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In a recently proposed quantum measurement theory the definiteness of quantum 
measurements is achieved by means of "'special" states. The recovery of the usual 
quantum probabilities is related to the relative abundance of  particular classes of 
"'special" states. In the present article we consider two-state discrimination, and 
model the apparatus modes that could provide the "special" states. We find that 
there are structural features which, i f  generally present in apparatus, will provide 
universal recovery o f  standard probabilities. These structural features relate to the 
distribution o f  certain Hamiltonian matrix elements or interaction times. In 
particular, those quantities must be asymptotically (x ~ ov ) distributed according 
to the Cauchy law, C~(x) ~= a/~(x 2 + a2). 

1. INTRODUCTION 

In a recent series of publications, (~-4) it has been suggested that quantum 
measurements have definite results (rather than superpositions of living 
and dead "cats") by virtue of special initial conditions of the measurement 
apparatus. It is the choice of which of the "special" initial conditions 
obtains that determines the outcome of a particular experiment. For 
this deterministic theory to recover the usual quantum probabilities, 
requirements are placed on the relative numbers of apparatus "special" 
states that lead to one or another outcome. In the present article we report 
progress in calculating these relative numbers. 
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To follow the forthcoming presentation, familiarity with the above 
referenced measurement theory is necessary. Reference 4 is an exposition of 
that theory that I believe provides suitable preparation, and I will hence- 
forth assume knowledge of the first three sections of that article (the sub- 
stance of which is found dispersed in Refs. t-3). Implicit in this course of 
action is a serious caveat: Because that theory contradicts deeply held 
intuitions on causality and time's arrow, the reader of the present article 
who is not familiar with the earlier work will find those intuitions a severe 
hindrance to comprehesion of what now follows. 

Our concern here is the relative number of "special" states leading to 
one or another "definite" outcome in a situation where the experimental 
system distinguishes between one of two possible values for an observable. 
To study this, we will focus on a particular example, measurement of the 
z-component of a spin-l/2 particle by means of the Stern-Gerlach experi- 
ment. When we begin to calculate things, however, no specific properties of 
that setup will be invoked. 

The purpose of estimating numbers of special states is to recover the 
experimentally verified standard probability predictions, namely the rela- 
tion of probability to I~12, as postulated by Born. (5) In our forthcoming 
presentation we will use the expected relation between probability and 
wave function to establish severe constraints on the properties of measure- 
ment apparatus. We will then dramatize the impact of these constraints by 
suggesting the impossibility of satisfying them. But like a playgoer armed 
with a telltale review, the reader will already appreciate that the constraints 
can be satisfied. Nevertheless, they can only be satisfied by apparatus with 
properties to be spelled out below and related to having certain system 
parameters distributed according to the Cauchy distribution [Eq. (8)]. 
For our measurement theory to be valid, this would imply the broad 
occurrence of this distribution, since there is nothing peculiar about the 
collimator and magnets of a Stern-Gerlach apparatus. It is this require- 
ment on parameter distribution to which the title of the present article 
refers. 

And there is a second surprise. We indicated that satisfying "Proba- 
bility -,~ 1~12,, forced a particular parameter distribution on systems, and, as 
will be seen below, this forcing arises from the requirements expressed by 
a certain functional equation. What if we had tried lot 1, the first power? It 
is an amusing historical footnote ~5~ that this was Born's first guess. 

For us the first power would not work (nor would any other power). 
The functional equation would not have a solution. This means that our 
approach imposes a theoretical requirement for "Probability ~ l~biz." From 
the standpoint of the Copenhagen interpretation I don't know of any 
theoretical justification of the fact that the square of 101 is involved, and 
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until now my personal view has been to consider this an example of the 
mysterious meshing of Nature and mathematics: Hilbert space stands out 
among vector spaces because of its norm (which allows the definition of an 
inner product) and just this norm is related to physical measurements. But 
the present approach singles out the square of [~1 for reasons that seem 
unrelated to Hilbert space structure. 

