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Abstract

Fundamental physics contains an important link between properties of
elementary particles and continuous symmetries of particle systems. For
example, properties such as mass and spin are said to be ‘associated’ with
specific continuous symmetries. These ‘associations’ have played a key role
in the discovery of various new particle kinds, but more importantly: they
are thought to provide a deep insight into the nature of physical reality.

The link between properties and symmetries has been said to call for a
radical revision of perceived metaphysical orthodoxy. However, if we are to
use claims about an ‘association’ between properties and symmetries in the
articulation of metaphysical views, we first need to develop a sufficiently
precise understanding of the content of these claims. The goal of this paper
is to do just that.

1 Introduction

Fundamental physics contains an important link between properties of elementary
particles and continuous symmetries of particle systems. As Steven Weinberg puts
it, properties such as mass and spin are each “associated with” specific continuous
symmetries.1 This link has played a key role in the discovery of various new
particle kinds, but more importantly: it is thought to provide a deep insight into
the nature of physical reality. For example, Weinberg claims that the relevant
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1Weinberg (1993, p. 146) Other physicists have made similar claims; for example, Heisenberg
(1976, p. 924), Penrose (2004, p. 568), and Ne’eman and Sternberg (1991, p. 327) The link
between properties and symmetries was first hypothesised by Eugene Wigner (1939).



physical properties “are what they are because of the [associated] symmetries of
the laws of nature.”2

According to an influential line of scholarship, the link between properties and
symmetries calls for a radical revision of metaphysics—away from a perceived
orthodoxy according to which the world fundamentally consists of objects instanti-
ating properties, and toward a metaphysics which conceives of fundamental reality
as purely ‘structural’ in a sense to be elucidated (at least in part) by appeal to
just this link between properties and symmetries. Proponents of this line—also
known as ontic structural realism—claim that the ‘association’ between physical
properties and symmetries is “the basis of the claim that such properties should
be conceived of structurally,”3 in the sense that “the properties that particles
have [...] appear to be explicable via considerations of [symmetry] structure” so
that “what should be regarded as properly fundamental is the symmetry structure
[...] that explains [the properties of elementary particles].”4 However, if we are
to use claims about the ‘association’ between physical properties and continuous
symmetries in the articulation of metaphysical theories, let alone as the basis for
a radical revision of metaphysics, we first need to develop a sufficiently precise
understanding of the content of these claims. The purpose of this paper is to do
just that.

It may be tempting to think that the content of the ‘association’ between
physical properties and symmetries is the more familiar claim, known as Noether’s
theorem, that every continuous symmetry corresponds to a conserved quantity.5,6

2(Weinberg, 1993, p. 138n, emphasis added). Elsewhere, Weinberg claims that the ‘association’
between properties and symmetries shows that “at the deepest level, all we find are symmetries
and responses to symmetries” (Weinberg, 1987, p. 80) and that “matter thus loses its central
role in physics” (Weinberg, 1993, p. 139).

3(French, 2014, p. 109).
4(McKenzie, 2014, p. 21). This is echoed by other authors; e.g. Ladyman (1998); Ladyman

and Ross (2007); Kantorovich (2003). Ontic structuralists also use the link between properties and
symmetries to argue against other metaphysical views such as certain varieties of dispositional
essentialism; for example, French (2014, pp. 251) and Saatsi (2017); cf. (Livanios, 2010).

5(Noether, 1918). Nothing in this paper hinges on the specifics of how the notion of ‘symmetry’
is understood. For definiteness, think of a symmetry of a physical system as a transformation of
a given type (such as rotations) that at least preserves the laws of the system; for an overview of
various accounts of symmetry, see (Dasgupta, 2016).

6Physical quantities (like mass and energy) can be thought of as associated with a range of
values, each of which is a property in its own right.
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For example, Noether’s theorem entails that rigid rotations about a given point
are a symmetry of a physical system iff the system’s total angular momentum
about that point is conserved, i.e. constant in time—a fact which explains why
figure skaters spin more quickly when drawing in their arms. But this is clearly
not the claim physicists have in mind when they say that a given property is
‘associated’ with a continuous symmetry. Whereas this ‘association’ concerns “the
way particles behave when you perform various symmetry transformations” such
as rotations,7 Noether’s theorem concerns the way particles behave under temporal
evolution, i.e. whether certain physical quantities are conserved. Noether’s theorem
is therefore not what is meant by the claim that a property is ‘associated’ with a
continuous symmetry.

Another tempting thought is that a physical property is ‘associated’ with a
continuous symmetry iff this property is invariant under that symmetry, in the
sense that any two states of the system related by that symmetry agree about this
property. There is something right about this proposal: every property ‘associated’
with a symmetry is invariant under that symmetry. But there is also something
wrong about this proposal: a property can be invariant under a symmetry without
being ‘associated’ with that symmetry. Consider a classical n-particle system
in three-dimensional Euclidean space. At every instant of time, the system has
values of various vector quantities, such as total linear momentum ~p and, for every
spatial point, the total angular momentum ~L of the system about that point. The
system also has values of various scalar quantities, such as the magnitude of total
linear momentum |~p| and, for any given point, the magnitude |~L| of total angular
momentum about that point. Both of these magnitudes are invariant under rigid
rotations about any given point.8 And yet, for every point x, only the magnitude
of total angular momentum about x is ‘associated’ with rigid rotations about x in
the sense identified by physicists.

The question we’re asking has a standard mathematical answer—one that
physicists like Weinberg presumably have in mind when making the more colourful

7(Weinberg, 1987, p. 79); emphasis added.
8Throughout this paper, I understand the relevant transformations actively; that is, as

transformations on physical systems, rather than merely as transformations of the mathematical
devices representing those systems. See (Brading and Castellani, 2007, pp. 1342-3) for more on
this distinction.
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Figure 1: Illustration of a classical one-particle system in orbital motion about x.
~q represents the position of the particle in a co-ordinate system originating at x, ~p
its linear momentum and ~L = ~q × ~p its angular momentum about x.

claims cited above. This answer goes roughly as follows. The notion of a continuous
symmetry is mathematically formalised by the notion of a group: roughly, a
collection of transformations of a given type, such as rotations. And every group
G of continuous symmetries of a system is associated with a mathematical space
capturing certain essential features of the transformations in G.9 Now, there are
mathematical objects (functions in the context of classical mechanics, operators
in the context of quantum mechanics) whose invariance under G can be derived
exclusively from the essential features of transformations in G captured by this
space—objects which are called Casimir invariants of G and whose number depends
on G. The key observation is now that each property ‘associated’ with a particular
symmetry group is represented by one of the Casimir invariants of that group.10

For example, the magnitude of total angular momentum about spatial point x of a
classical n-particle system is represented by a Casimir invariant of the group of rigid
rotations of the system about x, whereas the magnitude of total linear momentum
is not. Similarly, mass and spin of elementary particles are each represented by
one of the two Casimir invariants of the group of relativistic boosts, rotations, and

9This space is called the Lie algebra of G.
10By ‘representation’ I mean the way in which items of a linguistic or mathematical sort

(theories, models, sentences, variables, predicates, functions, operators) are used to make claims
about items of a ‘metaphysical’ or ‘worldly’ sort (worlds, facts, propositions, objects, properties,
quantities).
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translations.11 The standard mathematical answer is thus that a physical property
P is ‘associated’ with a continuous symmetry group G iff the mathematical object
representing P is a Casimir invariant of G.

