Thin Equivalence Relations in Scaled Pointclasses

Ralf Schindler and Philipp Schlicht

May 13, 2011

Abstract

An inner model-theoretic proof that every thin $\Sigma_1^{J_{\alpha}(\mathbb{R})}$ equivalence relation is $\Delta_1^{J_{\alpha}(\mathbb{R})}$ in a certain parameter is presented for ordinals α beginning a Σ_1 gap in $L(\mathbb{R})$ where $\Sigma_1^{J_{\alpha}(\mathbb{R})}$ is closed under number quantification. We use the (optimal) hypothesis $\mathsf{AD}^{J_{\alpha}(\mathbb{R})}$.

Several results in descriptive set theory proved from determinacy have been studied from an inner model-theoretic perspective [3, 4]. In this line of research we present a new proof of a result of Harrington and Sami [1] on thin equivalence relations. The proof allows us to isolate the optimal hypothesis for the following type of equivalence relation.

Theorem 0.1. Let $\alpha \geq 2$ begin a Σ_1 gap in $L(\mathbb{R})$ and assume $\mathsf{AD}^{J_\alpha(\mathbb{R})}$. Also, setting $\Gamma = \Sigma_1^{J_\alpha(\mathbb{R})}$, assume Γ to be closed under number quantification, i.e., $\forall^{\mathbb{N}}\Gamma \subset \Gamma$. Let E be a thin Γ equivalence relation and \mathcal{N} an α -suitable mouse with a capturing term for a universal Γ set. Then E is $\check{\Gamma}$ in any real coding \mathcal{N} as a parameter.

An equivalence relation E is called *thin* if there is no perfect set of pairwise E-inequivalent reals. The notion of α -suitable mice with capturing terms (which is due to Woodin) is described in our section 1 and in detail in [7]. Such α -suitable mice are in a sense analogues of $M_n^{\#}$ (capturing Σ_{n+2}^1) which capture more complicated sets of reals. The pointclass $\Gamma = \Sigma_1^{J_{\alpha}(\mathbb{R})}$ as in the statement of Theorem 0.1 is scaled under $\mathsf{AD}^{J_{\alpha}(\mathbb{R})}$ (cf. [8]).

The remaining cases for α which we address in this paper are subsumed in

Theorem 0.2. Let $\Gamma = \Sigma_n^{J_\alpha(\mathbb{R})}$ where $\alpha \geq 2$ begins a Σ_1 gap, n = 1, and α is a successor ordinal or $cf(\alpha) = \omega$, or else α ends a proper weak Σ_1 gap and n is least with $\rho_n(J_\alpha(\mathbb{R})) = \mathbb{R}$. Assume $\mathsf{AD}^{L(\mathbb{R})}$. Then every thin Γ equivalence relation is $\check{\Gamma}$.

In section 1 we collapse a substructure of a suitable premouse and prove upwards absoluteness for the preimages of capturing terms. In section 2 the method of term capturing is applied to prove Theorem 0.1 building on an argument of Hjorth [4, Lemma 2.5] for Σ_2^1 equivalence relations. Theorem 0.2 is proved in section 3.

We wish to thank the referee for his thorough and helpful report.

1 Weak term condensation

Let us fix an ordinal $\alpha \geq 2$ beginning a Σ_1 gap in $L(\mathbb{R})$ (cf. [8]) with the property that $\Gamma = \Sigma_1^{J_\alpha(\mathbb{R})}$ is closed under number quantification. Let us also assume $\mathsf{AD}^{J_\alpha(\mathbb{R})}$ throughout.

Definition 1.1. For any bounded subset A of ω_1 , the (α) -boundary lower-part closure $Lp^{\alpha}(A)$ of A is the union of all A-premice \mathcal{N} which are sound above A, project to $\sup(A)$, and are ω_1 -iterable in $J_{\alpha}(\mathbb{R})$ (i.e., there is an iteration strategy $\Sigma \in J_{\alpha}(\mathbb{R})$ with respect to countable iteration trees on \mathcal{N}).

