorem 6.1.)

Theorem 6.3. Suppose ⊢base is a finitary strongly classical normal modal
logic. Let ⊢+ be the weakest broadly classical normal modal logic that extends
⊢base such that the rule □p → □q, p/q is derivable. Then ⊢ is identical to ⊢+

just in case ⊢base □(□p→ □q) → (□p→ □q).

*This result can be extended still further. Suppose ⊢base is a finitary strongly classical normal
modal logics. It is easy to see that the result applies if ⊢base has □(□p → □q) → (□p → □q)
as a theorem. This includes all extensions of KT and all extensions of K45. More generally, it
applies if ⊢base has □n(□p → □q) → (□p → □q) as a theorem (for any n ≥ 1): Suppose
⊢base □(□p → □q), so by Necessitation ⊢base □n(□p → □q), and so ⊢base □p → □q. This
includes all extensions of KTn. The result also applies if ⊢base extends KTc: Suppose w and v
are worlds in the canonical model for ⊢base such that wRv. By the construction of the canonical
model, w = v. Let u = u∗ = w. So the canonical model for ⊢base has the property listed in
Theorem 6.1. (This includes the case of Ver.) As we’ve seen, the result also applies if ⊢base is an
extension of KB. In fact, the result applies to every strongly classical normal modal logic listed in
the first column of Table 1 below except K5 and KD5. Here are proofs of the remaining cases: (i)
K, KD, KG, and KDG are strongly determined with respect to the classes of all models, all serial
models, all convergent models, and all serial and convergent models, respectively. We can show
that these classes are closed under the property listed in Theorem 6.1. Suppose M is a model in
one of these classes and w and v are worlds in M such that wRv. Let M ′ be a model just like M
with the addition of a world u such that R(u) = {w}. Let u∗ = w. It is easy to show that uR′u∗,
u∗R′v, and R′(u∗) ⊆ R′(w), and that M ′ is is a member of the relevant class of models. (ii) KG4
is strongly determined with respect to the class of all transitive and convergent models. Suppose
M is a model in this class and w and v are worlds in M such that wRv. Let M ′ be a model just
like M with the addition of a world u such that R(u) = Ww. Let u∗ = w. Again, we can show
that uR′u∗, u∗R′v, and R′(u∗) ⊆ R′(w), and that M ′ is a member of the class of models.

47By the Sahlqvist correspondence theorem, this sentence is valid on all and only those frames
such that ∀w, v(wRv → ∃u(wRu ∧ uRv ∧ R(u) ⊆ R(w)).
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Proof Suppose ⊢base □(□p → □q) → (□p → □q). We first show that if Γ ⊢ α then
Γ ⊢+ α. Suppose Γ ⊢ α. So ⊢base □γ → □α, where γ is the conjunction of some finite
subset of Γ. So ⊢+ □γ → □α. By the definition of ⊢+, □γ → □α, γ ⊢+ α. By Cut,
γ ⊢+ α. So Γ ⊢+ α.

We next show that if Γ ⊢+ α then Γ ⊢ α. Since ⊢ extends ⊢base, all we need to
show is that □α→ □β, α ⊢ β. ⊢base □(□α→ □β) → (□α→ □β). By Modus Ponens
and Cut, □(□α→ □β),□α ⊢base □β. So □α→ □β, α ⊢ β.

For the other direction, suppose ⊢ is identical to ⊢+. □α → □β, α ⊢+ β. So
□α → □β, α ⊢ β. So □(□α → □β),□α ⊢base □β. So ⊢base □(□α → □β) → (□α →
□β). □

In particular, if ⊢base is an axiomatizable finitary strongly classical normal
modal logic that has □(□p→ □q) → (□p→ □q) as a theorem, we can axiom-
atize ⊢ by adding the rule of inference □p → □q, p/q to the axiomatization.*

By Corollary 5.5, if ⊢base extends KT, ⊢base has the same theorems as ⊢, so in
that case, adding the rule of inference does not generate any new theorems.

We can prove similar results for every extension of KB and for some
extensions of K4. To do so, it’s useful to prove some more general results:

Proposition 6.4. Suppose ⊢base is a finitary strongly classical normal modal
logic and l and m are natural numbers. Let ⊢+ be the weakest broadly classical
normal modal logic that extends ⊢base such that the rule p/♢l□mp is derivable.
Then:

(i) If □p→ □q/p ∧ ♢l□mp→ q is admissible in ⊢base then ⊢ ⊆ ⊢+.
(ii) ⊢+⊆ ⊢ just in case ⊢base □p→ □♢l□mp.

Proof (i) Suppose □p → □q/p ∧ ♢l□mp → q is admissible in ⊢base. Suppose Γ ⊢ α.
So ⊢base □γ → □α, where γ is the conjunction of some finite subset of Γ. By the
admissible rule, ⊢base γ ∧ ♢l□mγ → α. So γ,♢l□mγ ⊢base α. So γ,♢l□mγ ⊢+ α. By
the definition of ⊢+, γ ⊢+ ♢l□mγ. By Cut, γ ⊢+ α. So Γ ⊢+ α.

(ii) Suppose ⊢base □p → □♢l□mp. Since ⊢ extends ⊢base, this suffices to show
that ⊢+ ⊆ ⊢. For the other direction, suppose ⊢+ ⊆ ⊢. By the definition of ⊢+,
p ⊢+ ♢l□mp. So p ⊢ ♢l□mp. So □p ⊢base □♢l□mp. So ⊢base □p→ □♢l□mp. □

Proposition 6.5. Suppose ⊢base is a finitary strongly classical normal modal
logic. Then the following are equivalent:

� □p→ □q/p ∧ ♢l□mp→ q is admissible in ⊢base.
� The canonical model for ⊢ has the following property: ∀w, v(wRlv →

∃u(uRw ∧R(u) ⊆ Rm(v) ∪ {w})).
� ⊢ is weakly determined with respect to a class C of models that has the

following related property: For every model M = ⟨W,R, V ⟩ in C and w, v ∈
W , if wRlv then there is anM ′ = ⟨W ′, R′, V ′⟩ in C (perhaps identical toM)
such thatM ′

w = Mw and ∃u ∈W ′ such that uR′w and R′(u) ⊆ R′m(v)∪{w}.

*Notice that if ⊢base extends K4!, it will have □(□p → □q) → (□p → □q) as a theorem. For
more on such logics, see the *-ed footnote on page 34.
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Proof This result follows from Proposition 3.3, for the case where n = 1. □

Fact 6.6. ⊢base □p→ □♢n□mp just in case the canonical model for ⊢base has
the following property: ∀w, v(wRv → ∃u(vRlu ∧Rm(u) ⊆ R(w))).

Proof This result follows from the Sahlqvist correspondence theorem. □

Using these results, we can characterize every extension of KB and some
extensions of K4 (including every extension of S4).

Theorem 6.7. Suppose ⊢base is a finitary strongly classical normal modal logic
that extends KB. Let ⊢+ be the weakest broadly classical normal modal logic
that extends ⊢base such that the rule p/♢□p is derivable. Then ⊢ is identical to
⊢+.

Proof By Proposition 6.4, we only need to show (i) □p → □q/p ∧ ♢□p → q is
admissible in ⊢base and (ii) ⊢base □p→ □♢□p.

For the former, by Proposition 6.5, it suffices to show that in the canonical model
for ⊢base, ∀w, v(wRv → ∃u(uRw∧R(u) ⊆ R(v)∪{w})). Since ⊢base extends KB, the
canonical model for ⊢base is symmetric. So if wRv, we can take u = v. By symmetry,
uRw. Moreover, R(u) = R(v) ⊆ R(v) ∪ {w}.

For the latter, by Fact 6.6, it suffices to show that in the canonical model for
⊢base, ∀w, v(wRv → ∃u(vRu ∧ R(u) ⊆ R(w))). Suppose wRv. We can take u = w.
By symmetry, vRu. Moreover, R(u) = R(w) ⊆ R(w). □

In particular, if ⊢base is an axiomatizable finitary strongly classical normal
modal logic extending KB, we can axiomatize ⊢ by adding the rule of inference
p/♢□p to the axiomatization.