A mathematical physicist or a certain sort of philosopher might think that
this is all that needs to be said about the matter. According to this viewpoint,
mathematical physics in itself is perfectly adequate and fully intelligible as a
representation of the underlying reality, and no further understanding is to be
gained by going ‘beyond’ physics into the murky waters of metaphysics.12

But for another kind of philosopher, the standard mathematical answer isn’t
good enough. According to this philosopher, there is something dissatisfying about
characterising features of reality by reference to the mathematical properties
of their mathematical representations. If someone unfamiliar with the concept
of money asks what is conveyed about a bag by saying that it contains some
amount of US dollars in cash, the response ‘that the bag has whatever feature
is accurately represented by the dollar sign printed on its side’ is likely to be
dismissed as unilluminating. It is similarly inadequate to characterise the feature
that a physical property has just in case it is ‘associated’ with a symmetry group
as whatever feature of this property is accurately represented by the fact that its
mathematical representative is a Casimir invariant of that group. Therefore, once
the mathematical physicist has explained the notion of a Casimir invariant, there’s a
further question that this philosopher would like to see addressed: what information
about a property is conveyed by saying that its mathematical representative—the
function or operator associated with it—is a Casimir invariant of some continuous
symmetry group? This is the question I am going to answer in this paper.

Even if it is taken for granted that the standard mathematical answer is
insufficient, one might still wonder how far beyond the mathematical physics one
needs to go for an account of this link to be illuminating. I don’t have an a priori
standard relative to which I can answer this question, and relative to which the
standard mathematical account is insufficient. All I can do is to present my account

11This group is referred to as the Poincaré group.
12One influential philosopher of physics who holds this view is David Wallace: “I’m happy to say

that the way theories represent the world is inherently mathematical, so that the reason property
P is ‘associated’ with symmetry G is simply because P is represented by the Casimir invariant
of G, and there’s no need to say more.” (Personal correspondence, quoted with permission.)
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of the ‘association’ between physical properties and symmetries—an account that
will make clear exactly what I take to be missing from the standard mathematical
answer.

One consequence of the approach I take in this paper is that I distinguish
sharply between features of reality and the mathematical objects representing
those features. This means that there will usually not be a straightforward route
from a feature of the mathematical representative of a property to a feature of
this property.

I proceed as follows. I explain the standard mathematical answer in section
(2) by considering the case study of total angular momentum about a point x
of a classical n-particle system and the group of rotations of the system about
x. Subsequently, I explain the metaphysical content of the notion of a Casimir
invariant. According to the proposal I develop in section (3), what is conveyed
about a property by the fact that it is represented by a Casimir invariant of a given
group is that this property is a fine-grained invariant under that group—a notion
I introduce. This notion is ‘fine-grained’ in the sense that not every invariant (in
the ordinary sense) under a group is also a fine-grained invariant under that group:
for example, it will turn out that the magnitude of total angular momentum about
x is a fine-grained invariant under rigid rotations about x, whereas the magnitude
of total linear momentum is not.

2 Casimir Invariance

According to the standard mathematical answer, a physical property P is ‘associ-
ated’ with a continuous symmetry group G iff the mathematical object representing
P is a Casimir invariant of G. The goal of this section is to introduce this notion.

2.1 The Framework

I do so by considering a classical n-particle system described in terms of Hamiltonian
mechanics. Here, the goal is to explain what it is for the mathematical representative
of the magnitude of total angular momentum about spatial point x to be a Casimir
invariant of the group of rotations of the system about x.
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Why Hamiltonian mechanics? One important reason is that the Hamiltonian
treatment of continuous symmetries is most similar to the corresponding formalism
in quantum theory, including quantum field theory. Hamiltonian mechanics is
therefore a natural setting in which to explain what it is for a property to be
‘associated’ with a symmetry group in the way that physicists have identified in
the context of quantum theory, but without being distracted by the technical
difficulties of quantum theory.13

First, let me introduce a few basic features of Hamiltonian mechanics. In this
framework, the state space of a system—the space of possible instantaneous states
of the system—is represented by a mathematical space called phase space.14 For
example, consider a system of n particles in three-dimensional Euclidean space
represented by R3. The phase space of this system is given by its configuration
space—the space whose points each represent a possible instantaneous spatial
configuration of the system—together with an n-dimensional vector space attached
to every point, a space whose elements each represent a possible assignment of
a specific value of linear momentum to every particle at that point.15 We can
describe any given state of the system by a 6n-tuple of numbers with regard
to some co-ordinate system of R3: three spatial co-ordinates as well as three
momentum co-ordinates for each of the n particles. In this way, Hamiltonian
mechanics characterises each state of a system by two sorts of basic, independent
features: the positions and momenta of each constituent particle.

Each physical quantity of the system is associated with a smooth distribution
of values over state space; that is, with a smooth assignment, to each possible
state, of a value of this quantity. These distributions are specified by smooth
functions from phase space to the real numbers (in the case of scalar quantities)
or by smooth functions from phase space to triples of real numbers (in the case

13To be sure: there are other respects in which quantum theory has a greater resemblance
with Lagrangian mechanics than with Hamiltonian mechanics—particularly with regard to path
integral methods (Peskin and Schroeder, 1995, Chpt. 9).

14What are ‘possible instantaneous states’? That depends on one’s preferred view about the
philosophy of time. On an A-theoretic picture of time, we can think of possible instantaneous
states as possible worlds. On a B-theoretic picture of time, we can think of possible instantaneous
states as maximal properties of possible worlds at times.

15In mathematical terms, the phase space of an n-particle system is the cotangent bundle of
its configuration space.
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of vector quantities). For example, the distribution of total energy over the state
space of the n-particle system is represented by a real-valued function referred to
as the Hamiltonian and denoted by H.16 For the sake of brevity, I will abbreviate
‘the state space distribution associated with a quantity Q is represented by the
phase space function fQ’ by ‘Q is represented by fQ’.17

I will take for granted that physical quantities can be distinct despite being
represented by the same phase space function. Call two quantities Q, Q′ state-space
co-extensive just in case their associated distributions assign the same value to
every state in state space, i.e. just in case the corresponding phase space functions
fQ, fQ′ are mathematically co-extensive: fQ = fQ′ . The claim is then that there
are distinct state-space co-extensive quantities.