Under $\mathsf{AD}^{J_{\alpha}(\mathbb{R})}$, any two A-premice as in definition 1.1 are lined up,¹ so that $Lp^{\alpha}(A)$ is well-defined.

Definition 1.2. An A-premouse \mathcal{N} for bounded $A \subseteq \omega_1$ with a unique Woodin cardinal $\delta = \delta^{\mathcal{N}}$ is called α -suitable if

- δ is minimal such that δ is Woodin in $Lp^{\alpha}(\mathcal{N}|\delta)$, and
- \mathcal{N} is the Lp^{α} closure of $\mathcal{N}|\delta$ up to its ω^{th} cardinal above δ , i.e. $\mathcal{N} = \bigcup_{k \in \omega} \mathcal{N}_k$ where $\mathcal{N}_0 := \mathcal{N} | \delta$ and $\mathcal{N}_{k+1} := Lp^{\alpha}(\mathcal{N}_k)$ for all k.

In what follows, we let $\delta = \delta^{\mathcal{N}}$ always denote the Woodin cardinal of an α -suitable premouse \mathcal{N} .

Definition 1.3. An ω_1 -iteration strategy Σ for an α -suitable \mathcal{N} is fullness-preserving if for every iteration tree \mathcal{T} on \mathcal{N} according to Σ which lives below δ^2 we have that

- if the branch to the last model \mathcal{P} does not drop, then \mathcal{P} is α -suitable, and
- if the branch to \mathcal{P} drops, then \mathcal{P} is ω_1 -iterable in $J_{\alpha}(\mathbb{R})$.

¹Notice that if Σ and $\Sigma' \in J_{\alpha}(\mathbb{R})$ witness the countable A-premice \mathcal{N} and \mathcal{N}' to be ω_1 -iterable, respectively, then $\omega_1^{L[\Sigma,\Sigma',\mathcal{N},\mathcal{N}']} < \omega_1^V$ by $\mathsf{AD}^{J_\alpha(\mathbb{R})}$, so that \mathcal{N} and \mathcal{N}' can be successfully compared in $L[\Sigma, \Sigma', \mathcal{N}, \mathcal{N}'].$ ²That \mathcal{T} lives below ξ (or, on $\mathcal{N}|\xi$) means that \mathcal{T} may be construed as an iteration tree on $\mathcal{N}|\xi$.

Definition 1.4. Suppose Σ is an ω_1 -iteration strategy for a countable α -suitable Apremouse \mathcal{N} and $\mathbb{Q} \in \mathcal{N}$ is a forcing notion. A \mathbb{Q} -name $\dot{E} \in \mathcal{N}^{\mathbb{Q}}$ is said to capture a
set $E \subseteq \mathbb{R}$ relative to Σ if

$$\pi(\dot{E})^g = E \cap \mathcal{P}[g]$$

whenever $\pi : \mathcal{N} \to \mathcal{P}$ is a non-dropping iteration map produced by a countable iteration tree which is according to Σ and g is $\pi(\mathbb{Q})$ -generic over \mathcal{P} . \dot{E} is then also called a (\mathbb{Q}) -capturing term for E (relative to Σ).

Let $Col_{\eta} = Col(\omega, \eta)$ denote the forcing for collapsing η .

Theorem 1.5. (Woodin, see [7]) Assume $AD^{J_{\alpha}(\mathbb{R})}$ holds, where $\alpha \geq 2$ begins a Σ_1 gap in $L(\mathbb{R})$ and $\Sigma_1^{J_{\alpha}(\mathbb{R})}$ is closed under number quantification. Suppose $E \subseteq \mathbb{R}$ is a $\Sigma_1^{J_{\alpha}(\mathbb{R})}$ set. There is then a countable α -suitable A-premouse \mathcal{N} and a fullness-preserving ω_1 iteration strategy Σ for \mathcal{N} such that for every $\eta \geq \delta$ in \mathcal{N} there is a Col_{η} -name capturing E relative to Σ .