KB has □D as a theorem. So any modal logic extending KB generates
a modal logic with D as a theorem. It is straightforward to show that in
any broadly classical normal modal logic extending KD, the rule p/♢□p is
admissible.48 So if ⊢base is an axiomatizable finitary strongly classical normal
modal logic that extends KB, we can axiomatize ⊢ by first adding D to the
axiomatization (if it is not already a theorem) and then adding the rule of
inference p/♢□p. This is a useful axiomatization of the resulting logic because,
since the rule is admissible in extensions of KD, adding the rule of inference
to the axiomatization including D does not yield any new theorems.

For some extensions of K4, including K4 itself, KD4, KDG4, GL, and any
finitary strongly classical normal modal logic that extends S4, there is also a
simple characterization:

Theorem 6.8. Suppose ⊢base is a finitary strongly classical normal modal
logic that extends K4 and is such that the following rule is admissible: □p →

48Suppose α is a theorem. By two uses of Necessitation, □□α is a theorem. □□α → ♢□α is a
theorem of KD. So ♢□α is a theorem, as well.
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□q/p∧□p→ q. Let ⊢+ be the weakest broadly classical normal modal logic that
extends ⊢base such that the rule p/□p is derivable. Then ⊢ is identical to ⊢+.

Proof By Proposition 6.4, we only need to show that ⊢base □p → □□p. This is true
in any extension of K4. □

Corollary 6.9. Suppose ⊢base is K4, KD4, KDG4, GL, or a finitary strongly
classical normal modal logic that extends S4. Let ⊢+ be the weakest broadly
classical normal modal logic that extends ⊢base such that the rule p/□p is
derivable. Then ⊢ is identical to ⊢+.

Proof By Theorem 6.8, it suffices to show that the rule □p → □q/p ∧ □p → q is
admissible in ⊢base.

K4, KD4, KDG4, and GL: K4 corresponds to the transitive frames, KD4 cor-
responds to the serial and transitive frames, and KDG4 corresponds to the serial,
convergent, and transitive frames. GL is weakly determined with respect to the class
of finite frames that have transitive and irreflexive accessibility relations. Suppose
α∧□α→ β is false at a world v in a model M based on a frame in the relevant class
of frames for ⊢base. Let M

′ = ⟨W ′, R′, V ′⟩ be defined so that W ′ = W ∪ {w} (for
some w ̸∈ W ), R′(w) = Wv, R

′(x) = R(x) for x ∈ W , and V ′(p) = V (p). It is easy
to show that M ′ is based on a frame for ⊢base. □α→ □β is false at w.

Extensions of S4: By T, the rule □p → □q/p ∧ □p → q is derivable (and hence
admissible) in any extension of KT, including every extension of S4. □

In particular, if ⊢base is K4, KD4, KDG4, GL, or an axiomatizable finitary
strongly classical normal modal logic extending S4, then we can axiomatize ⊢
by adding the rule of inference p/□p to the axiomatization of ⊢base. Notice that
since the rule p/□p is admissible in any normal modal logic, adding p/□p as
a derivable rule to a normal modal logic doesn’t yield any new theorems. So
the modal logics generated from these base logics do not have any additional
theorems.

If ⊢base is KG4, it is easy to see that ⊢ can be axiomatized by taking KDG4
and adding the rule of inference p/□p: □D is a theorem of KG, so ⊢ extends
KDG4 with the addition of p/□p as a derivable rule. But since KDG4 generates
KDG4 with the addition of p/□p as a derivable rule, ⊢ is extended by KDG4
with the addition of p/□p as a derivable rule.*

*It is worth discussing the case where ⊢base is a finitary strongly classical normal modal logic
extending K4!. It is easy to see that ⊢ can be characterized as the weakest extension of ⊢base such
that the rules p/□p and □p/p are both derivable. (Both of these rules are admissible in K4!, so if
⊢base is K4! itself, ⊢ has the same theorems as ⊢base.) We can say more about such logics. Over
K4, 4c is equivalent to □(□p → □q) → (□p → □q). So by Theorem 6.1, ⊢ can be characterized
as the weakest extension of ⊢base such that the following meta-rule obtains: if ⊢ □α → □β then
α ⊢ β. By Theorem 6.3, ⊢ can be characterized as the weakest extension of ⊢base such that the
rule □p → □q, p/q is derivable. (Notice that it is easy to directly show that in any extension of
K4!, the rule □p → □q, p/q is derivable just in case the rules p/□p and □p/p are both derivable.)
Moreover, if ⊢base is an extension of K4□T, then ⊢ has T as a theorem. So ⊢ can be characterized
as the weakest extension of ⊢base that has T as a theorem and in which the rule p/□p is derivable.
Since this rule is admissible in all normal modal logics, ⊢ will have the same theorems as ⊢base

with the addition of T. (Since K45 extends K4□T, this result applies to the extensions of K45.)
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We can also provide direct characterizations of several other modal logics:

Corollary 6.10. Suppose ⊢base is a finitary strongly classical normal modal
logic that extends K5 and is extended by KD5. Then ⊢ is S5.

Proof In K5, □T is a theorem. So ⊢ has T as a theorem. Since ⊢ extends K5, it
extends S5.

To show S5 extends ⊢, suppose Γ ⊬S5 α. S5 corresponds to the class of frames in
which R is an equivalence relation. So there is a world v in such a model at which
the members of Γ are true but α is not. Add a world w to this model such that v and
only v is accessible from w. It is straightforward to show that the resulting model is
serial and Euclidean, so is a model of KD5. At w, the members of □Γ are true but
□α is false. So □Γ ⊬KD5 □α. So □Γ ⊬base □α. So Γ ⊬ α. □

Corollary 6.11. Suppose ⊢base is a finitary strongly classical normal modal
logic that extends K45 and is extended by S5. Then ⊢ is S5 with the addition
of the derivable rule p/□p.

Proof Suppose ⊢base is a finitary strongly classical normal modal logic that extends
K45 and is extended by S5. Any finitary strongly classical normal modal logic that
extends K4 generates a logic in which the rule p/□p is derivable. K5 generates S5. So
⊢ must be at least as strong as S5 with the addition of the derivable rule. It cannot
be stronger than this, since S5 itself generates S5 with the addition of the derivable
rule. □

For instance, since KB5 has 4 as a theorem, the logic it generates is S5 with
the addition of the derivable rule p/□p. As before, since p/□p is admissible in
any normal modal logic, S5 with the addition of the derivable rule p/□p does
not have any theorems beyond those of S5.

Corollary 6.12. Suppose ⊢base is a finitary strongly classical normal modal
logic that extends KG and is extended by KDG. Then ⊢ is KDG.

Proof In KG, □(□p → ♢p) is a theorem. So ⊢base □(□p → ♢p). So ⊢ has D as a
theorem. Since ⊢ extends KG, it extends KDG.

To show KDG extends ⊢, suppose Γ ⊬KDG α. KDG corresponds to the class of
frames in which R is serial and convergent. So there is a world v in a serial and
convergent model at which the members of Γ are true but α is not. Add a world
w to this model such that v and only v is accessible from w. It is straightforward
to show that the resulting model is also serial and convergent, and so is a model of
KDG. At w, the members of □Γ are true but □α is false. So □Γ ⊬KDG □α and thus
□Γ ⊬base □α. So Γ ⊬ α. □

Finally, if ⊢base is an extension of S4, ⊢ can be characterized as the weakest extension of ⊢base in
which the rule p/□p is derivable. In this case, ⊢ will have the same theorems as ⊢base.
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Corollary 6.13. Suppose ⊢base is KTc. Then ⊢ is Triv.49

Proof □T is a theorem of KTc. So T is a theorem of ⊢. ⊢ extends KTc. So ⊢ extends
KT! = Triv.