One motivation for this assumption is that state-space co-extensive quantities
need not be metaphysically co-extensive. More precisely: suppose we think of
the distributions associated with physical quantities as assigning values to every
metaphysically possible state of the system, rather than merely to the possible
states represented by points in phase space. Then, for any phase space function,
there will generally be distinct quantities such that the restriction to state space
of their associated distributions is accurately represented by this function.

By way of example, suppose that total energy of the n-particle system is in
fact state-space co-extensive with the quantity whose value at a state is the
result of a certain specific operation on the position and momentum facts at that
state corresponding to the sum of the values of kinetic energy and Newtonian
gravitational energy at that state—a fact we may express in terms of the equation
H = T + Vg, where T , and Vg are phase space functions representing kinetic and

16Physical quantities associated with smooth phase space functions are generally not invariant
under changes of inertial reference frames (or Galilei frames): for example, there are Galilei frames
which disagree about linear momentum and total energy. This means that we should always
be talking about these quantities relative to a particular Galilei frame. However, the way these
quantities are talked about in physics and philosophy often doesn’t make their Galilei-dependence
explicit. In this paper, I follow this practice for the sake of brevity.

17Not all quantities represented by smooth phase space functions are equally natural: any
‘gerrymandered’ function of position and momentum, such as the product ~q i · ~p k of the position
vector of the i-th particle with the linear momentum vector of the k-th particle, is less natural
than (for example) the function which represents the linear momentum of a given particle. This
point is familiar from the metaphysics of properties: not every set of individuals is equally natural;
and only few, privileged sets are perfectly natural; cf. (Lewis, 1986, pp. 59).

8



Newtonian gravitational energy, respectively. But total energy and the quantity
represented by T+Vg aren’t metaphysically co-extensive: for example, they disagree
at metaphysically possible states which contain electrostatic energy. Thus, there
are distinct state-space co-extensive quantities.

This paper focuses on the quantity of total angular momentum about a given
spatial point x. The state space distribution of this quantity is specified by the
vector function ~L = ~L1 + ... + ~Ln, where ~Lk = ~q k × ~p k represents the angular
momentum of the k-th particle about x, ~q k its position in a co-ordinate system
centered on x, and ~p k its linear momentum. The scalar components of ~L are real-
valued phase space functions each of which represents the state space distribution
of the component of angular momentum along some axes through x.18

Certain continuous sequences of states (or state space curves) capture important
dynamical and modal facts about the system. Most importantly, the state space
curves that count as possible dynamical histories of the system allow us to answer
questions such as ‘what will the system be like in five minutes’? Another important
type of state space curves allow us to answer questions such as ‘what would the
system be like if it were rigidly rotated by 180◦ about an axis through some spatial
point x?’ These state space curves correspond to rigid rotations of the system
about axes intersecting x.

State space curves of a given type are specified in terms of some particular
flow on phase space, i.e. in terms of some particular family of phase space curves
such that each phase space point is intersected by exactly one curve in this family.
(Think of a flow as the family of curves traced out by water molecules of a river.)
Each flow has a real parameter: for example, for every real number t, the dynamical
flow representing the dynamical histories of the system assigns to each phase space
point its image under dynamical evolution by t units of time. Similarly, for each
real number φ, the rotational flow corresponding to rigid rotations of the system
about an axis through x assigns to each phase space point its image under a rigid
rotation by an angle of φ about this axis.

It is worth stressing that the relevant rotations are non-dynamical: whereas
the parameter of the dynamical flow is interpreted as time, the parameter of a

18Let {e1, e2, ..., en} be an orthonormal basis of a real vector space V . The scalar components
of any v = v1e1 + v2e2 + ...+ vnen ∈ V are the real numbers v1, v2,..., vn.
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given rotational flow is interpreted as the corresponding angle of rotation; and
states related by a rotation are generally not related by dynamical evolution, as
illustrated in figure (2).

Figure 2: Illustration of phase space with a dynamical flow line and a rotational
flow line (dotted) through phase space point (q, p).

This is where a crucial feature of Hamiltonian mechanics comes into play:
each of these flows is determined by a smooth function on phase space in a way
that preserves this function. A flow which is determined by and which preserves
a smooth function is referred to as the Hamiltonian flow of this function; and
every smooth function is referred to as a generator of its Hamiltonian flow. For
example, the dynamical flow is the Hamiltonian flow generated by the total energy
function H, and the rotational flow corresponding to rigid rotations about some
axis through x is given by the scalar component of ~L along this axis.

The notion of a generator of a Hamiltonian flow is key to this paper, so bear
with me while I explain it.

2.2 Hamiltonian Flows and their Generators

What is it for a smooth function to be a generator of its Hamiltonian flow? Here is
an informal picture. We are familiar with the sense in which a vector field generates
a flow. (Think of a vector field on some space as a function which assigns a vector
to every point in this space.) For example, the flow of the velocity vector field of a
river can be thought of as the family of curves traced out by the water molecules
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dragged along by the current of the river. But what is it for a scalar function to
be a generator of a flow?

There’s a fairly intuitive sense in which a scalar function is the generator of the
flow of its gradient. Recall: the gradient of a smooth function f on a Riemannian
manifold is the vector field which assigns to each point of the manifold the vector
that points in the direction of greatest increase of f at that point.19 And every
smooth function f on such a manifold determines its gradient in a two-step process.
The first step consists in an operation that takes smooth functions as input and
throws away all but two specific sorts of information: first, information about the
regions of the manifold in which the input function is constant, also called level
surfaces of this function;20 and second, information about the differences in value
of this function between each of its level surfaces. In mathematics jargon, this
operation is called the exterior derivative. For example, the information contained
in the exterior derivative of the elevation function of a piece of terrain suffices to
draw an accurate map of the terrain: on the basis of this information, one can
draw contour lines as well as the differences in elevation between these lines. What
would be missing from the map, however—the information thrown away by the
exterior derivative—is the absolute elevation of a given point of the terrain.

The information contained in the exterior derivative of f is not yet packaged in
the form of a vector field. This is the task of the second step, in which the exterior
derivative of f is turned into the gradient of f . The specifics of this mathematical
procedure are not relevant for our purposes, except for the fact that it is defined
with regard to the Riemannian metric on the underlying manifold, a rule we can
think of as the Euclidean ‘dot product’ of two vectors.