2. ANALYSIS OF APPARATUS 

The nominal experimental situation is the Stern-Gerlach spin 
measurement for an atom with net spin 1/2, a two-state system. As usual 
in our theory, no degrees of freedom can be ignored and we must consider 
a comprehensive Stern-Gerlach apparatus, where "comprehensive" 
indicates that, at the very least, account must be taken of the source of the 
atom, its internal degrees of freedom, collimators, sources for the currents 
giving rise to the magnetic field, walls of the chamber, gases in the cham- 
ber, microscopic structure of the film, or whatever it is that registers the 
ultimate capture of the atom in the spin-up and spin-down regions of the 
detector. This partial listing should remind the reader that our approach 
recognizes the measurement as a far more complex procedure than can be 
analyzed by simply replacing the apparatus by a fixed nonuniform 
magnetic field and idealizing the rest. 

In the face of these myriad degrees of freedom one can simply throw 
up one's hands and say, anything goes. Indeed, when one messes with the 
arrow of time, pretty much anything does go, so long as the microscopic 
equations of motion are satisfied. However, bearing in mind the two time- 
boundary condition rationale, (4) there are still rules, gradations of  the 
unlikely. For example, consider the cat map discussed in Ref. 4. This is the 
map of the unit square into itself: x '  = x + y, y '  = x + 2y, both modulo 1. In 
Ref. 4 we studied two-time boundary conditions in which a pair of subsets 
of the unit square Ao and AT were given. We then considered trajectories 2 
that began in Ao and after T steps arrived in A r. At intermediate times 
(and for large T) the points are widely dispersed even though Ao and AT 
were small. An interesting and perhaps enlightening aspect of this arrange- 
ment is that if one watches the system approach the "final" time T, the 
dispersed points gather in what one might (if unaware of the two-time 
boundary condition) consider an unlikely way, and show an entropy 
decreasing convergence. 3 But now we ask, having suffered an "unlikely" 

-'A "trajectory" is a set of pairs {(xo, Yo), (xl, Yl),..-, (Xr, Yr)} such that x~+l =xr+y~, 
yt+l=xt+2yt (mod I) for t=0, 1,..., T.-I. 

3 In more detail: (xo, yo)~Ao and (x r, Yr)eAr, so that the trajectories are solutions of a 
two-time boundary value problem. For any fixed t, call At the set of points {(x, y,)} that 
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confluence into A r, how are the points distributed within A ~-? The answer, 
for most computer simulation runs, is that they are distributed fairly 
uniformly. Such a "fairly uniform" distribution is of course the relatively 
most likely situation, given the overall conditioning on arrival in A r- Thus, 
in satisfying the unlikely two-time boundary condition, one generally 
satisfies it in the least unlikely way. This will be our basic operating 
assumption in the search for special states. 4 This procedure is effectively a 
restatement of our basic probability postulate relating probabilities to 
dimensions of special state subspaces. 

Faced therefore with an enormously complex apparatus, our approach 
will be to try to identify the least unlikely way to accomplish the 
"specializing," namely the finding of microscopic apparatus states that 
cause the final overall quantum state to possess a single macroscopic 
description. 

The macroscopic description of the events we study is as follows: 
There is a source preparation region from which we have reason to believe 
there emerges an atom with a spin state oriented at some particular angle 
with respect to the z-axis. Downstream from this region are collimators, 
magnets, and finally detectors in which a macroscopic detection event 
occurs. For many repetitions, the up versus down ratio of detections is the 
cotangent squared of the angle. 

Let us suppose that we know enough about the preparation procedure 
to assign (by conventional analysis) a wave function of the following sort 
to the initial atomic spin state 

uo = exp( iaxO/2 ) ( lo ) (I) 

After passing through the magnets, a relative amount of atomic wave func- 
tion proportional to cos(O~2) will arrive in the neighborhood of the spin-up 
detectors and an amplitude proportional to sin(0/2) will arrive in the 
neighborhood of the spin-down detectors. Then, by the usual postulates, 
there will be final up/down probabilities in the ratio (cos z 0/2)/(sin 2 0/2). 