To show Triv extends ⊢, suppose Γ ⊬Triv α. Triv corresponds to the class of frames
in which each world is accessible from exactly itself. So there is a world v in a model
based on such a frame at which the members of Γ are true but α is not. This model
is also based on a frame for KTc. At v, the members of □Γ are true but □α is not.
So □Γ ⊬base □α. So Γ ⊬ α. □

Finally, we can easily characterize the modal logic generated from Ver: Ver
generates the inconsistent modal logic.

Thus, we can directly characterize the modal logics generated from many
familiar modal logics. Table 1 below lists direct characterizations of the modal
logics generated from many familiar modal logics. It also summarizes many of
the results about individual modal logics from the previous two sections.

7 Generating a Consequence Relation

In the previous section, we studied the question of how to characterize the
broadly classical normal modal logic ⊢ generated from a given strongly classical
normal modal logic ⊢base. In this section, we consider the other direction: Given
a broadly classical normal modal logic ⊢ which strongly classical normal modal
logics generate it?

We can show that if ⊢ is finitary and is generated from a strongly classical
normal modal logic, then there is a weakest strongly classical normal modal
logic that generates it. We can also show that every finitary strongly classical
normal modal logic is generated from a finitary strongly classical normal modal
logic.

To show this, a bit of notation will be useful. Given a rule with finitely
many premises θ = ⟨{α1, . . . , αn}, β⟩, let □→θ abbreviate the sentence □α1 ∧
. . .∧□αn → □β. Given a set of rules Θ with finitely many premises, let □→Θ
abbreviate the set of sentences {□→θ | θ ∈ Θ}.

Proposition 7.1.
(i) Suppose ⊢ is the weakest finitary broadly classical normal modal logic

that has the members of ∆ as theorems and the members of Θ as deriv-
able rules, where the rules in Θ have finitely many premises. Suppose ⊢
is generated from some strongly classical normal modal logic. Then the
weakest strongly classical normal modal logic that generates ⊢ is the weak-
est broadly classical normal modal logic extending K that has the members
of □∆ ∪□→Θ as theorems. This logic is finitary.

49It would be nice to have a direct characterization of the modal logic generated from KTn
c for

arbitrary n > 0. It is straightforward to show that this modal logic extends KTn
c □

n−1Tn and is
extended by KTn!. For n = 1, these coincide. It would be nice to pin it down further when n > 1.
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Table 1 Results for Specific Modal Logics

⊢base Ext:Strong Ext:Self Ext:Thms ⊢

K - - - K
KD - - - KD
K5 - Triv S5 S5
KD5 - Triv S5 S5
KG - KDG KDG KDG
KDG - - - KDG
KT Triv Triv - KT + □p → □q, p/q
KB KB□Bc KB! KDB KDB + p/♢□p
KDB KB! KB! - KDB + p/♢□p
KTB Triv Triv - KTB + p/♢□p
K4 K□Tc Triv - K4 + p/□p
KD4 KD□Tc Triv - KD4 + p/□p
KG4 KG□Tc Triv KDG4 KDG4 + p/□p
KDG4 KDG□Tc Triv - KDG4 + p/□p
S4 Triv Triv - S4 + p/□p
S4.2 Triv Triv - S4.2 + p/□p
KB5 Triv Triv S5 S5 + p/□p
K45 K5□Tc Triv S5 S5 + p/□p
KD45 KD5□Tc Triv S5 S5 + p/□p
S5 Triv Triv - S5 + p/□p
GL K□2⊥ ⊥ - GL + p/□p
KDc - - - KDc

KTc - Triv Triv Triv
KTn! - - - KTn! (for n > 0, n = 1 is Triv)
Ver - ⊥ ⊥ ⊥

The first column lists the base logic. The second column specifies the weakest broadly clas-
sical normal modal logic extending the base logic that generates a strongly classical logic.
The third column specifies the weakest strongly classical normal modal logic extending the
base logic that is self-generating. The fourth column specifies the weakest broadly classical
normal modal logic extending the base logic that generates a logic with the very same the-
orems. A hyphen represents that the entry is the same as the base logic. The final column
provides a direct characterization of the generated logic in terms of a strongly classical nor-
mal modal logic with the addition (if needed) of a derivable rule. The characterization has
been chosen so that the rule is admissible in the strongly classical logic, so adds no theorems.

(ii) If ⊢ is a finitary strongly classical normal modal logic, then ⊢ is generated
from some strongly classical normal modal logic.

Proof (i) If a strongly classical normal modal logic has the members of □∆ ∪□→Θ
as theorems, it will generate a broadly classical normal modal logic at least as strong
as ⊢. Any strongly classical normal modal logic generating ⊢ must have the members
of □∆ ∪ □→Θ as theorems. So if ⊢ is generated from a strongly classical normal
modal logic, the weakest such logic is the weakest strongly classical normal modal
logic that has the members of □∆ ∪ □→Θ as theorems. It is easy to see that this
logic is the weakest broadly classical normal modal logic extending K that has the
members of □∆ ∪□→Θ as theorems. It is also easy to see that this logic is finitary.

(ii) Suppose ⊢ is a finitary strongly classical normal modal logic. So it is the
weakest finitary strongly classical normal modal logic that has the members of some
set ∆ as theorems. Consider the weakest strongly classical normal modal logic ⊢base
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that has the members of □∆ as theorems. It is easy to see that ⊢base generates a
logic that extends ⊢. To show that ⊢base generates a logic that is extended by ⊢,
suppose ⊢ α. We show ⊢base □α. (We can restrict attention to theorems since ⊢ is
finitary and strongly classical.) Since ⊢ α, ∆∗ ⊢K α, where ∆

∗ is the smallest set that
contains all substitution instances of members of ∆ and is closed under the operation
of prefixing a sentence with a □. Since K is normal, □∆∗ ⊢K □α. The members of
□∆∗ are theorems of ⊢base. So by Cut, ⊢base □α. □

To illustrate this result, consider, for instance, S5. It follows from this
result that the weakest strongly classical normal modal logic that generates
S5 is K□T□5. Now consider S5 with the addition of p/□p as a derivable rule.
We know from the previous section that there is a strongly classical normal
modal logic that generates this logic. It follows from the result that the weakest
strongly classical normal modal logic generating this logic is K□T□5 with
the addition of the sentence □p → □□p, which is just the 4 principle. So
the weakest strongly classical normal modal logic that generates S5 with the
addition of p/□p as a derivable rule is K4□T□5.

This result raises the question of whether every finitary weakly classical
normal modal logic can be generated from some finitary strongly classical
normal modal logic. The answer is no. Every logic that is generated from a
strongly classical normal modal logic has K as a theorem, since it extends any
logic that generates it. But not every finitary weakly classical normal modal
logic has K as a theorem. Moreover, every logic that is generated from a
strongly classical normal modal logic obeys the following meta-rule: If α ⊢ β
then ⊢ □α → □β. (Suppose α ⊢ β. So □α ⊢base □β. So ⊢base □α → □β.
So ⊢ □α → □β.) But not every finitary weakly classical normal modal logic
obeys this meta-rule. For instance, K with the addition of p/□p as a derivable
rule does not obey this meta-rule, since in this logic, α ⊢ □α but it is not the
case that 4 is a theorem. (4 is not a theorem because p/□p is admissible in K,
so adding the derivable rule does not yield any new theorems.) An interesting
question is whether every finitary broadly classical normal modal logic that
has K as a theorem and that obeys this meta-rule can be generated from some
finitary strongly classical normal modal logic. I do not know the answer to this
question.

We also have the following easy result:

Proposition 7.2. If a broadly classical normal modal logic ⊢ is generated from
two strongly classical normal modal logics, ⊢1 and ⊢2 such that ⊢2 extends ⊢1,
then every strongly classical normal modal logic between ⊢1 and ⊢2 generates ⊢.

Given a broadly classical normal modal logic ⊢ that can be generated from
a strongly classical normal modal logic, is there a strongest strongly classical
normal modal logic that generates ⊢? We can provide a partial answer to this
question:

Proposition 7.3. Suppose ⊢ is a finitary broadly classical normal modal logic.
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(i) If ⊢ is generated from a finitary strongly classical normal modal logic
extending KT, then there is a strongest finitary strongly classical normal
modal logic generating ⊢.