Let us fix such an A-premouse \mathcal{N} together with a fullness-preserving ω_1 -iteration strategy Σ . It is easy to see that Theorem 1.5 provides \mathbb{Q} -capturing terms for any forcing \mathbb{Q} in \mathcal{N} , since the forcing is absorbed in Col_{η} for some η . We now show that A-premice which embed into an initial segment of \mathcal{N} retain a weak capturing property.

Lemma 1.6. Suppose $E \subseteq \mathbb{R}$ is a $\Sigma_1^{J_\alpha(\mathbb{R})}$ set and \dot{E} , \dot{s} are Col_{δ} -capturing terms for Eand its $\Sigma_1^{J_\alpha(\mathbb{R})}$ scale (relative to Σ). Let $\pi : \mathcal{M} \to \mathcal{N} | (\delta^{+n})^{\mathcal{N}}$ be sufficiently elementary with $\dot{E}, \dot{s} \in ran(\pi)$ and $\dot{F} = \pi^{-1}(\dot{E})$, where $n \geq 2$. Then $\dot{F}^g \subseteq E$ for every $Col_{\pi^{-1}(\delta)}$ generic filter g over \mathcal{M} .

Proof. We argue that it is possible to replace \dot{E} with the name for the projection of a tree and we then use upwards absoluteness for this name. Suppose h is Col_{δ} -generic over \mathcal{N} and $\dot{T} \in \mathcal{N}$ is a Col_{δ} -name for the tree

$$T = \{ (x \upharpoonright k, (r_0(x)^{\mathcal{N}[h]}, ..., r_{k-1}(x)^{\mathcal{N}[h]})) : x \in \dot{E}^h = E \cap \mathcal{N}[h] \& k \in \omega \}$$
(1)

where the r_i are the ranks in the scale as computed in $\mathcal{N}[h]$ via the capturing term \dot{s} for the scale. The tree T is the image of a countable subtree S of the tree from the scale on E in V via the map which collapses the set of ordinals occuring in S to an ordinal, so that $p[\dot{T}^h]^{\mathcal{N}[h]} = E \cap \mathcal{N}[h]$. This implies $\dot{E}^h = E \cap \mathcal{N}[h] = p[\dot{T}^h]^{\mathcal{N}[h]}$.

Notice that $T = \dot{T}^h$ is independent of the choice of the particular generic h, and hence $T \in \mathcal{N}$. Suppose $p, q \in Col_{\delta}$ were conditions with $p \Vdash^{\mathcal{N}} (a, f) \in \dot{T}$ and $q \Vdash^{\mathcal{N}} (a, f) \notin \dot{T}$. We may pick generics h_p and h_q over \mathcal{N} with $p \in h_p$ and $q \in h_q$ such that $\mathcal{N}[h_p] = \mathcal{N}[h_q]$. As \dot{E} and \dot{s} capture E and its scale over \mathcal{N} , respectively, we have $\dot{E}^{h_p} = \dot{E}^{h_q}$ and $\dot{s}^{h_p} = \dot{s}^{h_q}$, so $(a, f) \in \dot{T}^{h_p} = \dot{T}^{h_q}$ by (1). This contradicts the choice of p, q. Now as $p[T]^{\mathcal{N}[h]} = \dot{E}^h$,

$$\Vdash^{\mathcal{N}}_{Col_{\delta}} \ p[\check{T}] = \dot{E},$$

and therefore

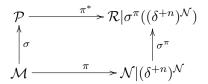
$$\Vdash_{Col_{\pi^{-1}(\delta)}}^{\mathcal{M}} p[\pi^{-1}(\check{T})] = \dot{F}.$$

This yields that $\dot{F}^g = p[\pi^{-1}(T)]^{\mathcal{M}[g]} \subseteq p[T] \subseteq E$ for every $Col_{\pi^{-1}(\delta)}$ -generic g over \mathcal{M} .