lie on the trajectories for that fixed time. As t increases from 0, A~ spreads (is actually a 
highly stretched and chopped version of A0) and its points disperse ever more widely within 
the unit square, until it is hard to distinguish their distribution from the uniform distribu- 
tion. As t approaches T, they begin to contract in a way that is substantially a time-reversed 
playback of the initial dispersal (for Ao and A r  of the same size and shape), 

4 There is an important, perhaps philosophical, point here that we do not address: If we are 
dealing with a single system---the entire universe--how can an ensemble point of view be 
justified? As remarked in Ref. 4, the same issue arises in justifying the usual initial condition 
probabilities and I would say that in neither situation is there a complete understanding. 
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Within the context of our theory, the problem facing us is how to get 
the wave function of the a tom from the uo preparation device to evolve 
entirely to the neighborhood of one or the other of the detectors, 5 and in 
particular the least unlikely way to accomplish this. We have at our dis- 
posal the entire collection of microscopic degrees of freedom. Furthermore, 
once we have found ways to do this, we will want to count the relative 
numbers for getting up or down spins and see whether we can recover the 
ratios given above. 

As a general principle we will assume that the fewer the number of 
degrees of freedom that need to be acted on, the better, that is, the less 
unlikely. Thus, if the "specializing" takes place after the a tom has passed 
through the Stern-Gerlach magnetic fields, then its translational degrees of 
freedom will have to be acted on, which would not have been the case prior 
to entering the fields (because that's the function of the fields, to make spin 
differences also be manifested as positional differences). Our  expectation 
therefore is that the easiest way to get the entire a tom into the up counter 
(say) is to act on it before it gets to the Stern-Gerlach fields; at this earlier 
stage only the single coordinate 0 need be affected by whatever microscopic 
apparatus degrees of freedom are needed to do the job. 6 

At this point it should be clear that our problem has little to do with 
the specifics of the Stern-Gertach experiment. Abstractly speaking, we need 
modes of the system capable of rotating the atomic spin about  its x-axis. 
These are the modes that can affect 0 and if we successfully send 0 to 0 or 
re, then the "specializing" will be complete. The normal operation of the 
Stern-Gerlach apparatus will then carry the a tom entirely to one or the 
other of the exit channels. 

To summarize: The least unlikely way to get the a tom to go to only 
one detector area is to rotate it to a spin-up state or a spin-down state 
before it enters the Stern-Gerlach magnetic fields. 

What  apparatus degrees of freedom can do the job of turning 07 It  is 
clear (although one usually neglects these effects) that quite a bit of the 
matter  and "stray" fields encountered by the a tom on its way to the 
Stern-Gerlach specific region can interact with the atomic spin. Fluctua- 

s Note that there is no reason why an incoming atom with (say) 0=45 ° cannot emerge as 
entirely spin-up. An irate colleague of mine once insisted that such a rotation was forbidden 
by conservation laws. Not so. Within the Stern--Gerlach region there are strong, 
inhomogeneous magnetic fields; having an incoming spin-up state usually emerge as a 
spin-up state is only a consequence of the adiabatic approximation. The apparatus has no 
trouble picking up the recoil angular momentum from the rotated atom. 

6 Note too that as a consequence of having two-time boundary conditions the region where 
the "specializing" takes place may be distant from where one conventionally thinks the 
measurement or its registration occurs. 

825/2t/8-5 
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tions in collective magnetic fields, "chance" collisions, and much more, can 
contribute. For this reason, and also because we expect our considerations 
to be general, we will not even try to identify the detailed mechanisms. 
Instead we will focus on only that portion of the vast multiparticle 
Hamiltonian that is specifically potent for the operation we require. This 
will involve coupling between the spin raising and lowering operators of 
the atomic spin and the apparatus degrees of freedom. Various general 
forms of such couplings can be proposed and we find it most convenient 
to express this specifically interactive part as 

H,= 20~P=ax (2) 

The operator P~ in (2) is built from the apparatus degrees of freedom and 
we have taken it to be a projection operator on some particular (collective) 
apparatus mode, labeled by e. The quantity ~b~ is a coupling constant. We 
also assume that the P~ commute with one another, for which a sufficient, 
but not necessary, condition is that the atoms associated with the respec- 
tive modes be located in substantially disjoint regions of space. Our picture 
is that the atom passes through various apparatus regions and if the 
apparatus mode e is excited in that region (P~ has eigenvalue 1) then there 
is a kick, proportional to ~b~, to the spin coordinate 0. Clearly this is not 
the most general possible Hamiltonian and we will comment later on other 
possibilities. 