(ii) If ⊢ is the weakest broadly classical logic extending the strongly classical
normal modal logic ⊢S by the addition of some derivable rules that are
admissible in ⊢S and ⊢S generates ⊢, then ⊢S is the strongest strongly
classical normal modal logic generating ⊢.

Proof (i) Suppose ⊢ is generated from a finitary strongly classical normal modal
logic ⊢base extending KT. Consider the weakest finitary strongly classical normal
modal logic ⊢+

base that extends every finitary strongly classical normal modal logic
that generates ⊢. We show that ⊢+

base generates ⊢. Since ⊢+
base extends ⊢base, the logic

generated from ⊢+
base extends ⊢. For the other direction, suppose ⊢+

base □α. (We can
restrict our attention to theorems, since ⊢+

base is finitary and strongly classical.) So
∆ ⊢base □α, where ∆ is the union of the sets of theorems of the finitary strongly
classical normal modal logics generating ⊢. Since ⊢base extends KT, □∆ ⊢base □α.
So ∆ ⊢ α. Every member of ∆ is a theorem of ⊢. So ⊢ α.

(ii) If there is strongly broadly classical normal modal logic generating ⊢ that is
not extended by ⊢S, then it will have a theorem α such that ⊬S α. But since any
broadly classical normal modal logic is extended by the logic it generates, ⊢ α, which
is impossible since ⊢ has the same theorems as ⊢S. □

To illustrate the second part of this result, let ⊢ be S5 with the addition of
p/□p as a derivable rule. Since S5 generates ⊢ and since p/□p is admissible in
S5, it follows from the result that S5 is the strongest strongly classical normal
modal logic generating ⊢. So the strongly classical normal modal logics that
generate S5 with the addition of p/□p as a derivable rule are exactly the
strongly classical normal modal logics between K4□T□5 and S5.

We can apply this result to determine exactly which strongly classical
normal modal logics generate some broadly classical normal modal logics of
interest:

Corollary 7.4.
(i) Suppose ⊢ is the weakest broadly classical normal modal logic extending

KT that has □p → □q, p/q as a derivable rule and has the members of
some set ∆ as theorems. Then the strongly classical normal modal logics
generating ⊢ are exactly the strongly classical normal modal logics between
K□T with □(□p→ □q) → (p→ q) and the members of □∆ as theorems
and KT with the members of ∆ as theorems.

(ii) Suppose ⊢ is the weakest broadly classical normal modal logic extending
KDB that has p/♢□p as a derivable rule and has the members of some set
∆ as theorems. Then the strongly classical normal modal logics generating
⊢ are exactly the strongly classical normal modal logics between K□D□B
with □p → □♢□p and the members of □∆ as theorems and KDB with
the members of ∆ as theorems.
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(iii) Suppose ⊢ is the weakest broadly classical normal modal logic extend-
ing K4 that has p/□p as a derivable rule and has the members of ∆ as
theorems, where ∆ is ∅, {D}, {D, G}, {W}, or any set of sentences con-
taining T. Then the strongly classical normal modal logics generating ⊢
are exactly the strongly classical normal modal logics between K4 with the
members of □∆ as theorems and K4 with the members of ∆ as theorems.

Proof This result follows from applying Propositions 7.1 and 7.3 to Theorem 6.3,
Theorem 6.7, and Corollary 6.9, respectively, noting that the rules listed are admis-
sible in the relevant normal modal logics. □

Notice that it immediately follows that the only strongly classical normal
modal logic generating K4 with the addition of p/□p as a derivable rule is K4.

The results in this section so far tell us exactly which strongly classical nor-
mal modal logics generate the generated broadly classical normal modal logics
appearing in the last column of Table 1, with one exception: They don’t tell
us which strongly classical normal modal logics generate S5. (They also don’t
tell us which strongly classical normal modal logics generate other familiar
strongly classical normal modal logics, such as KT, S4, GL, and the like.) One
might wonder what the strongest strongly classical normal modal logic is that
generates S5, or even whether there is a strongest strongly classical normal
modal logic that generates S5. I don’t know the answers to these questions.
We can, however, determine some of the strongly classical normal modal logics
that generate S5 using the following result:

Proposition 7.5. Suppose ⊢ is the weakest strongly classical normal modal
logic that extends the strongly classical normal modal logic ⊢S and has the
members of ∆ as theorems. Suppose the strongest strongly classical normal
modal logic that is extended by the logic that ⊢ generates is ⊢ itself. Let Γ be
any set of theorems of ⊢ and let ⊢new be the weakest strongly classical normal
modal logic extending ⊢S with the members of Γ ∪ □∆ as theorems. Then if
⊢new generates a strongly classical logic, ⊢new generates ⊢.

Proof Suppose ⊢new generates a strongly classical logic. Since ⊢new is extended by ⊢
and since the strongest strongly classical normal modal logic extended by the logic
⊢ generates is ⊢ itself, ⊢new generates a logic extended by ⊢. Since ⊢new extends ⊢S

and has the members of □∆ as theorems, ⊢new has the members of {□α | ⊢ α} as
theorems. So ⊢new generates a logic extending ⊢. So ⊢new generates ⊢. □

Define the modal principle T− to be (□p → p) ∨ (□q ↔ ♢q). This is the
disjunction of T with D!, using different atomic sentences in the two disjuncts.
S5 can be characterized as K5 with the addition of T. S5 generates S5 with the
addition of p/□p as a derivable rule, so the strongest strongly classical normal
modal logic that is extended by the logic that S5 generates is S5 itself. T−

is a theorem of S5. Define ⊢new to be K5□TT−. It is straightforward to show
that ⊢new is strongly determined with respect to the class of Euclidean frames
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such that every non-reflexive world has exactly one world accessible from it.
The class of models based on this class of frames is quasi-single-minded. So by
Theorem 4.2, ⊢new generates a strongly classical logic. So by Proposition 7.5,
K5□TT− generates S5. Since □T is a theorem of K5, K5□TT− is the same
logic as KT−5. So, we can conclude that every strongly classical normal modal
logic between K□T□5 and KT−5 generates S5.

For any modal principle P , let P− be the disjunction of P with □q ↔ ♢q,
replacing q with a different atomic sentence if needed to avoid using an atomic
sentence appearing in P . By similar reasoning, we can show that KT can be
generated from any strongly classical normal modal logic between K□T and
K□TT−, KB can be generated from any strongly classical normal modal logic
between K□B and K□BB−, KDB can be generated from any strongly classical
normal modal logic between K□D□B and KD□BB−, K4 can be generated
from any strongly classical normal modal logic between K□4 and K□44−,
S4 can be generated from any strongly classical normal modal logic between
K□T□4 and K□TT−□44−, and so forth for many familiar strongly classical
normal modal logics.

We’ve so far examined the question of which strongly classical normal
modal logics generate a given broadly classical normal modal logic. A natu-
ral question is which broadly classical normal modal logics generate a given
broadly classical normal modal logic. To partially answer this question, we can
show the following:

Proposition 7.6. Suppose ⊢ is a broadly classical normal modal logic. Then:
(i) Suppose ⊢ is the weakest finitary broadly classical normal modal logic that

has the members of ∆ as theorems and the members of Θ as derivable
rules, where the rules in Θ have finitely many premises. Suppose ⊢ is
generated from some broadly classical normal modal logic. Then the weak-
est broadly classical normal modal logic that generates ⊢ is the weakest
broadly classical normal modal logic that has the members of □∆∪□→Θ
as theorems. This logic is finitary.

(ii) If ⊢ is generated from two broadly classical normal modal logics, ⊢1 and
⊢2 such that ⊢2 extends ⊢1, then every broadly classical normal modal
logic between ⊢1 and ⊢2 generates ⊢.

(iii) If ⊢ is self-generating, ⊢ is the strongest broadly classical normal modal
logic that generates ⊢.