When \mathcal{M} is iterated, the capturing term is still upwards absolute.

Lemma 1.7. Suppose $E \subseteq \mathbb{R}$ is a $\Sigma_1^{J_{\alpha}(\mathbb{R})}$ set and \dot{E} , \dot{s} are Col_{δ} -capturing terms for Eand its $\Sigma_1^{J_{\alpha}(\mathbb{R})}$ scale (relative to Σ). Let $\pi : \mathcal{M} \to \mathcal{N}|(\delta^{+n})^{\mathcal{N}}$ be sufficiently elementary with \dot{E} , $\dot{s} \in ran(\pi)$ and $\dot{F} := \pi^{-1}(\dot{E})$, where $n \geq 2$. Let $\sigma : \mathcal{M} \to \mathcal{P}$ be a non-dropping iteration map via the pullback strategy. Then $\sigma(\dot{F})^g \subseteq E$ for every $Col_{\sigma(\pi^{-1}(\delta))}$ -generic filter g over \mathcal{P} .

Proof. Let $\sigma^{\pi} : \mathcal{N} \to \mathcal{R}$ denote the iteration map of the tree copied onto \mathcal{N} . There is an embedding $\pi^* : \mathcal{P} \to \mathcal{R} | \sigma^{\pi}((\delta^{+n})^{\mathcal{N}})$ such that the diagram



commutes. Then $\sigma(\dot{F})^g \subseteq E$ by the previous Lemma applied to \mathcal{R} .

2 At the beginning of a gap

As in the previous section we shall assume that α begins a Σ_1 gap in $L(\mathbb{R})$, $\Sigma_1^{J_\alpha(\mathbb{R})}$ is closed under number quantification, and $\mathsf{AD}^{J_\alpha(\mathbb{R})}$ holds. Let \mathcal{N} be an α -suitable A-premouse (for some A) as in definition 1.2, and let Σ be a fullness-preserving ω_1 iteration strategy for \mathcal{N} .

Definition 2.1. Let \mathcal{T} be a normal iteration tree of countable length on \mathcal{N} , and suppose that \mathcal{T} lives below $\delta^{\mathcal{N}}$. We then say that \mathcal{T} is short iff for all limit ordinals $\lambda < \mathrm{lh}(\mathcal{T})$, $Lp^{\alpha}(\mathcal{M}(\mathcal{T} \upharpoonright \lambda)) \models \delta(\mathcal{T} \upharpoonright \lambda)$ is not Woodin. Otherwise, we say that \mathcal{T} is maximal.

Lemma 2.2. The restriction of the ω_1 -iteration strategy Σ to short trees on \mathcal{N} is $\Sigma_1^{J_\alpha(\mathbb{R})}$.

Proof. Let \mathcal{T} be a countable short iteration tree of limit length which is on \mathcal{N} and according to Σ . We then have that $\Sigma(\mathcal{T}) = b$ if and only if there is a \mathcal{Q} -structure $\mathcal{Q} \leq \mathcal{M}_b^{\mathcal{T}}$ such that \mathcal{Q} is ω_1 -iterable in $J_{\alpha}(\mathbb{R})$. This immediately shows that Σ , restricted to short trees, is in $\Sigma_1^{J_{\alpha}(\mathbb{R})}$.

Lemma 2.3. For all $n \geq 1$ there is $\mathcal{M} \triangleleft \mathcal{N}$ and a fully elementary map $\pi : \mathcal{M} \rightarrow \mathcal{N}|(\delta^{+n})^{\mathcal{N}}$ with $\gamma = \pi^{-1}(\delta) < \delta$ and $V_{\gamma}^{\mathcal{M}} = V_{\gamma}^{\mathcal{N}}$.