We remark that our attitude with respect to this "specializing" process 
is similar to the way one handles Brownian motion. As in many statistical 
mechanics treatments, the exact nature of the forces is unspecified and one 
concentrates on the statistics of quantities like ~b~. 

Under time evolution (for a time T), the initial state uo is subjected to 
the following operator 7 

U=exp(-iH, T)=exp (-iT~x ~ n~b~) (3) 

with n~ = 0 or 1 and where the apparatus is initially taken to be in an 
eigenstate of {P~}. This has the effect of rotating the spin about the x-axis 
so that 

0 --, 0 - 2 T  ( 4 )  

7 In Eq. (2) there is also a suppressed dependence on the atom's position coordinates. Conse- 
quently the quantity T appearing in (3) should really depend on the passage time through 
the region associated with P~. In (3) it might thus be preferable to write Z T:n,O:. For 
simplicity, however, we will leave T~s ~ dependence inexplicit and absorb this variation into 
the coefficients ~b~. 
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In the language of Refs. 1-4, a "special" state of the apparatus would be 
one for which the new angle is either 0 or n. That is, a state (characterized 
by {n~}) is "special" if 

O_2T ~ n ~  = {0 m o d 2 r r ; c a s e U P  or 
mod 2~z; case D O W N  (5) 

According to Refs. 1-4, the relative number of UP outcomes to 
D O W N  outcomes (in a sequence of experiments with the same initial uo) 
is proportional to the relative number s of apparatus microstates that yield 
the respective outcomes. In our current formulation this depends on the 
distribution of the ~ .  

It is convenient, and justified by the probability postulate of Ref. 4, to 
use probabilistic language. Instead of saying "the number of apparatus 
microstates" accomplishing some end we will speak of the probability that 
the apparatus accomplishes that end. We then combine the product n,~b, 
into a single random variable, to be called ~,,  and which may also take 
the value zero. 9 We next define the function f ( 0 )  to be, alternatively, the 
number of apparatus states for which 2 T ~  n ~ , =  0, or the probability 
that 2 T ~  ~b~ = ~,. These are not rood 2r~ equations. Note that since we only 
consider ratios of f ' s  we need to confront neither the possible infinite 
dimensionality of the overall Hilbert space nor the implicit dO's in the 
definition (5). 

The summation in Eqs. (2)-(5) is over , ,  modes that are in a sense 1° 
independent of one another. We take the number of such modes (or inde- 
pendent random variables) to be N. The expected large value of N already 
indicates that an unusual spectrum of fluctuations wilt be needed in the 
apparatus. Suppose the probability density for the ~, distribution is g(~). 
Assuming g(~b)= g(-~b), one might expect the N-times sampled g(~b) to go 
over to a Gaussian exp(-~2/2Na 2) with cr 2 the single-~b second moment. 
There is no ~ that gives the answer we require: Moderate o will (with 
large N) lead to a flat distribution when the identification of ~b with ~ + 2~z, 
~b + 4~, etc., is made. On the other hand, very small a can at best give a 
Gaussian, which, when summed, also fails to give a cos2 0/2 distribution. 
The loophole will turn out to involve a 2, the second moment. If we were 

s By which is meant C1~4~ the dimension of the appropriate subspace. 
9 The random variable ~b, is a different object from n~b~ and it lumps together the ranges of 

possibilities open to both n~ and to (the originally defined) ~.  To simplify notation, we also 
use ~ for the random variable. As noted above, the "T" in Eq. (4) should vary with the 
exposure time to the various perturbing modes. This effect too is included in the total kick 
administered by the mode c~. 

1°That sense alternatively phrased as commutation of {P~} or statistical independence of 
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to drop its assumed existence, then we would no longer be forced by the 
central limit theorem to get a Gaussian. 