It is by way of these two steps that a function determines its gradient. But as
noted above, a vector field also determines its flow. Thus, f also determines the
flow of its gradient, which is captured by saying that f is a generator of this flow.21

But what is it for a function on phase space to generate its Hamiltonian flow?
19A Riemannian manifold is a smooth manifold equipped with a Riemannian metric, a

positive-definite map from pairs of vector fields to smooth functions that we can think of as a
generalisation of the Euclidean dot product.

20Level surfaces are generalisations of the one-dimensional contour lines familiar from hiking
maps, i.e. the lines of constant elevation of the relevant piece of terrain.

21Since there are distinct functions with the same exterior derivative, the flow of each gradient
vector field has several generators.
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The answer lies in a different way to package the information contained in the
exterior derivative, a different procedure for turning this information into a vector
field—a procedure peculiar to Hamiltonian mechanics and defined with regard to a
rule known as the symplectic form on phase space. The key difference between the
procedure defined in terms of the Riemannian metric and the procedure defined
in terms of the symplectic form is this: whereas the former turns the exterior
derivative of a function into a vector field that everywhere points in the direction
of greatest increase of the function, the latter turns the exterior derivative into
a vector field that everywhere points along the level surfaces of this function, as
illustrated in figure (3). Vector fields of this sort are referred to as Hamiltonian

Figure 3: Illustration of the level surfaces (contour lines) of a function f on a
two-dimensional manifold. grad(f) and ham(f) denote the values at x of the
gradient and the Hamiltonian vector field of f , respectively.

.

vector fields. As a result, every flow line of the Hamiltonian vector field of f is

12



confined to a particular level surface of f , and so f is invariant along this flow.22

We thus understand what it is for a scalar function to generate its Hamiltonian
flow, and thus what it is for the component of ~L along some axis through spatial
point x to be a generator of the Hamiltonian flow corresponding to rigid rotations
about this axis.

Now, the rigid rotations about arbitrary axes intersecting x taken together
have the structure of a group, namely the group SO(3) of orientation-preserving
isometric rotations in three-dimensional Euclidean space.23 More precisely, rigid
rotations of the n-particle system about a given point are implemented by an action
of SO(3) on the phase space of the system, i.e. by a rule for how the position and
momentum of each constituent particle transforms under every abstract element
of the group: for every spatial point, the action of SO(3) as rotations about that
point consists in an assignment, to each abstract element of SO(3), of a rotation
by some angle about some axis intersecting that point.

This has an important consequence: any two phase space points related by a
rotation about spatial point x are related by a rotation about some specific axis
i intersecting x. A fortiori, any two such phase space points lie on a flow line
belonging to the Hamiltonian flow generated by the i-component of ~L. In this way,
the action of SO(3) as rigid rotations about x is implemented by Hamiltonian
flows corresponding to rotations about axes through x, and so the generators of the
flows about these axes—the components of ~L along these axes—are also generators
of this action of SO(3), or SO(3 )-generators, for short.

Although each SO(3)-generator is invariant under its own Hamiltonian flow,
SO(3)-generators are not SO(3)-invariant: it is not the case that any two phase
space points related by a rotation about some axis through x agree about every
component of ~L. Exactly how do the components of ~L change under rotations?
This is the last question we need to answer before we can state the notion of a

22Since there are distinct functions with the same exterior derivative, each Hamiltonian flow
has several generators.

23The statement that rotations about a point have the structure of a group is equivalent to the
conjunction of four claims. First, the combination of any two rotations is also a rotation. Second,
the result of first performing rotation R followed by the combination of rotations R′ and R′′ is
the same as first performing the combination of R and R′, followed by the rotation R′′. Third,
every rotation can be reversed. Fourth, some rotations are equivalent to doing nothing—e.g.
rotations by 0 and 360 degrees.
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Casimir invariant.

2.3 SO(3) Poisson brackets

Physics is often concerned with determining the rates of change of physical quan-
tities under certain important variations of the system. For example, velocity is
the instantaneous rate of change through time of position, and net force is the
instantaneous rate of change through time of total linear momentum.

In Hamiltonian mechanics, facts of this sort are represented by the derivatives
of phase space functions with regard to the parameter of the Hamiltonian flow
that characterises the relevant variation of the system. The instantaneous rate
of change under dynamical evolution of the position of the k-th particle is given
by the derivative of ~q k with regard to time, the parameter of the Hamiltonian
flow generated by the total energy function H. Similarly, the rate of change of the
linear momentum of the k-th particle under rotations about some axis through x is
represented by the derivative of ~p k with with regard to the angle of rotation about
that axis, the parameter of the Hamiltonian flow generated by the component of
~L along that axis.

The derivative of a smooth function with regard to the parameter of a Hamilto-
nian flow can be expressed directly in terms of the generator of this flow. More
specifically, the derivative of a function f with regard to the parameter λ of the
Hamiltonian flow generated by another function g is given by24

df

dλ
= {f, g}, (1)

where {· , ·} is the Poisson bracket, a product on the space of smooth functions
satisfying certain conditions, the details of which need not concern us here.25

For present purposes, the following intuitive picture of the mathematical content
of (1) shall suffice. A perfectly standard way to represent the rate of change of the
elevation of a piece of terrain along a path through the terrain is by means of the

24Recall: we’re supposing that the f and g are real-valued functions on phase space only. This
entails that ∂f

∂λ = 0, where λ is the parameter of the flow of g.
25The Poisson bracket is a Lie bracket; that is, it is anti-symmetric, bi-linear, non-associative

and satisfies the Jacobi identity: for any smooth functions f, g, h, {{f, g}, h} + {{g, h}, f} +
{{h, f}, g} = 0.
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derivative of the elevation function in the direction of this path.26

Suppose now that we are considering an entire family of paths through the
terrain, and suppose that this family can be represented by the flow of some vector
field Y . We then have a notion of a derivative of the elevation function in the
direction of Y . Now, this derivative can be thought of as the function which assigns
to every point of the terrain a number that tells us how much of the greatest
increase of elevation we’re experiencing in the direction of Y—the function whose
value at a point x is the projection, with regard to the Riemannian metric, of the
value of the gradient of the elevation function at x onto the value of Y at x, as
illustrated in figure (4).

Figure 4: Illustration of a function f via its contour lines, showing a flow line
(dotted) of the vector field Y and the value grad(f) of the gradient of f at x.

Equation (1) has a very similar mathematical role: {f, g} also captures a sort
of derivative of f in the direction of a vector field—namely, in the direction of the

26In mathematical jargon, this derivative is known as the directional derivative of the elevation
function along the path.
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Hamiltonian vector field of g. However, the vector field that is being projected
onto the Hamiltonian vector field of g is not the gradient of f , but rather the
Hamiltonian vector field of f . Moreover, the projection operation is different:
whereas in the previous case the projection operation is given by the Riemannian
metric, here it is given by the symplectic form. Notwithstanding these differences,
we may think of the Poisson bracket {f, g} as a derivative of f in the direction of
the Hamiltonian vector field of g, and thus as a phase space function that captures
how f varies along the Hamiltonian flow of g.