Proof. Let us construct $(H_i: i < \omega) \in \mathcal{N}$ as follows. Let $\mathcal{P} = \mathcal{N}|(\delta^{+n})^{\mathcal{N}} + 1$. Set $H_0 = \emptyset$, and given H_i set

$$H_{i+1} = \operatorname{Hull}_{\Sigma_1}^{\mathcal{P}}(V_{\sup(H_i \cap \delta)+1}^{\mathcal{N}})$$

for $i < \omega$. Then $\gamma = \sup(\bigcup_{i < \omega} H_i \cap \delta) < \delta$ since δ is inaccessible in \mathcal{N} . Let

$$\pi^*: \mathcal{M}^* \to \bigcup_{i < \omega} H_i = \operatorname{Hull}_{\Sigma_1}^{\mathcal{P}}(V_{\gamma}^{\mathcal{N}})$$

be the inverse of the collapsing map. The construction ensures that $V_{\gamma}^{\mathcal{M}^*} = V_{\gamma}^{\mathcal{N}}$. We have $crit(\pi) = \gamma$ and $\rho_1(\mathcal{M}^*) = \gamma$. We easily get $\mathcal{M}^* \triangleleft \mathcal{N}$ by the Condensation Lemma (see [10, Theorem 5.5.1] or the remark after the proof of [6, Theorem 8.2]). Then

$$\pi^* \upharpoonright (\pi^*)^{-1}(\mathcal{N}|(\delta^{+n})^{\mathcal{N}})$$

is as desired.

Let us fix a notation: Given a forcing \mathbb{P} and a \mathbb{P} -name τ , let τ_i for i = 0, 1 denote $\mathbb{P} \times \mathbb{P}$ -names such that $\tau^{g_i} = (\tau_i)^g$ for any $\mathbb{P} \times \mathbb{P}$ -generic filter $g = g_0 \times g_1$.

Lemma 2.4. Let E be a thin $\Sigma_1^{J_{\alpha}(\mathbb{R})}$ equivalence relation. Suppose \dot{E} captures E over \mathcal{N} for the forcing $\mathbb{Q} = \mathbb{P} \times \mathbb{P}$. Then for every \mathbb{P} -name $\tau \in \mathcal{N}$ for a real,

$$(p,p) \Vdash_{\mathbb{Q}}^{\mathcal{N}} \tau_0 \dot{E} \tau_1$$

holds for a dense set of conditions $p \in \mathbb{P}$.

Proof. The proof is essentially that of [4, Lemma 2.2]. Suppose the set is not dense. In this case let p_{\emptyset} be a condition such that for every $r \leq p_{\emptyset}$ there are conditions $p, q \leq r$ with

$$(p,q) \Vdash_{\mathbb{Q}}^{\mathcal{N}} \neg \tau_0 \dot{E} \tau_1$$

Let $(D_i : i < \omega)$ enumerate the dense open subsets of \mathbb{Q} in \mathcal{N} . We can inductively construct a family $(p_s : s \in 2^{<\omega})$ of conditions in \mathbb{P} so that for all $s, t \in 2^n$ and $u \in 2^{<n}$

- $p_s \leq p_u$ if $u \subseteq s$,
- $(p_{u \frown 0}, p_{u \frown 1}) \Vdash_{\mathbb{O}}^{\mathcal{N}} \neg \tau_0 \dot{E} \tau_1,$
- p_s decides $\tau \upharpoonright n$, and
- $(p_s, p_t) \in D_0 \cap \cdots \cap D_n$ if $s \neq t$.