Now we relate f(O) to the probabilities that occur in a series of 
experiments starting with spin states Uo. The ratio of UP to DOWN obser- 
vations is 1/tan2(0/2). For this apparatus, not only will 0=  2 T ~  ~b~ yield 
UP, but so will O+2kzc=2TZ~ for any k, k=0 ,  ±1, +2  ..... Define 

V(O)= ~. f(O+ 2k~) (6) 
k = - - ~  

To get a DOWN measurement, not only will 0 =  z ~ - 2 T ~  ~b~ do the job, 
but adding integer multiples of 27r will accomplish the same result. Using 
the evenness of f(O) [which follows from that of g(~b)], we have that the 
number of ways to get a DOWN measurement is F(O + r O. It follows that 
F (and thus implicitly f )  must satisfy the functional equation 

tan2 0 F(O+rc) (7) 
2 F(O) 

To recap, whatever distribution f one gets from g, recovery of the vast 
body of experience supporting the relation of frequency of observations to 
absolute value squared of the wave function, requires the satisfying of 
Eq. (7). 

Remark. At this point, pessimism could well be in order regarding 
the possibility that "special" state abundances could reproduce the 
probabilities of the Copenhagen interpretation. In the latter, the recipe for 
experimental prediction is simplicity itself: Take the absolute value squared 
of the appropriate piece of wave function. According to Refs. 1~4, however, 
for each apparatus one must look at its complex inner workings and find 
"special" states whose abundance must recover the standard and universal 
probabilities, in the case we have discussed, this outrageous requirement 
takes the form of the functional equation (7) in which F is itself given by 
a difficult-to-calculate f which is in turn given by an unknown distribution 
g. How could one hope for success? 

3. SATISFYING THE CONSTRAINTS 

The key is the observation made earlier that to avoid the straight- 
jacket imposed by the central limit theorem, g(%) should not have a second 
moment. The function f is the sum of N such random variables. Recalling 
the L6vy distributions (6'7) suggests that the large 0 dependence of f(O) 
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should be of the form 0-L Furthermore, we expect our "special" states to 
be unusual, so that f (0)  should either be infinite or extremely large, u We 
therefore assume the 0 -~' dependence to hold down to small 0. From 
Eq. (6), it then follows that the right-hand side of Eq. (7) will be dominated 
by l/riO) for 0 near 0. This implies that 7 = 2. Such a drop-off is charac- 
teristic of the Cauchy distribution 

d 
Ca(X)= (a2+x2) (8) 

For now we assume the microscopic parameter ["a" in (8)] to be 
negligible. The requirement of agreement with experiment, together 
with our now determined ~,. = 2, then imposes the demand [a hybrid of (6) 
and (7)] that for a/ /0 

0 F(O+~) ~ 1 
tan2 2 = F(O) ' with F(O) = ~ = -~  (0 + 2mz) 2 (9) 

The sum in (9) is well-known expansion of 1/(4 sin 2 ½0). Thefirst equality 
in (9) is therefore an identity! 

So the apparently impossible requirements can in fact be satisfied. 12 
We now examine issues bypassed earlier. 

We first remark that there was little significance to the particular form 
for the Hamittonian, Eq. (2). It allowed us to treat the action of the 
apparatus as a sequence of N independent kicks. For systems in which such 
a breakup is impossible, the considerations of this paper offer neither 
contradiction nor confirmation on the matter of "special" states. [An 
alternative to Eq. (2), leading to the same overall conclusions, replaces 
P~ by A~ + A~, with A~ fermion operators.] 

u This is a reflection of our earlier observation that the effects contributing to "specializing" 
are usually considered negligible (so that 0 not being kicked at all is by far the most likely 
event). Recall the ice-water example of Ref. 4. Suppose one wished to estimate the one 
o'clock state of a glass of H 2 0  from its two o'clock condition, that is, partly ice, partly 
water. Then, if one neglects coherences and coincidences, one would expect to get a smaller 

ice cube at one o'clock. Of  course, because we are working back to an initial condition, such 
coincidences are not negligible and the ice cube is in fact larger. However, if one did not 
include boundary conditions and only enumerated possible states and evolutions, the 
number of ways to a get a smaller ice cube would be vastly larger than that number for any 
other outcome. This is the analogue of our f(0) ,  which represents the number of ways for 
the system not to be rotated. 