Poisson brackets are therefore the tool we need to determine how the components
of ~L vary under rotations about some spatial point x. Denote by Li the scalar
component of ~L along axis i through x, and let 1, 2, and 3 be the labels of pairwise
perpendicular axes through x. Then, {L1, L2} is the derivative of L1 along the
Hamiltonian flow generated by L2. And as it turns out, the derivative of any
given SO(3)-generator along the flow of another SO(3)-generator is also an SO(3)-
generator: {L1, L2} = L3. Equations of this sort are called SO(3 )-Poisson bracket
equations and summarised as

{Li, Lj} = εijkLk, (2)

where i, j, k take values in the labels of any given triple of pairwise perpendicular
axes intersecting x and εijk is 1 for even permutations of ijk, −1 for uneven
permutations and 0 otherwise.27

We need to take note of a related, important use of Poisson brackets. It might
be remembered from high school calculus that a function of a single variable is
constant just in case its derivative vanishes everywhere. Similarly, a function f
is constant (or invariant) along the Hamiltonian flow of another function g iff
the derivative of f along this flow vanishes everywhere in phase space; that is, iff
{f, g} = 0. Facts about the invariance of functions along Hamiltonian flows are
thus facts about vanishing Poisson brackets.

We can use this to say what it is for a function to be invariant under rotations
about some spatial point x: a function f has this property just in case, for every

27In mathematical jargon, equation (2) means that the set of SO(3)-generators forms a Lie
algebra with regard to the Poisson bracket, called the SO(3 )-Poisson Lie algebra.
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axis i through x, its derivative along the Hamiltonian flow corresponding to rigid
rotations about i vanishes: {f, Li} = 0 for every axis i through x. I refer to
functions which have this property as SO(3 )-constant functions.

Note that the physical quantities represented by SO(3)-constants are such that
any two states related by an SO(3)-transformation agree about these quantities—
which is to say that these quantities are SO(3)-invariant. Whenever there is a risk
of confusion, I refer to the quantities represented by SO(3)-constant functions as
ordinary SO(3)-invariants.

The goal of this section was to explain how the SO(3)-generators change under
rotations. As promised, this was the last thing we needed to understand before
articulating the notion of a Casimir invariant. To this I now turn.

2.4 Casimir Invariants

I follow the standard definition in physics texts.28 For a smooth function C on
phase space to be a Casimir invariant of the action of SO(3) as rigid rotations
about x (or an SO(3)-Casimir, for short) is for C to satisfy two conditions. First,
C must be an SO(3)-constant: {C,Li} = 0 for every axis i through x. Second, C
must be a function exclusively of the SO(3)-generators.

One phase space function which satisfies these conditions is L2 = L2
1 + L2

2 + L2
3,

the Euclidean dot product of the angular momentum vector function with itself.
First, L2 is an SO(3)-constant; that is, {L2, Li} = 0 for every axis i through x.29

Second, L2 is a function only of SO(3)-generators, as can be seen by noting that
no two states can differ about L2 without differing about at least one component
of ~L. Importantly, L2 is the unique ‘independent’ SO(3)-Casimir, in the sense that
every other SO(3)-Casimir is a function of L2—for example, the function cos(L2).
For this reason, we may refer to L2 as the SO(3)-Casimir.
L2 has a systematic relationship with the function |~L| representing the magnitude

of angular momentum M : |~L| is the square root of L2. In the remainder of this
paper, I follow an informal convention in physics by treating L2 and |~L| as having
the same representational content, so that M may be said to be represented by
L2 as much as by |~L|. In so doing, it is important to keep in mind that any given

28(Penrose, 2004, pp. 553,568), (Fuchs and Schweigert, 2003, pp. 254).
29This is derived in (Goldstein et al., 2001, p. 418).
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value of M is represented by the square root of the corresponding numerical value
of L2.

The functional dependence of SO(3)-Casimirs on SO(3)-generators is responsible
for an important feature of Casimirs: a function C is an SO(3)-Casimir iff the fact
that C is SO(3)-constant can be derived from the SO(3)-Poisson brackets alone.
In particular, the SO(3)-Poisson brackets {Li, Lj} = εijkLk are sufficient to derive
the equations {L2, Li} = 0. This feature of SO(3)-Casimirs will be important later,
so keep it in mind.

Not every SO(3)-constant is also an SO(3)-Casimir. For example, the function
p2 representing the magnitude of total linear momentum is an SO(3)-constant: it
obeys {p2, Li} = 0 for every relevant axis i and thus satisfies the first condition
of being an SO(3)-Casimir. But p2 is not a function of the SO(3)-generators: the
phase space points (~q, ~p) and (2~q, 1

2~p) representing states of a one-particle system
agree about ~L = ~q × ~p and thus about all components thereof, but disagree about
p2. It follows that p2 is not a function of the SO(3)-generators, and thus not
an SO(3)-Casimir. This is confirmed by the fact that the SO(3)-constancy of p2

cannot be derived from the SO(3)-Poisson brackets alone.
According to the standard mathematical account of the link between properties

and symmetries, the magnitude of total angular momentum about x is ‘associated’
with the group SO(3) of rigid rotations about x just in case the mathematical
representative of this quantity is an SO(3)-Casimir. We now understand what this
means: to be an SO(3)-Casimir is to be an SO(3)-constant function of the SO(3)-
generators. The next task is to determine what is conveyed about the magnitude of
total angular momentum about x by saying that its mathematical representative is
an SO(3)-Casimir invariant.

3 Fine-Grained Invariance

Let me dispense with a tempting proposal immediately. As we just saw, one feature
that distinguishes SO(3)-Casimirs from mere SO(3)-constants is that the former,
but not the latter, are functions only of the SO(3)-generators. This is reflected
in the fact that, for any triple of co-ordinate axes through x, L2 can be written
as the sum of squares of components of ~L along these axes, whereas the mere
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SO(3)-constant p2 cannot. It may now be tempting to think that it is a very
similar feature that distinguishes the SO(3)-invariant quantity represented by the
SO(3)-Casimir from other SO(3)-invariant quantities. Observe that the magnitude
of total angular momentum M can be thought of as having the following sort
of functional dependence on the components of angular momentum: M is the
quantity such that, for any triple of pairwise perpendicular axes through x, the
value of M at a state is the result of a specific operation on the position and
momentum facts at that state corresponding to the square root of the sum of
squares of the values of the angular momentum components along these axes at
that state. According to the tempting proposal, what is conveyed about M by
saying that its mathematical representative is an SO(3)-Casimir is the conjunction
of two claims: first, M is an ordinary SO(3)-invariant; and second, M has just
this sort of functional dependence on the components of angular momentum.