(iv) Suppose ⊢ is the weakest broadly classical normal modal logic that extends
the broadly classical normal modal logic ⊢L and has the members of ∆
as theorems. Suppose the logic ⊢L generates is extended by ⊢. Let ⊢new

be the weakest broadly classical normal modal logic extending ⊢L with the
members of □∆ as theorems. Then ⊢new generates ⊢.

Proof The proof of (i) is just like the proof of the first part of Proposition 7.1. The
proofs of (ii) and (iii) are easy.
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(iv) Suppose Γ ⊢ α. So Γ∪∆∗ ⊢L α, where ∆
∗ is the smallest set that contains all

substitution instances of members of ∆ and is closed under the operation of prefixing
a sentence with a □. So, since ⊢L is normal, □Γ ∪□∆∗ ⊢L □α. So □Γ ⊢new □α.

For the other direction, suppose □Γ ⊢new □α. So □Γ∪□∆∗ ⊢L □α. So, since the
logic ⊢L generates is extended by ⊢, Γ ∪∆∗ ⊢ α. So Γ ⊢ α. □

To illustrate this result, let ⊢ be S5 with the addition of p/□p as a derivable
rule. It follows from the first part of this result that the weakest broadly
classical normal modal logic generating this logic is □K□T□5 with the addition
of the theorem □p→ □□p, which is just the 4 principle.50 We’ll see below that
⊢ is self-generating. So it follows from the first three parts of this result that
the broadly classical normal modal logics that generate S5 with the addition of
p/□p as a derivable rule are exactly the broadly classical normal modal logics
between □K4□T□5 and S5 with the addition of p/□p as a derivable rule. In
the next section, we’ll show that K4 with the addition of p/□p as a derivable
rule is also self-generating. It follows from the fourth part of this result that if
⊢ is the weakest broadly classical normal modal logic extending this logic that
contains the members of some arbitrary set ∆ as theorems, then ⊢ is generated
from some broadly classical normal modal logic. In particular, it is generated
from K4 with the addition of p/□p as a derivable rule and the members of □∆
as theorems.

8 Iterative Generation Sequences

Our results so far have largely focused on the generation of modal logics from
strongly classical base logics. (They also focus on the case where the base logics
are finitary.) But Theorem 4.1 tells us that if ⊢ is generated from any broadly
classical normal modal logic ⊢base, then ⊢ is a broadly classical normal modal
logic that extends ⊢base. So it is natural to consider generating modal logics
from weakly classical normal modal logics, as well.51

It is difficult to directly study the generation of modal logics from weakly
classical base logics using the techniques of this paper. There are two reasons
for this. First, the results showing equivalences between claims about generated
logics (e.g., that they are strongly classical, identical to the base logic, etc.)
and claims about the admissibility of rules in the base logic rely on Conditional
Proof for the base logic. So we cannot rely on them in studying the modal
logics generated from weakly classical logics. Second, the standard relational
model theory for modal logic only applies to finitary strongly classical normal
modal logics, so we cannot directly make use of it in studying modal logics
generated from weakly classical logics.

There is, however, a way to study the generation of modal logics from
weakly classical logics using the techniques of this paper in a more indirect
way, at least for a range of cases. Notice that the generation process can

50□K□T□5 is the weakest broadly classical normal modal logic having □K, □T, and □5 as
theorems. It is not strongly classical because it doesn’t have K as a theorem.

51Thanks to an anonymous referee for raising this issue.
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be iterated. Given a strongly classical normal modal logic, it will generate a
(perhaps distinct) broadly classical normal modal logic, which will generate
a (perhaps distinct) broadly classical normal modal logic, and so on. We can
make use of the standard relational model theory for modal logic to study
the modal logics generated from weakly classical normal modal logics, so long
as those weakly classical normal modal logics were themselves generated from
finitary strongly classical normal modal logics (either directly or indirectly).
We can apply the model theory to the initial strongly classical base logic.

In this section, we will study what happens when we start with a fini-
tary strongly classical normal modal logic and iteratively apply the generation
procedure. What is the sequence of broadly classical normal modal logics gen-
erated in this way? Does the sequence ultimately hit a fixed point? What does
the fixed point look like? And so forth. These questions are interesting for two
reasons: First, it is intrinsically interesting to see what happens when we start
with a strongly classical logic and iterate the generation procedure. And sec-
ond, examining such sequences can tell us what happens when we generate
a logic from a weakly classical normal modal logic, at least in many cases of
interest.

In a bit more detail: Given a broadly classical normal modal logic ⊢base, we
inductively define ⊢ι (for ordinals ι) as follows:

� Γ ⊢0 α just in case Γ ⊢base α
� Successor ordinals: Γ ⊢ι+1 α just in case □Γ ⊢ι □α
� Limit ordinals: Γ ⊢λ α just in case Γ ⊢ι α for some ι < λ

Call these sequences “iterated generation sequences”. Notice that if ⊢base is
finitary, so is each member of its iterated generation sequence.

It is easy to see that every iterated generation sequence ultimately hits
a fixed point. By Theorem 4.1, ⊢ι+1 extends ⊢ι. By the definition of ⊢λ, ⊢λ

extends ⊢ι for each ι < λ. So by a simple cardinality argument, each iterated
generation sequence will eventually hit a fixed point. Indeed, it is easy to
directly show that ⊢ω+1 is identical to ⊢ω, so each iterated generation sequence
will hit a fixed point at some ordinal less than or equal to ω. The fixed point
will be a broadly classical normal modal logic that is self-generating.

We have already seen some examples of such fixed points. In particular,
K, KD, KDG, KDc, and KTn! (for any n > 0) are strongly classical normal
modal logics that are self-generating and so are fixed points. There are also
weakly classical normal modal logics that are self-generating. For instance,
it is easy to see that any finitary broadly classical normal extension of K in
which both p/□p and □p/p are derivable rules is self-generating. This includes
finitary broadly classical normal extensions of KT in which p/□p is derivable
as well as finitary broadly classical normal extensions of KTc in which □p/p is
derivable, among other logics. So these modal logics, too, will be fixed points
of iterated generation sequences.

We can make progress on studying iterated generation sequences by notic-
ing that the central results of this paper can all be generalized to logics that
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are generated from finitary strongly classical normal modal logics in n steps.
Here are the relevant generalizations. (The proofs are straightforward gener-
alizations of the proofs provided in sections 4 through 6, making use of the
results on admissibility in section 3.)

Theorem 8.1. Suppose ⊢base is a finitary strongly classical normal modal
logic. Then the following are equivalent:

� ⊢n is strongly classical.
� The rule □np→ □nq/□n(p→ q) is admissible in ⊢base.
� The canonical model for ⊢base has the following property: ∀w, v(wRnv →

∃u(Rn(u) = {v})).
� ⊢base is weakly determined with respect to a class C of models that has the

following property: If M ∈ C and w, v are worlds in M such that wRnv then
there is an M ′ ∈ C (perhaps identical to M) such that M ′

v = Mv and there
is a world u in M ′ such that R′n(u) = {v}.

Theorem 8.2. Suppose ⊢base is a finitary strongly classical normal modal
logic. Then the following are equivalent:

� ⊢n+1 is identical to ⊢n.
� The rule □n+1p→ □n+1q/□np→ □nq is admissible in ⊢base

� The canonical model for ⊢base has the following property: ∀w, v(wRnv →
∃u(uRn+1v ∧Rn+1(u) ⊆ Rn(w))).

� ⊢base is weakly determined with respect to a class C of models that has the
following property: If M ∈ C and w, v are worlds in M such that wRnv then
there is an M ′ ∈ C (perhaps identical to M) such that M ′

w = Mw and there
is a world u in M ′ such that uR′n+1v and R′n+1(u) ⊆ R′n(w).