i2 As remarked earlier, for rules other than '~Probability ~ [~[2,, we would not have been able 
to find a physically reasonable solution to the functional equation corresponding to (9). 
This is shown in the Appendix. 
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The Cauchy distribution, C~ of Eq. (8), has allowed us to achieve a 
result that, at least to one schooled in the Gaussian, is counterintuitive. For 
small a, even after many trials, generally speaking, nothing happens. 
However, the distribution's lack of both first and second moments means 
that when large deviations do occur they are without scale. Thus a 10 ° kick 
and a 20 ° kick are both unlikely, but their relative degree of unlikeliness is 
independent of a, for small enough a. The infinite moments also mean that 
although by some measures (e.g.,a) the kicking modes are small, 
nevertheless their effect can be large. 

Another property of the Cauchy distribution that differs sharply from 
the corresponding finite moment result is the way sums of these variables 
manage to achieve rare results. The way to get a group of humans whose 
total height is unusually large is to find a lot of tall people. The way to get 
a sum of Cauchy distributed random variables to be large is to have one 
be large and all the others small. ("The way" means the least unlikely way.) 

If X and Y are Cauchy distributed with parameters a and b, then 
X +  Y is Cauchy distributed with parameter a + b. Thus if g(q~) is Cauchy 
with parameter a, then f is Cauchy with parameter Na. The satisfying of 
Eq. (7) therefore depended on Na ~ 1. 

We next explore the consequences of finite Na. Let F - N a .  Then 

F(O) = F_ 1 
7r . . . .  (0 + 2nrQ 2 + F 2 

1 ( 1 ) (1/2~) tank ½F 
=2--~ Im tan ½(o-it) - s i n  2 ½0+cos 2 ½0 tanh 2 ½F (10) 

For an initial state Uo, the probability of observing UP is 

F(O) cos2(0/2) + sin2(0/2) tanh2(F/2) 
Prob(UP) - F(O) + F(O + ~) - 1 + tanh2(F/2) ( 11 ) 

For small F this gives 
0 F 2 

Prob(UP) ~ cos 2 ~ -  ~ cos 0 (12) 

This is not the standard result. An atom going in with spin up (0 = 0) has 
probability F2/4 of being misread as down. It is not clear whether this is 
measurable. If F is microscopic, not only is precision in 0 a problem, but 
there are already a priori reasons ~8) for expecting a microscopic level of 
measurement errors. 

There is, however, an aspect of our current considerations that has far 
reaching consequences and may allow experimental verification. If our 
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measurement theory is valid and if "special" states occur in the way 
elucidated by our present considerations, then many systems will have 
pieces in their Hamiltonians either of the form (2) or of a similar form. In 
particular they will have parameter distributions or interaction time dis- 
tributions whose tails are Cauchy distributed. When "special" states are 
needed, these modes are the most efficient way to provide them, but these 
dynamical degrees of freedom are present even when no constraints or con- 
ditioning exists. Under the latter circumstances they will assume "random" 
values and share available thermal energy, like any other modes, t3 Thus 
material systems are expected to have fluctuations arising from these 
modes. A question now under investigation is whether these fluctuations 
are in any way distinguishable from the usual sort. Does the potential for 
extremely large amplitude fluctuations, in particular the infinite moments 
in the parameter distribution, lead to any recognizable experimental 
signature? Although these modes may be rare, their infinite moments may 
nevertheless have measurable effect outside the specific realm of "special" 
states. 

Having postulated the widespread occurrence of Cauchy noise, we 
comment on its possible origin and magnitude. In fact, one does not need 
to look very far to find Cauchy-distributed energy transfers within ordinary 
matter. Consider a particle scattering from an atom in a metastable state. 
If in the course of the scattering the atom decays, the range of photon 
energies involved is of the form (8) (the Lorentz line shape), and by conser- 
vation of energy the distribution of energies picked up by the other 
elements of the system is just the Cauchy distribution. Mechanisms of this 
sort play a role in the work of Bell et al. f9) in establishing scaling properties 
in stellar atmospheres. 