The problem with this proposal is that it cannot be applied in quantum
mechanics. For example, actions of SO(3) as rigid spatial rotations of a non-
relativistic n-particle quantum system about a spatial point are generated by
self-adjoint operators L̂i that represent components of the total orbital angular
momentum about that point. In this setting, the SO(3)-Poisson bracket equations
(2) become the commutator bracket equations [L̂i, L̂j] = εijkL̂k, and the Casimir
invariant associated with this action of SO(3) is the operator that can be written
as L̂2 = L̂2

1 + L̂2
2 + L̂2

3, interpreted as the magnitude of total orbital angular
momentum.

The crux is now that it is impossible for a quantum system to simultaneously
possess values of quantities represented by non-commuting operators.30 This means
that a quantum system cannot simultaneously have values for every component
of total orbital angular momentum, and so no physical quantity can functionally
depend on these components in the way fleshed out above.

The simple idea therefore does not carry over to quantum theory. But it is
precisely the context of quantum theory in which the link between properties and
symmetries is of greatest physical significance, and so any plausible account of this

30This follows from what is known as the Kochen-Specker theorem (Kochen and Specker, 1967)
on the assumption that systems possess values of quantities independently of the context in
which these quantities are measured.
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link ought to be applicable to this context. Since the simple idea does not meet
this requirement, it should be rejected.

What, then, is the right account? The simple idea we just considered hypostatises
one mathematical feature of Casimir invariants: the functional dependence of
Casimir invariants on the relevant generators. I propose that we focus on another
distinctive feature of Casimir invariants: the fact that the SO(3)-constancy of
SO(3)-Casimirs is derivable exclusively from the SO(3)-Poisson bracket equations.
Let the SO(3 )-variation facts be the collection of facts consisting, for every triple
of pairwise perpendicular axes through x, of the facts stated by the SO(3)-Poisson
bracket equations {Li, Lj} = εijkLk; where i, j, k take values in the labels of these
axes. According to my proposal, what is conveyed about a property by saying
that it is represented by an SO(3)-Casimir invariant is that the ordinary SO(3)-
invariance of this property is fully determined by the SO(3)-variation facts; a
determinative relationship which corresponds to the derivability of one collection
of Poisson bracket equations from another collection of Poisson bracket equations.
This proposal is illustrated in figure (5).

Figure 5: Illustration of the proposal, according to which the mathematical feature
of the SO(3)-Casimir invariant function fQ shown on the left is reflected in a
similar feature, shown on the right, of the quantity Q represented by fQ.

To implement this proposal, we need to do two things: first, we need to explain
the nature of SO(3)-variation facts; and second, we need to understand the nature
of the determinative relationship whose mathematical proxy is the derivability
between the relevant mathematical propositions.
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3.1 Real Generators

What is the content of Poisson bracket equations such as {L1, L2} = L3? For every
axis i through spatial point x, denote by Mi the i-component of total angular
momentum about x. Then our question seems to have the following, straightfor-
ward answer. The Poisson bracket {L1, L2} expresses the definite description ‘the
quantity whose value at every state equals the rate of change ofM1 under rotations
about the 2-axis’; and the equation {L1, L2} = L3 expresses the non-trivial identity
of the satisfier of this definite description and M3.

But there is a problem with this idea. The Poisson bracket {L1, L2} prominently
mentions L2, the mathematical representative ofM2; and it does so for an important
mathematical reason: L2 is the generator of the flow in the direction of which
we’re taking the derivative of L1. By contrast, the proposed definite description
mentions onlyM1, but notM2. This suggests that an important part of the content
of {L1, L2} is missed by the straightforward proposal.

A natural thought is to make the definite description expressed by {L1, L2}
reflect the mathematical content of {L1, L2} more closely. Mathematically, {L1, L2}
can be paraphrased as ‘the function whose value at every phase space point equals
the derivative of L1 along the Hamiltonian flow generated by L2.’ This suggests
that the definite description stated by {L1, L2} is ‘the quantity whose value at
every state equals the rate of change of M1 along the family state space curves
generated by M2.’ As it stands, however, this is obscure: there is no obvious sense
in which a quantity counts as a generator of a family of state space curves. The
key challenge is thus to give content to this sort of definite description.

The mathematical account reviewed in section (2.2) is suggestive of the following
proposal. For a quantity Q to be a generator of the state space curves represented
by the Hamiltonian flow of its mathematical representative fQ is for certain facts
about the state space distribution of Q to determine facts about the state space
curves represented by the Hamiltonian flow of fQ in a way that mirrors the
mathematical determination of this flow by fQ. I will refer to quantities of this
sort as real generators of the relevant state space curves.

To implement this proposal, we need to do three things. We need to understand
the nature of the facts determined by certain facts about real generators. We need
to explain the nature of facts about real generators that determine these facts. And
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we need to say more about the sense in which certain facts about real generators
‘determine’ facts of the relevant sort.

What is the nature of the facts determined by certain facts about real generators?
I said earlier that Hamiltonian flows on the phase space of an n-particle system
capture certain modal features of the system. For example, the Hamiltonian flow
of L1 can be used to answer questions such as ‘what would the system be like if it
were rigidly rotated by 180◦ about the 1-axis?’ Think of the facts determined by
the relevant facts about the real generator M1 as answers to questions of this kind.

More precisely, let’s say that state s′ is rotationally accessible from state s just
in case there is an angle φ such that s is related to s′ by a rotation about the
1-axis by φ. Second, stipulate that a proposition p is 1 -possible at a state s iff p
holds at some state rotationally accessible from s, and that p is 1 -necessary at s
if p holds at every state rotationally accessible from s. Third, for any two states
s and s′ related by a rotation about the 1-axis, let the modal distance between
s and s′ be the smallest number |φ| such that s and s′ are related by a rotation
by an angle of ±φ.31 Finally, let the 1 -modal facts at a state s be the collection
of facts about what is 1-possible and 1-necessary at s, together with facts about
the modal distances between s and states rotationally accessible from s. The facts
determined by the relevant facts about the real generator M1 are the 1-modal facts
at every state.

What is the nature of the facts about a real generator that are supposed to
determine these modal facts? Start by observing that the 1-modal facts at every
state are characterised by the Hamiltonian flow of L1: a state s is rotationally
accessible from another state s′ just in case the phase space points representing s
and s′ lie on the same Hamiltonian flow line of L1. This suggests that we can use
the mathematical account of the facts that determine a particular Hamiltonian flow
line of L1 as a blueprint for an account of the nature of the facts that determine
the 1-modal facts at every state.