If we now define $g_x := \{p \in \mathbb{P} : \exists n < \omega(p_x | n \leq p)\}$ for each $x \in \mathbb{R}$, then $g_x \times g_y$ is \mathbb{Q} -generic over \mathcal{N} for all $x \neq y$ and

$$\dot{E}^{g_x \times g_y} = E \cap \mathcal{N}[g_x \times g_y]$$

since \dot{E} Q-captures E. We will then have

$$\mathcal{N}[q_x \times q_y] \vDash \neg \tau^{g_x} \dot{E}^{g_x \times g_y} \tau^{g_y}$$

and thus $\neg \tau^{g_x} E \tau^{g_y}$ for all $x \neq y$ because $\tau^{g_x} = (\tau_0)^{g_x \times g_y}$ and $\tau^{g_y} = (\tau_1)^{g_x \times g_y}$. Since τ^{g_x} depends continuously on x, the set $\{\tau^{g_x} : x \in \mathbb{R}\}$ is a perfect set of E-inequivalent reals, contradicting the assumption on E.

By Theorem 1.5, we may assume that our \mathcal{N} and Σ satisfy the hypothesis of the following theorem.

Theorem 2.5. Let E be a thin $\Sigma_1^{J_{\alpha}(\mathbb{R})}$ equivalence relation and suppose \mathcal{N} has capturing terms for E and a $\Sigma_1^{J_{\alpha}(\mathbb{R})}$ scale on E relative to Σ . Then E is $\Pi_1^{J_{\alpha}(\mathbb{R})}$ in (any real coding) \mathcal{N} .

Proof. This is similar to the proof of [4, Lemma 2.5]. Let

$$\pi: \mathcal{M} = \mathcal{N}|\beta \to \mathcal{N}|\delta^{++\mathcal{N}}$$

be as in (the proof of) Lemma 2.3 with $Col_{\delta} \times Col_{\delta}$ -capturing terms \dot{E}, \dot{s} for E and a $\Sigma_1^{J_{\alpha}(\mathbb{R})}$ scale on E in $ran(\pi)$. This is possible since these capturing terms have size $\delta^{+\mathcal{N}}$. Let $\gamma := \pi^{-1}(\delta)$ and and \dot{r} the preimage under π of the Col_{δ} -name for the generic real for the extender algebra at δ . Let $\rho, \tau \in \mathcal{M}$ be Col_{γ} -names for reals such that $\Vdash_{Col_{\gamma}}^{\mathcal{M}} \dot{r} = \rho \oplus \tau$, where $\rho \oplus \tau$ enumerates the bits of ρ and τ . As Col_{γ} is absorbed in $Col_{\delta} \times Col_{\delta}$, it is easy to see that \mathcal{N} has a Col_{γ} -capturing term \dot{E}_{γ} for E.

We claim that for $a, b \in \mathbb{R}$ the fact that $\neg aEb$ holds true is equivalent to the following condition.

Condition 2.6. There are $a^*, b^* \in \mathbb{R}$, a non-dropping iteration map $\sigma : \mathcal{N} \to \mathcal{P}$ produced by an iteration tree \mathcal{T} according to Σ which lives on $\mathcal{N}|\gamma$, and a $Col_{\sigma(\gamma)}$ -generic filter h over \mathcal{P} with

- $a^* \oplus b^* = \sigma(\dot{r})^h$,
- $\mathcal{P}[h] \vDash \neg a^* \sigma(\dot{E}_{\gamma})^h b^*$, and
- *aEa*^{*} & *bEb*^{*}.

Condition 2.6 clearly implies $\neg aEb$ by our hypotheses.

If on the other hand $\neg aEb$ holds, using Woodin's extender algebra argument (see [9, Theorem 7.14]) we may pick $\sigma : \mathcal{N} \to \mathcal{P}$ and g such that $\sigma : \mathcal{N} \to \mathcal{P}$ is a non-dropping iteration map produced by a tree \mathcal{T} according to Σ which lives on $\mathcal{N}|\gamma$ and g is $Col_{\sigma(\gamma)}$ generic over $\sigma(\mathcal{M}) = \mathcal{P}|\sigma(\beta)$ with $a \oplus b = \sigma(\dot{r})^g$. This works since $V_{\gamma}^{\mathcal{M}} = V_{\gamma}^{\mathcal{N}}$; all that is needed is that $\sigma(\mathcal{M})$ be well-founded and there are no extenders left which violate the axioms of the extender algebra. Let $\dot{F} := \pi^{-1}(\dot{E})$. By Lemma 2.4 and the elementarity of π , if $\epsilon \in \mathcal{M}^{Col_{\gamma}}$ is a name for a real, then for a dense set of conditions $p \in Col_{\gamma}$,