As to the magnitude of the Cauchy noise, from Eq. (12) one concludes 
that F (and thus a = F/N) is small (or else we are already seeing an 
experimental disproof of our theory). If one considers scattering from 
metastable states to be the source of the Cauchy distributed angular kicks, 
then three physical quantities enter the determination of I:  These are the 
transition matrix elements for the metastable state, the passage time for 
the particle through the region where it interacts with the system in the 
metastable state, and the interaction energy for the coupling of the atomic 
spin to the metastable state. Roughly speaking this should give a Cauchy 
parameter 

passage time of atom 
a ~ Hatorni c spin-- metastable system lifetime of metastable state 

~3 An analogy can be made to Brownian motion. The same modes that  can drive a grain of 
pollen one centimeter from its starting point also contribute to the fluid specific heat. 
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Amorphousness, defects, and other circumstances can contribute to 
extremely long-lived metastable states. That, combined with the weak 
coupling to the atomic spin, can lead to very small Cauchy parameters. On 
the other hand, there is reason to believe that the number of such 
metastable states can be extremely large. (For example, for a spin glass 
with equal and opposite ferromagnetic and antiferromagnetic bonds there 
is finite entropy at zero temperature. (1°~ This suggests that with deviation 
from perfect equality there will be a large number of metastable near- 
ground states.) 

Although we have just provided a particular source of Cauchy- 
distributed noise, we suspect that if such noise is present in all possible 
measurements, then it will arise from considerations even more general 
than those described. (Gases, for example, are not expected to have the 
kind of long-lived states that are present in amorphous systems.) Con- 
ceivably the long-tailed distribution could result from another property 
that invariably is associated with quantum measurements, the amplification 
from microscopic to macroscopic. The associated sensitivity could give rise 
to the possibility of extremely large deviations. There also seems to me to 
be an anology (or perhaps more) to the phenomenon of 1If noise. This 
noise occurs widely, and in each of its occurrences one can offer theoretical 
explanations. Nevertheless, the mystery is that despite the particularness of 
each explanation, there is a common pattern to these phenomena. (There 
are also universal, if controversial, explanations. Note too that 1/f is not 
really 1/f but one over f to some power, near, but generally not exactly 
equal, to one.) The 1/f phenomenon (including its scientific-sociological 
aspect) provides me at least with an apology for my own inability to 
exhibit a universal mechanism for Cauchy-distributed noise: The absence of 
such an explanation in the much more thoroughly observed l / f  case makes 
plausible the difficulties of explaining even ubiquitous phenomena. 

As remarked earlier, another way to induce a large change in the spin 
angle is to have the interaction time be long. There is in fact an extensive 
literature on trapping times, and the passage of electrons through 
amorphous materials provided one of the first physical examples of the 
need for distributions without variance. (6"~1~ 

4. DISCUSSION 

We have considered the general problem of apparatus that measures 
a two-valued observable and for convenience have focussed on an atomic 
spin measurement by means of a comprehensive Stern-Gerlach apparatus. 
For a sequence of measurements on an incoming state of the form given 
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in Eq. (1), laboratory experience gives the ratio of UP to DOWN 
measurements as cos20/2:sin20/2. The theory of Refs. 1-4 says that 
"special" states of the apparatus lead to final UP or DOWN states and 
that the dimensions of the subspaces for the respective outcomes provide 
the experimentally observed ratio. We here consider apparatus for which 
the coupling to the incoming states can be treated as a collection of N inde- 
pendent 14 kicks of the angle. The recovery of the universally observed 
1/tan2(0/2) then imposes severe restrictions on the distribution of kicks. We 
find the remarkable result that if the kick distribution coincides asymptoti- 
cally with the Cauchy distribution, one recovers the universal probabilities. 
Furthermore, for no simple rule other than "Probability ,,~ ItpJ 2'' can any 
distribution be found. These results lead to several observations: 

1. They suggest the presence of universal noise arising from the 
Cauchy-distributed elements of the Hamiltonian. We discussed only 2-state 
systems in which an independent kick assumption could be made, but if 
Cauchy-distributed noise appears here, it should appear generally as well. 
Multistate discrimination is discussed in Ref. 4. 