Theorem 8.3. Suppose ⊢base is a finitary strongly classical normal modal
logic. Then the following are equivalent:

� ⊢n+1 α just in case ⊢n α.
� The rule □n+1p/□np is admissible in ⊢base.
� The canonical model for ⊢base has the following property: ∀w(∃uuRnw →

∃u∗ u∗Rn+1w).
� ⊢base is weakly determined with respect to a class of models C that has the

following property: If M ∈ C and w, u are worlds in M such that uRnw
then there is an M ′ ∈ C (perhaps identical to M) such that M ′

w = Mw and
there is a world u∗ in M ′ such that u∗R′n+1w.

Theorem 8.4. Suppose ⊢base is a finitary strongly classical normal modal logic.
Let ⊢+ be the weakest broadly classical normal modal logic that extends ⊢base

such that the following meta-rule obtains for every α and β: if ⊢+ □nα→ □nβ
then α ⊢+ β. Then the following are equivalent:

� ⊢n is identical to ⊢+.
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� □n(□np→ □nq)/□np→ □nq is admissible in ⊢base.
� The canonical model for ⊢ has the following property: ∀w, v(wRnv →

∃u, u∗(uRnu∗ ∧ u∗Rnv ∧Rn(u∗) ⊆ Rn(w))).
� ⊢ is weakly determined with respect to a class C of models that has the

following related property: If M ∈ C and w, v are worlds in M such that
wRnv then there is anM ′ ∈ C (perhaps identical toM) such thatM ′

w = Mw

and there are worlds u, u in M ′ such that uR′nu∗, u∗R′nv, and R′n(u∗) ⊆
R′n(w).

Proposition 8.5. Suppose ⊢base is a finitary strongly classical normal modal
logic and l and m are natural numbers. Let ⊢+ be the weakest broadly classical
normal modal logic that extends ⊢base such that the rule p/♢l□mp is derivable.
Then:

(i) If □np→ □nq/p ∧ ♢l□mp→ q is admissible in ⊢base then ⊢n⊆ ⊢+.
(ii) ⊢+⊆ ⊢n just in case ⊢base □np→ □n♢l□mp.

We can use these results to prove results about iterated generation
sequences that begin with extensions of KT, KB, and K4. For example, if ⊢base

is a finitary strongly classical normal modal extension of KT, we can give a
characterization of each ⊢n. (Indeed, instead of T, we can use the weaker prin-
ciple □n(□np → □nq) → (□np → □nq).) We can show that for extensions of
KT, we get no additional theorems as we iterate the generation procedure. We
can also show that for the cases of KT and KTB, there is no fixed point in the
iterated generation sequence below ω.

Theorem 8.6. Suppose ⊢base is a finitary strongly classical normal modal
logic. Let ⊢+

n be the weakest broadly classical normal modal logic that extends
⊢base such that the rule □np→ □nq, p/q is derivable. Then:

(i) ⊢n is identical to ⊢+
n just in case ⊢base □n(□np→ □nq) → (□np→ □nq).

(ii) If ⊢base extends KT, then ⊢n has the very same theorems as ⊢base.
(iii) If ⊢base □n(□np→ □nq) → (□np→ □nq) and ⊢base is extended by KTB

then ⊢n+1 is strictly stronger than ⊢n.

Proof (i) The proof of this is a straightforward generalization of the proof of Theorem
6.3.

(ii) This follows from Theorem 8.3.
(iii) By (i), □n+1p→ □n+1q, p ⊢n+1 q. We show □n+1p→ □n+1q, p ⊬n q. That

is, □n(□n+1p → □n+1q),□np ⊬base □nq. We show this using a countermodel M =
⟨W,R, V ⟩. LetW = {w0, w1, . . . , wn+1}. For each i ≤ n, let R(wi) = {wi, wi+1} and
let R(wn+1) = {wn+1}. Let V (p) = {wi | i ≤ n} and V (q) = ∅. This is a model for
KTB. □n+1p is false at every w ∈ W . So □n+1p → □n+1q is true at every w ∈ W .
□n(□n+1p→ □n+1q) is true at w0. □

np is true at w0. But □
nq is false at w0. □

It follows from this result that if ⊢base is KT or KTB, there is no fixed
point in the iterated generation sequence for ⊢base below ω. In these cases, we
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can characterize ⊢ω as the weakest broadly classical normal modal logic that
extends ⊢base such that for every n ∈ N, the rule □np→ □nq, p/q is derivable.

Next, we can prove an analogous claim about extensions of KB.

Theorem 8.7. Suppose ⊢base is a finitary strongly classical normal modal logic
that extends KB. Let ⊢+

n be the weakest broadly classical normal modal logic
that extends ⊢base such that the rule p/♢n□np is derivable. Then:

(i) ⊢n is identical to ⊢+
n .

(ii) For n > 0, D is a theorem of ⊢n.
(iii) If ⊢base extends KDB, then ⊢n has the very same theorems as ⊢base. If ⊢base

does not extend KDB, then for n > 0, ⊢n has the very same theorems as
⊢1.

(iv) If ⊢base is between KB and KTB, then ⊢n+1 is strictly stronger than ⊢n.

Proof (i) The proof of this is a straightforward generalization of the proof of Theorem
6.7.

(ii) KB has □D as a theorem, so ⊢1D. So ⊢nD for any n > 0.
(iii) In any broadly classical normal modal logic ⊢base extending KD, the rule

p/♢n□np is admissible: Suppose α is a theorem. By Necessitation, □nα is a theorem.
By repeated use of Necessitation, D, and Modus Ponens, ♢n□nα is a theorem. Since
this rule is admissible, adding it as a derivable rule does not yield any new theorems.
So if ⊢base extends KDB, ⊢n has the very same theorems as ⊢base. If ⊢base does not
extend KDB, by (ii), ⊢1D. And so ⊢n has the very same theorems as ⊢1.

(iv) By (i), p ⊢n+1 ♢n+1□n+1p. We show p ⊬n ♢n+1□n+1p. That is, ⊬base

□np → □n♢n+1□n+1p. We show this using a countermodel M = ⟨W,R, V ⟩. Let
W = {w0, w1, . . . , wn+1}. Let R(w0) = {w0, w1}. For 1 ≤ i ≤ n, let R(wi) =
{wi−1, wi, wi+1}. Let R(wn+1) = {wn, wn+1}. Let V (p) = {wi | i ≤ n}. This is a
model for KTB. □np is true at w0. But at no world is □n+1p true. So at no world
is ♢n+1□n+1p true. So □n♢n+1□n+1p is false at w0. □

It follows from this result that if ⊢base is KB, KDB, or KTB, there is no
fixed point in the iterated generation sequence for ⊢base below ω. In these cases,
we can characterize ⊢ω as the weakest broadly classical normal modal logic
that extends ⊢base such that for every n ∈ N, the rule p/♢n□np is derivable.
Notice that for the case of KTB, we have two ways to characterize ⊢n (and
⊢ω). We can characterize ⊢n as KTB with the addition of the derivable rule
□np→ □nq, p/q or as KTB with the addition of the derivable rule p/♢n□np.

Finally, we can examine extensions of K4. Unlike for the cases of KT, KB,
KDB, and KTB, for many familiar extensions of K4, we reach a fixed point at
⊢1.*

*It is also straightforward to show that for any extension of K4!, we reach a fixed point at ⊢1.
In particular, let ⊢base be a finitary strongly classical normal modal logic that extends K4!. Let
⊢+ be the weakest broadly classical normal modal logic that extends ⊢base such that the rules
p/□p and □p/p are derivable. Then, for n > 0, ⊢n is identical to ⊢+.
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Theorem 8.8. Suppose ⊢base is a finitary strongly classical normal modal logic
that extends K4. Let ⊢+ be the weakest broadly classical normal modal logic
that extends ⊢base such that the rule p/□p is derivable. Then:

(i) If the rule □np→ □nq/p∧□p→ q is admissible in ⊢base then for n > 0,
⊢n is identical to ⊢+.

(ii) If ⊢base is K4, KD4, KDG4, or GL, or extends S4, then for n > 0, ⊢n

is identical to ⊢+.

Proof (i) The proof of this is a straightforward generalization of the proof of Theorem
6.8.

(ii) By (i), it suffices to show that the rule □np→ □nq/p∧□p→ q is admissible
in ⊢base.