$$(p,p) \Vdash_{Col_{\gamma} \times Col_{\gamma}}^{\mathcal{M}} \epsilon_{0} \dot{F} \epsilon_{1}$$

Using the elementarity of σ , there is hence some $p \in g$ such that

$$(p,p) \Vdash_{Col_{\sigma(\gamma)} \times Col_{\sigma(\gamma)}}^{\sigma(\mathcal{M})} \sigma(\rho)_0 \sigma(\dot{F}) \sigma(\rho)_1 \& \sigma(\tau)_0 \sigma(\dot{F}) \sigma(\tau)_1.$$

$$(2)$$

Let *h* be $Col_{\sigma(\gamma)}$ -generic below *p* over both $(\mathcal{P}|\sigma(\beta))[g]$ and \mathcal{P} and let $a^* \oplus b^* = \sigma(\dot{r})^h$. We then have aEa^* and bEb^* by (2) and by Lemmas 1.6 and 1.7. As $\neg aEb$, this means that $\neg a^*Eb^*$, so that $\mathcal{P}[h] \models \neg a^*\sigma(\dot{E}_{\gamma})^h b^*$. We have shown that condition 2.6 holds.

Finally, it is true that Σ , restricted to short trees, is $\Sigma_1^{J_{\alpha}(\mathbb{R})}$ by Lemma 2.2, so that the reformulation of $\neg aEb$ given by condition 2.6 shows that $\neg E$ is $\exists^{\mathbb{R}} \forall^{\mathbb{N}} \Sigma_1^{J_{\alpha}(\mathbb{R})}$ in \mathcal{N} . As we assume $\Sigma_1^{J_{\alpha}(\mathbb{R})}$ to be closed under number quantification, this shows that E is $\Pi_1^{J_{\alpha}(\mathbb{R})}$ in \mathcal{N} , as desired.

3 ω -cofinal pointclasses

The argument in the last section used that $\Sigma_1^{J_\alpha(\mathbb{R})}$ be closed under number quantification. We do not know how to drop this hypothesis, unless we replace the hypothesis $\mathsf{AD}^{J_\alpha(\mathbb{R})}$ by $\mathsf{AD}^{L(\mathbb{R})}$.

We thus now turn to the case that $\alpha \geq 2$ begins a gap and $\Sigma_1^{J_{\alpha}(\mathbb{R})}$ is not closed under number quantification. In this case α is either a successor or $cf(\alpha) = \omega$, since $cf(\alpha) > \omega$ and $J_{\alpha}(\mathbb{R}) \vDash \forall n \varphi(x, n)$ imply that there is some $\beta < \alpha$ with $J_{\beta}(\mathbb{R}) \vDash \forall n \varphi(x, n)$. Hence $A \in \Sigma_1^{J_{\alpha}(\mathbb{R})}$ if and only if A is a countable union of sets in $J_{\alpha}(\mathbb{R})$.

Lemma 3.1. Assume AD. Let Γ be a scaled pointclass closed under $\exists^{\mathbb{R}}$ and continuous preimages. Suppose $\Gamma_k \subseteq \Delta = \Gamma \cap \check{\Gamma}$ for $k \in \omega$ are pointclasses such that for every $A \in \Gamma$ there are $A_k \in \Gamma_k$ with $A = \bigcup_{k \in \omega} A_k$. Then every thin Γ equivalence relation is Δ .