According to the mathematical account reviewed in section (2.2), the Hamilto-
31To obtain a reparametrisation-invariant measure of the modal distance—a measure invariant

under a change from degrees to radians, for example—an appropriate normalisation factor needs
to be added: 1

2π |φ| in radians and 1
360◦ |φ| in degrees. In mathematics jargon, this measure is

referred to as the Haar measure on the underlying group; cf. (Fuchs and Schweigert, 2003,
pp. 375-8).
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nian flow of a smooth phase space function is determined by the exterior derivative
of this function, i.e. by facts of two sorts: first, facts about which regions of phase
space are level surfaces of the function; and second, facts about the differences
in value of the function between these level surfaces. And a particular flow line
is selected by additionally specifying a particular phase space point—the ‘initial
value’ of this flow line. For example: the exterior derivative of L1, together with a
specific point (q, p), determines which phase space points are related to (q, p) by a
rotation about the 1-axis.

The facts about a function fQ captured by its exterior derivative correspond
to facts about the state space distribution of the physical quantity Q represented
by fQ, facts I’ll refer to as the level surface facts about Q: first, facts about the
regions of state space in which the quantity has a given constant value; and second,
facts about the differences in value of this quantity between those regions. And in
close analogy to the mathematical story just described, to infer which states are
rotationally accessible from actuality—to infer the actual 1-modal facts—one also
needs to know which state one is in; i.e. one needs to know the actual position
and momentum facts. This suggests that the range of facts which determine the
1-modal facts are the level surface facts about M1, together with the position and
momentum facts.

Finally: what is the sense in which these two sorts of facts ‘determine’ the
relevant modal facts? A certain metaphysically-minded philosopher might be
tempted to deploy the familiar and well-entrenched notions of supervenience or
necessitation with regard to necessity of some appropriate type.

These options can be quickly ruled out. Consider the claim that, for the 1-
modal facts to be ‘determined’ by the level surface facts about M1, together with
the position and momentum facts, is for the 1-modal facts to supervene with
metaphysical necessity on the level surface facts about M1, together with the
position and momentum facts. We have a clear grip on the supervenience of the
1-modal facts on the position and momentum facts: there can be no difference in
which states are rotationally accessible without a difference in which possible state
is actual. By contrast, if we hold fixed the actual state of the system, i.e. the actual
position and momentum facts, then the 1-modal facts are metaphysically necessary:
given that the actual state of n-particle system is thus-and-such, and given what it

23



is for the system to be ‘rigidly rotated’ about the 1-axis, facts about which states
are rotationally accessible from actuality could not have failed to obtain. This
implies that, given the position and momentum facts, the 1-modal facts supervene
with metaphysical necessity on any fact whatsoever. But it is not the case that,
given the position and momentum facts, the 1-modal facts are ‘determined’ by any
fact whatsoever. So supervenience is inadequate to account for the relevant sense
of ‘determination’. Similar considerations doom necessitation-based proposals.32 If
there is no type of necessity stronger than metaphysical necessity,33 then no kind
of supervenience or necessitation is adequate to account for what it is for the level
surface facts about M1 to ‘determine’ the 1-modal facts at every state, given the
position and momentum facts.

A natural alternative is metaphysical grounding—an explanatory relation that,
for present purposes, we may think of as a relation between facts.34 One key
feature of grounding is that ‘p metaphysically necessitates q’ does not entail ‘p
grounds q’. The following grounding-based account thus sidesteps the problems of
supervenience- and necessitation-based accounts: for M1 to be the real generator
of the state space curves corresponding to rigid rotations about the 1-axis is for
the 1-modal facts to be fully grounded in the level surface facts about M1, together
with the position and momentum facts.35

A grounding-based account captures an important aspect of ‘determination’.
Whereas the mathematical proxy of the ‘determination’ relation is extensional in
the sense that every phase space function co-extensive with f counts as a generator

32Given the position and momentum facts, the 1-modal facts are metaphysically necessitated
by any fact whatsoever. But it is not the case that, given the position and momentum facts, the
1-modal facts are ‘determined’ by any fact whatsoever.

33Let A-necessity be stronger than B-necessity just in case every A-necessary truth is also
B-necessary, but not conversely.

34(Fine, 2001, 2012; Rosen, 2010).
35Given the holding of the non-trivial identities stated by the Poisson bracket equations

{Li, Lj} = εijkLk, there are different, equally correct ways to state the relevant grounding claims.
For example, the claim that the 1-modal facts are fully grounded in the level surface facts about
M1, together with the position and momentum facts, can be stated just as accurately as the
claim that the 1-modal facts are grounded in the level surface facts about the quantity whose
value at every state is equal to the rate of change of M2 along state space curves generated by M3,
together with the position and momentum facts. In other words: the relata of grounding involve
the relevant generating quantities, but not the definite descriptions by which these quantities
can be picked out.
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of the Hamiltonian flow of f , we have reason to deny that every quantity state-
space co-extensive with the real generator of a family of state space curves is also
a real generator of these curves. Even if the total energy of the n-particle system is
in fact state-space co-extensive with the quantity equivalent to the sum of kinetic
and Newtonian gravitational energy, someone who thinks that the latter counts as
a real generator of dynamical state space curves would derive wrong claims about
the dynamical evolution of the system in the metaphysical possibility in which the
system contains electrostatic energy in addition to kinetic and gravitational energy.
A grounding-based account reflects this feature of ‘determination’: if certain modal
facts are fully grounded in the level surface facts about a quantity Q, together with
the position and momentum facts, then it is generally not the case that, for any
quantity Q′ state-space coextensive with Q, these modal facts are fully grounded
in the level surface facts about Q′, together with the position and momentum
facts.

Finally, a grounding-based account of ‘determination’ is a good match for the
explanatory connotations of the ‘generating’ idiom. For example: when say that a
device is a generator of electricity, we literally mean that it produces electricity
in the sense that there is an underlying physical process in virtue of which the
generator is causally responsible for the electricity produced by it. The occurrence
of the ‘generating’ idiom in the present context is therefore suggestive of an account
of ‘determination’ in terms of an appropriate explanatory relation of the same
productive species. Since the ‘determination’ in question is clearly non-causal,
grounding again seems like a natural choice: when p grounds q, then q may be
thought of as ‘produced’ by p in a sense that may be paraphrased as ‘p is responsible
for q’ or as ‘p makes it the case that q’. Grounding is thus well-placed to account for
the productive sense in which the level surface facts about some quantity, together
with the position and momentum facts, ‘determine’ the corresponding modal facts.