K4, KD4, KDG4, and GL: K4 corresponds to the transitive frames, KD4 cor-
responds to the serial and transitive frames, and KDG4 corresponds to the serial,
convergent, and transitive frames. GL is weakly determined with respect to the class
of finite frames that have transitive and irreflexive accessibility relations. Suppose
α∧□α→ β is false at a world v in a model M based on a frame in the relevant class
of frames for ⊢base. LetM

′ = ⟨W ′, R′, V ′⟩ be defined so thatW ′ =W ∪{w1, . . . , wn}
(for some w1, . . . , wn ̸∈ W ), R′(wi) = Wv ∪ {wj | j > i}, R′(x) = R(x) for
x ∈ W , and V ′(p) = V (p). It is easy to show that M ′ is based on a frame for ⊢base.
□nα→ □nβ is false at w1.

Extensions of S4: The rule □np → □nq/p ∧ □p → q is derivable (and hence
admissible) in any extension of S4. □

Using these results, as well as the results from previous sections, we can
determine the iterated generation sequences for many familiar modal logics.
These results are summarized in Table 2.

These results also tell us about what is generated from some finitary weakly
classical normal modal logics. For instance, if ⊢base is the result of taking
a strongly classical normal modal logic extending KT and adding □np →
□nq, p/q as a derivable rule, ⊢ is ⊢base with the addition of □n+1p→ □n+1q, p/q
as a derivable rule. If ⊢base is the result of taking a strongly classical nor-
mal modal logic extending KB and adding p/□n♢np as a derivable rule, ⊢
is ⊢base with the addition of p/□n+1♢n+1p as a derivable rule. If ⊢base is the
result of taking a strongly classical normal modal logic extending K4 in which
□np→ □nq/p ∧□p→ q is admissible and adding p/□p as a derivable rule, ⊢
is identical to ⊢base. In particular, if ⊢base is the result of taking a strongly clas-
sical normal modal logic extending S4 and adding p/□p as a derivable rule, ⊢
is identical to ⊢base.

9 Generalizations

9.1 Multiple Conclusions

This paper has focused on single-conclusion consequence relations, which hold
between a set of sentences and a sentence. It is natural to wonder how things
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Table 2 Iterated Generation Sequences for Specific Modal Logics

⊢0 FP ⊢1 ⊢2 . . . ⊢n

K 0
KD 0
K5 2 S5 S5 + p/□p
KD5 2 S5 S5 + p/□p
KG 1 KDG
KDG 0
KT ω KT + □p → □q, p/q KT + □2p → □2q, p/q KT + □np → □nq, p/q
KB ω KDB + p/♢□p KDB + p/♢2□2p KDB + p/♢n□np
KDB ω KDB + p/♢□p KDB + p/♢2□2p KDB + p/♢n□np
KTB ω KTB + p/♢□p KTB + p/♢2□2p KTB + p/♢n□np
K4 1 K4 + p/□p
KD4 1 KD4 + p/□p
KG4 1 KDG4 + p/□p
KDG4 1 KDG4 + p/□p
S4 1 S4 + p/□p
S4.2 1 S4.2 + p/□p
KB5 1 S5 + p/□p
K45 1 S5 + p/□p
KD45 1 S5 + p/□p
S5 1 S5 + p/□p
GL 1 GL + p/□p
KDc 0
KTc 1 Triv
KTn! 0
Ver 1 ⊥

The first column lists the base logic. The second column lists the smallest n such that ⊢n

is self-generating. The third column characterizes ⊢1 if it is distinct from ⊢0. The fourth
column characterizes ⊢2 if it is distinct from ⊢1. The final column characterizes ⊢n for the
cases where there is no finite n such that ⊢n is self-generating. The characterizations have
been chosen so that the rule is admissible in the strongly classical normal modal logic listed,
so adds no theorems.

change if we move to a setting in which consequence relations are multiple
conclusion, that is, hold between a set of sentences and a set of sentences.52

Let ⊢base be a multiple-conclusion consequence relation. There are two natu-
ral options for defining the consequence relation ⊢ generated from ⊢base. On the
first option, Γ ⊢ ∆ just in case □Γ ⊢base □∆. That is, {□γ | γ ∈ Γ} ⊢base {□δ |
δ ∈ ∆}. This is perhaps the most natural approach to take. But it has a seri-
ous cost. We would presumably like Γ ⊢ α1, α2 to be equivalent to Γ ⊢ α1∨α2.
However, for most modal logics of interest, this will fail: ⊢base □(p ∨ ¬p) so
⊢ p ∨ ¬p. But if ⊢base does not extend Dc, ⊬base □p ∨ □¬p. So ⊬base □p,¬□p,
and so ⊬ p,¬p.53

On the second option, Γ ⊢ ∆ just in case □(γ1∧. . .∧γm) ⊢base □(δ1∨. . .∨δn)
for some γ1, . . . , γm ∈ Γ and δ1, . . . δn ∈ ∆. This approach avoids the problem
for the first approach. The cost of this approach is that it essentially returns
us to a single-conclusion setting.

52Thanks to an anonymous referee for raising this question.
53This observation appears in both [14] and [37].
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9.2 Alternative Generation Procedures

This paper has focused on generating logics from base modal logics by defining
Γ ⊢ α as □Γ ⊢base □α. It is natural to look at alternative definitions, too.
For instance, a natural idea is to define α ⊢′ β as ♢α ⊢base ♢β, and more
generally, to define Γ ⊢′ α as ♢(γ1 ∧ . . . ∧ γn) ⊢base ♢α for some finite subset
{γ1, . . . , γn} ⊆ Γ. (On this account, ⊢′ α is defined as ♢⊤ ⊢base ♢α.)54

Since ♢ is an abbreviation for ¬□¬, ⊢′ is equivalent to the contraposition
of ⊢. So if ⊢base is a finitary broadly classical normal modal logic, ⊢′ is identical
to ⊢ just in case ⊢ obeys Contraposition just in case (by the results in section
2.3) ⊢ is strongly classical. So there is an intimate connection between ⊢ and
⊢′.

It is straightforward to show that if ⊢base is a strongly classical normal
modal logic, ⊢′ obeys Identity, Weakening, Uniform Substitution, and extends
⊢base. It also obeys Conditional Proof and Reasoning by Cases. However, it
may not obey Contraposition. It may not obey Reductio ad Absurdum. And,
more interestingly, while it does obey Transitivity (in the sense that if both
Γ ⊢′ α and α ⊢′ β then Γ ⊢′ β), it may not obey Cut. So this definition yields
logics that resemble a strongly classical normal modal logic except that we
may lose something different than what we lose using the definition of ⊢.

Other alternative generating procedures also yield logics that resemble a
strongly classical normal modal logic except that they may be missing a famil-
iar property or properties. Suppose we define α ⊢∗ β as ♢α ⊢base □β, and more
generally, Γ ⊢∗ α as {♢γ | γ ∈ Γ} ⊢base □α. In this case, if ⊢base is a strongly
classical normal modal logic, ⊢∗ has all the theorems of ⊢base and obeys Weak-
ening, Cut, Conditional Proof, Reductio ad Absurdum, and Contraposition.
However, it may be missing many classical rules of inference, such as Modus
Ponens, Conjunction Introduction and Elimination, and even Identity.

A different idea is to define Γ ⊢⋆ α as □Γ ⊢base ♢α. If ⊢base is a strongly
classical normal modal logic extending KD, this can be thought of as something
like the modal analogue of the three-valued semantics for the logic ST.55 In this
case, ⊢⋆ obeys Identity, Weakening, Uniform Substitution, and extends ⊢base.
It also obeys Conditional Proof, Reductio ad Absurdum, and Contraposition.
But it may not obey Reasoning by Cases. And, more interestingly, it may not
obey Transitivity.

Thus, we can use modal logic to generate logics in the vicinity of classical
logic, but that are weaker in interesting respects.