Proof. Let E be a thin Γ equivalence relation. Then E is co- κ -Suslin via some tree T, since the class of κ -Suslin sets is closed under countable intersections: Trees T_k on $\omega \times \kappa$ with $A_k = p[T_k]$ can be amalgamated into a tree T with $\bigcap_{k \in \omega} A_k = p[T]$. There is no injective ω_1 -sequence of reals under AD, so $L[T] \cap \mathbb{R}$ is countable and hence there is a Cohen real in V over L[T]. Harrington and Shelah [2] proved that if $E = \mathbb{R}^2 - p[T]$ is a thin equivalence relation and there is a Cohen real over L[T], then the equivalence classes of E can be enumerated with order type $\delta \leq \kappa$. Let $(A_{\gamma} : \gamma < \delta)$ be such an enumeration.

Notice that Γ is closed under wellordered unions by [5, Lemma 2.18], since it is closed under $\exists^{\mathbb{R}}$ and has the prewellordering property. This shows that

$$\mathbb{R}^2 - E = \bigcup_{\beta \neq \gamma < \delta} (A_\beta \times A_\gamma)$$

is Γ .

Theorem 3.2. Let $\Gamma = \Sigma_n^{J_\alpha(\mathbb{R})}$ where $\alpha \geq 2$ begins a Σ_1 gap, n = 1, and α is a successor ordinal or $cf(\alpha) = \omega$, or else α ends a proper weak Σ_1 gap and n is least with $\rho_n(J_\alpha(\mathbb{R})) = \mathbb{R}$. Assume $\mathsf{AD}^{L(\mathbb{R})}$. Then every thin Γ equivalence relation is $\check{\Gamma}$.

Proof. If α begins a gap and $\alpha = \beta + 1$, let $\Gamma_k = \Sigma_k^{J_\beta(\mathbb{R})}$. If $cf(\alpha) = \omega$, let $\alpha = \sup \alpha_k$ and $\Gamma_k = J_{\alpha_k}(\mathbb{R})$. Finally, let $\Gamma_k = J_\alpha(\mathbb{R})$ for all k if α ends a gap. The previous lemma applies in each case.

References

- Leo Harrington and Ramez Sami. Equivalence relations, projective and beyond. In Logic Colloquium '78 (Mons, 1978), volume 97 of Stud. Logic Foundations Math., pages 247–264. North-Holland, Amsterdam, 1979.
- [2] Leo Harrington and Saharon Shelah. Counting equivalence classes for co-κ-Souslin equivalence relations. In Logic Colloquium '80 (Prague, 1980), volume 108 of Stud. Logic Foundations Math., pages 147–152. North-Holland, Amsterdam, 1982.

- [3] Greg Hjorth. Two applications of inner model theory to the study of Σ_2^1 sets. Bulletin of Symbolic Logic, 2(1):94–107, 1996.
- [4] Greg Hjorth. Some applications of coarse inner model theory. Journal of Symbolic Logic, 62(2):337–365, 1997.
- [5] Steve Jackson. Structural consequences of determinacy. In Matthew Foreman and Akihiro Kanamori, editors, *Handbook of Set Theory*. Springer, Berlin, 2010.
- [6] William J. Mitchell and John R. Steel. Fine structure and iteration trees, volume 3 of Lecture Notes in Logic. Springer, Berlin, 1994.
- [7] Ralf Schindler and John R. Steel. *The core model induction*. in preparation. available at http://wwwmath.uni-muenster.de/logik/Personen/rds.
- [8] John R. Steel. Scales in L(ℝ). In Cabal seminar 79-81, volume 1019 of Lecture Notes in Math., pages 107-156. Springer, Berlin, 1983.
- [9] John R. Steel. An outline of inner model theory. In Matthew Foreman and Akihiro Kanamori, editors, *Handbook of Set Theory*. Springer, Berlin, 2010.
- [10] Martin Zeman. Inner models and large cardinals, volume 5 of de Gruyter Series in Logic and its Applications. de Gruyter, Berlin, 2002.