The notion of a real generator might seem abstract and unintuitive. But at least
one aspect of the proposed explanations of certain modal facts by appeal to the
level surface facts about the corresponding real generators should be familiar from
everyday modal claims. According to the account just presented, the fact that
some proposition p is 1-possible is fully grounded in the level surface facts about
M1, together the position and momentum facts. Now, the level surface facts about
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M1, together with the position and momentum facts, include the fact that all
rotationally accessible states agree about M1, and a fortiori they include the fact
about the actual value of M1. Therefore, the fact that p is 1-possible is partially
grounded in, and thus partially explained by, the fact about the actual value of M1.
In other words, the proposed account entails that an invariant feature of actuality
partially explains what is possible, in the relevant sense of ‘possible’.

This is reminiscent of more familiar types of modality. When we make claims
about what is possible, we always hold certain contextually relevant features of
actuality fixed. For example, if you want to know whether it’s possible to fit eight
people in my car, you are presumably holding fixed the actual size of my car.
And the features of actuality we hold fixed in making these claims often seem
explanatory of the latter: the fact that it’s impossible to fit eight people in my car
is explained by the fact that my car has room for no more than five people.

In sum: the notion of a real generator allows us to understand the definite
descriptions stated by Poisson brackets, and thus the nature of variation facts. The
Poisson bracket {L1, L2} expresses the definite description ‘the quantity whose
value at every state is equal to the rate of change of M1 along state space curves
generated by M2’; and {L1, L2} = L3 expresses the non-trivial identity of the
satisfier of this definite description and M3.

Moreover, we can now sharpen our understanding of ordinary SO(3)-invariance.
Let Q be the quantity represented by the function fQ. The fact that Q is an
ordinary SO(3)-invariant consists in the conjunction, for every axis i through
spatial point x, of the variation facts stated by {Q,Li} = 0.

We now have almost all ingredients to state precisely what is conveyed about a
property by saying that it is represented by an SO(3)-Casimir. The only remaining
task is to explain the sense in which the SO(3)-variation facts ‘determine’ the fact
that M , the magnitude of angular momentum, is an ordinary SO(3)-invariant—a
determination which corresponds to the derivability of each of the Poisson bracket
equations {L2, Li} = 0 from the Poisson bracket equations {Li, Lj} = εijkLk.
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3.2 Fine-Grained Invariance

What metaphysical notion is suitable to account for the relevant sense of ‘determi-
nation’? Our predicament with regard to this question is very similar to that of the
previous section, so we can be brief. Supervenience and necessitation are ruled out
by the fact that, given what it is for the n-particle system to be ‘rigidly rotated’
about a point, it is metaphysically necessary that magnitudes of vector quantities
are SO(3)-invariant. Intuitively, that the magnitudes of vectors don’t change under
rotations follows from what it is to rotate a vector. This means that the ordinary
SO(3)-invariance of any vector quantity supervenes with metaphysical necessity
on, and is metaphysically necessitated by, any fact whatsoever.

As before, a natural alternative is metaphysical grounding. For reasons men-
tioned in the previous section, the following grounding-based account sidesteps
the problems of supervenience- and necessitation-based accounts: for the ordi-
nary SO(3)-invariance of M to be ‘determined’ by the SO(3)-variation facts is
for the fact that M is an ordinary SO(3)-invariant to be fully grounded in the
SO(3)-variation facts.36

Another advantage of this grounding-based account is that it captures the
explanatory characteristics of the relevant sense of ‘determination’. Intuitively,
facts about how every component of a vector changes under a given type of
transformation (such as rotations) explain facts about whether the magnitude of
this vector is invariant under these transformations. In the present context, the
fact that the function L2 is an SO(3)-constant, i.e. the fact that {L2, Li} = 0 for
every axis i through x, is explained by the fact that equations {Li, Lj} = εijkLk

hold—i.e. by facts about how the components of ~L change under rotations. This
suggests that the ordinary SO(3)-invariance of the magnitude of total angular
momentum is explained by facts about how total angular momentum components
change under rotations—i.e. by the SO(3)-variation facts. The grounding-based
account of ‘determination’ vindicates explanatory claims of this sort.

The result of the investigation in this paper is thus the following: what is
36Note that the SO(3)-variation facts are closed under substitutions of co-denoting definite

descriptions. For example, the variation fact stated by the equation obtained from {L1, L2} = L3
by replacing L1 with {L2, L3}, L2 with {L3, L1}, and L3 with {L1, L2} is also among the SO(3)-
variation facts. It follows that the relevant grounding claims are preserved under substitutions of
co-denoting definite descriptions of the sort expressed by SO(3)-Poisson bracket equations.
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conveyed about a quantity Q by saying that its mathematical representative is
an SO(3)-Casimir invariant is that the ordinary SO(3)-invariance of Q is fully
grounded in the SO(3)-variation facts—a feature I refer to as the fine-grained
SO(3 )-invariance of this quantity:

Fine-Grained SO(3)-Invariance. For a quantity Q to be a fine-
grained SO(3 )-invariant is for the fact that Q is an ordinary SO(3)-
invariant to be fully grounded in the SO(3)-variation facts.

Fine-grained invariance is the notion we’ve been looking for. I noted earlier
that the ordinary invariance of a physical quantity under a symmetry group is
too coarse-grained to account for the link between properties and symmetries:
a quantity can be invariant under a group without being ‘associated’ with that
group. By contrast, fine-grained invariance has exactly the right fineness of grain:
the fine-grained SO(3)-invariants are all and only the quantities ‘associated’ with
SO(3) in the sense identified by physicists.

4 Conclusion

In this paper, I have done two things. First, I reviewed the standard mathematical
account of the ‘association’ between properties and symmetries by introducing
the notion of a Casimir invariant. Second, I explained what is conveyed about
a property by saying that it is represented by a Casimir invariant under some
group G. According to the proposal developed in this paper, the answer consists
in the notion of a fine-grained G-invariant: that is, the notion of a property whose
ordinary G-invariance is fully grounded in the G-variation facts.

The results of this paper carry over mutatis mutandis to quantum theory. In that
context, the relevant physical quantities are represented by self-adjoint operators
on Hilbert space and the relevant families of state space curves by unitary flows
on that space. Although there is no strict quantum-theoretic analogue of the
symplectic form, Stone’s theorem ensures that every self-adjoint operator generates
a unitary flow which preserves this operator.37 Finally, the role of the Poisson
bracket is played by the commutator bracket on the space of self-adjoint operators.

37(Stone, 1932).
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The account presented in this paper creates conceptual space for a view according
to which ‘being a fine-grained invariant’ under some symmetry group is essential
to every relevant property of elementary particles (such as mass and spin). In
the present context, the idea is that ‘being a fine-grained SO(3)-invariant’ lies in
the essence of the magnitude of angular momentum.38 The result of the present
investigation thus promises a novel metaphysics of properties, one which has yet
to be articulated. Evaluating whether the link between properties and symmetries
calls for a revision of metaphysics along structuralist lines thus has to await further
study.
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