54This is close to the subvaluational account of vagueness defended in [14], except that the
usual subvaluational semantics treats the premises independently, so defines γ1, . . . , γn ⊢′ α as
♢γ1, . . . ,♢γn ⊢base ♢α.

55See [28]. On this semantics, some premises entail a conclusion just in case when the premises
all have the top value, the conclusion does not have the bottom value. If we think of the top value
as truth in all worlds and the bottom value as truth in no world, we end up with this definition.
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10 Conclusion

Let’s return to the philosophical motivations for investigating an account of
consequence on which Γ ⊢ α is defined as □Γ ⊢base □α for some broadly classi-
cal normal modal logic ⊢base. One motivation was to see if there is a plausible
supervaluational approach to vagueness that yields a strongly classical logic.
A second motivation was to investigate epistemic characterizations of logical
consequence, such as the view that an inference is valid if it preserves the
epistemic status one is in a position to know or the epistemic status one is
rationally committed to its being the case. Given the results in this paper, what
should we make of these motivations?

One upshot of the discussion is that the project of finding a supervalua-
tional approach to vagueness that yields a strongly classical logic by moving
to a background logic other than S5 does not look very promising. If we inter-
pret “□” as standing for “it is determinately true that”, then presumably if
it is determinately true that α then α. Presumably, then, the base logic will
extend KT. By Proposition 4.6, the only strongly classical normal modal logic
extending KT that generates a strongly classical logic is Triv. So to gener-
ate a strongly classical logic, the base logic will have to be Triv. Since Triv
is self-generating, the generated modal logic will be Triv, too. This is a prob-
lem, since in Triv, α and □α are logically equivalent. In other words, there
will be no difference between α and it being determinately true that α. This
seems incompatible with the motivations for a supervaluational treatment of
vagueness.

The issue can be put in more model-theoretic terms. On a supervaluational
model theory in which models are equipped with an accessibility relation, pre-
sumably the “worlds” are truth assignments, or packages of semantic rules
that induce truth assignments, or the like. The accessibility relation is some
kind of nearness relation on such worlds. Presumably, this relation is reflexive
– every truth assignment or package of semantic rules is maximally near itself.
Since the modal logic KT corresponds to the constraint on frames that the
accessibility relation be reflexive, this means that for such a supervaluational
approach to generate a strongly classical logic, the base logic will have to be
Triv. That corresponds to the constraint on frames that every world is acces-
sible from itself and from no other world. If that’s the accessibility relation,
then what’s supertrue at a world is just what is true at that world. This is
to give up on the idea that supertruth at a world is stronger than truth at a
world, which is one of the main ideas behind this kind of supervaluationism.

There is, however, a potential way to wiggle out of this difficulty. It seems
central to our understanding of determinateness that “if it is determinately
true that α then α” should be a theorem. But a theorem of which modal logic?
Must it be a theorem of the base logic or is it enough that it is a theorem of
the generated logic? If the latter suffices, then there is a potential way out. We
can take the base logic to be an extension of K□T that is not an extension of
KT. In model-theoretic terms, the idea is to constrain the accessibility relation
to be quasi-reflexive but not necessarily reflexive. K□T generates KT, so any
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extension of K□T will generate an extension of KT. So it will be a theorem
of the generated logic that if it is determinately true that α then α. Some of
these logics will generate a strongly classical logic. For instance, by Corollary
4.5 K□T itself generates a strongly classical logic. So perhaps there is a way
to find an improved supervaluational approach, after all.

The trouble with this suggestion, though, is that it is difficult to make sense
of the resulting view. In the base logic, it is a theorem that it is determinately
true that if it is determinately true that α then α. But it is not a theorem
that if it is determinately true that α then α. How should we understand this?
Relatedly, in the corresponding model theory, each world that is accessible from
some world is accessible from itself. But not every world need be accessible
from itself. Why is this the case? Why wouldn’t a truth assignment (or package
of semantic rules that induces a truth assignment) be accessible from itself?
The account is philosophically very murky.56

Now consider the second project, that of defining logical consequence in
terms of the preservation of an epistemic status. The results here suggest that
some versions of this project, too, face trouble.57 If the epistemic status is
factive, such as one is in a position to know or one has conclusive reason to
believe, and if the generated consequence relation is supposed to be strongly
classical, then the same kind of difficulty will arise here as arises for the case of
vagueness. Presumably, the relevant epistemic base logic will be an extension
of KT. By Proposition 4.6, the only strongly classical normal modal logic
extending KT that generates a strongly classical logic is Triv. Triv generates
Triv. But Triv is clearly mistaken when “□” stands for “one is in a position to
know” or “one has conclusive reason to believe”. As before, one could try to
use an extension of K□T as the base logic rather than an extension of KT. But
again, as before, it is not clear how to make intuitive sense of such a view.58

A perhaps better suggestion would be to define logical consequence in terms
of the preservation of a non-factive epistemic status, such as one is rationally
committed to or one has justification for believing. The epistemic modal logics
for these statuses do not extend KT, so aren’t saddled with the same problem.
There are interesting questions about just what the correct epistemic modal
logics are for these statuses. Should they include D? What about B, 4, or 5?

56But see [38] for a somewhat different formalism that may avoid this problem. On this alter-
native approach, each model has (in effect) a set of actual worlds. What’s true in a model is
what’s true at all of its actual worlds. Consequence is global validity, that is, it is defined in
terms of the preservation of truth in each model. The advantage of this formalism is that for the
base logic (in my sense) to be K□T corresponds to the frame condition of reflexivity (rather than
quasi-reflexivity) in such models. This is a far more natural condition to impose. A problem with
this approach is, as [43, p. 527 n. 6] points out, that it breaks the connection between □ and
supertruth, which “flouts the point” of having the modal operator in the language.

57See [31] for related problems facing epistemic characterizations of validity.
58Inferentialists about logic often endorse intuitionistic rather than classical logic. On the typical

inferentialist intuitionistic view, meta-rules such as Conditional Proof constitute or determine
the meanings of the logical constants. So on such a view, then, it will be important that the
generated logic be strongly intuitionist rather than weakly intuitionist. Many of the results here
can be generalized to the case of intuitionistic logic. For instance, the intuitionistic analogue
of Proposition 4.6 states that any strongly intuitionistic normal modal logic extending KT that
generates a strongly intuitionistic logic will have ¬(α ∧ ¬□α) as a theorem. Since this claim is
clearly mistaken when “□” stands for “one is in a position to know that” or “one has conclusive
reason to believe that”, moving to an intuitionistic base logic doesn’t avoid the problem.
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Some choices of a base epistemic modal logic yield an overly strong generated
logic. For instance, if the base logic includes 4 (e.g., if one has justification for
believing a claim then one has justification for believing that one has justifi-
cation for believing the claim), then the generated logic will include p/□p as a
derivable rule (e.g., from a claim it follows that one has justification for believ-
ing it). On the face of it, this is implausible.59 One way to see this is to notice
that the logical consequence relation presumably tells us not only what follows
from believed claims but also what holds under claims that are merely hypo-
thetically supposed. It is implausible that under the supposition of a claim α,
one always has justification for believing it.60 But given a weak enough base
epistemic modal logic, perhaps a version of this approach could be developed
that avoids these difficulties. Or perhaps a proponent of an epistemic charac-
terization of consequence should reject the requirement to generate a strongly
classical (or strongly intuitionistic) logic.*
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[21] Lorenzen, P. Einführung in die operative Logik und Mathematik Vol. 78
of Grundlehren der mathematischen Wissenschaften (Springer-Verlag,
Berlin, 1955).

https://doi.org/10.1093/analys/53.4.193
https://doi.org/10.1007/bf00485047
https://doi.org/10.1093/analys/53.4.201
https://doi.org/10.1093/mind/106.424.641
https://doi.org/10.1007/s10992-015-9354-x
https://doi.org/10.1093/logcom/exi029
https://doi.org/10.1093/logcom/exi029
https://doi.org/10.5840/philtopics20002819
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1002/malq.19630090502


54 Supervaluationism, Modal Logic, and Weakly Classical Logic
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