2. The scale of the noise is given by the parameter [ ;  defined above. 
Since large F would lead to deviations from the 1/tan2(0/2) ratio, informa- 
tion on F's size obtained from noise measurements would allow estimates 
of whether deviations from 1/tan2(0/2) would be observable. Note that 
since our demonstration is based on the asymptotic requirement for a 
Cauchy distribution, on scales small compared to a (=F/N), the 
microscopic distribution function g(~b) can differ from Ca of Eq. (8). The 
quantity a is therefore merely a parameter that sets the scale for the 
asymptotics. 

3. Whereas in the not-too-distant past the suggestion of the universal 
presence of Hamiltonian matrix elements and interaction times with infinite 
moment distributions may have been deemed unlikely, recently discovered 
properties of materials make this idea more attractive. ~6,H) Furthermore, 
we have noted that the Lorentz line shape introduces an element of 
Cauchy-distributed energy transfers in any system not at absolute zero. 

In this article we considered a Hamiltonian in which ax appeared. It 
is of course true that other couplings (e.g., ay terms in H1) can connect UP 
and DOWN states. Because these are less effective than ax at reaching pure 
UP or DOWN, greater, and thus less likely, kicks of this sort would need 
to be involved. Confining attention to ax is thus a restriction to the least 
unlikely sorts of "special" states. 

~4 Meaning, the degrees of freedom effecting the kicks commute. 
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We close by remarking that although we consider the work described 
here to be a considerable step forward in the development of the theory of 
Refs. 1-4, we do not wish to minimize the questions that still exist. In Ref. 4 
will be found a discussion of many such open problems. 

APPENDIX 

In this Appendix we consider the possibility that a power of the 
(absolute vNue of the) wave function different from the square should give 
physical probabilities. Calling this power fl, we have, in place of Eq. (7), 

i , tan F(O) ' with F(0)= f(O+ 2k7 0 (A1) 
k =  --ac. 

For 0 near zero, we again expect F(0) to be dominated by the k =  0 term, 
implying that f(O),.-. BO -p, with B a constant. Now, although 0 has just 
been described as "small," it is smallness on the macroscopic level that is 
intended, since microscopically there will be a cutoff on f(0) (analogous to 
the physical defusing of the mathematically "infinite" velocities in Brownian 
motion). On the other hand, the sources of f (and g) are microscopic fluc- 
tuations, so that even the small macroscopic angle at which we determined 
f ' s  behavior to be BO-13 us already in the asymptotic regime. Since f is the 
sum of a large number of random variables with no second moments (or 
even no first moments), in its asymptotic regime it is necessarily of the form 
of the stable distributions (7/and therefore has the form of a power. Conse- 
quently, for any macroscopic angle we have, not merely similitude, but 
equality: f(0 ) = BO- l~. 

Our putative identity therefore takes the form 

! O r' F(O+7~) ~ 1 (A2) 
tan~ F(0) ' with F(0)= iO+2n~[~ 

(the B cancels). For f i¢2,  Eq. (A2) is simply not true. First, for the case 
/~ ~< 1, the sum in (A2) diverges and in any reasonable cutoff scheme the 
ratio [in (A2)] gives 1, not Itan 0/2t ~. Next, for/?> 1, we can see that (A2) 
is false by expanding near 0=0.  To lowest order, if (A2) were true, we 
would have 

t~tP=2 ~ o  [(2n+ 1)~] -~ 0_ ~ (A3) 

The 0 8 cancels. The right-hand side of Eq. (A3) is related to the Riemann 
zeta function and were (A3) valid we would have expressed that function 
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as a simple combination of powers. But it is not valid, and equality in (A3) 
holds only at/~ = 2. 

We have thus shown that from our point of view, that is, when 
probabilities are gotten by counting special states, no power other than the 
second (for {Of) can satisfy the restrictions developed in this article. Thus, 
without Cauchy-distributed matrix elements (or times) there is no way to 
satisfy those restrictions and with those matrix elements it is only possible 
to get a simple rule if that rule involves the square. 
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