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Abstract Call a quantifier ‘unrestricted’ if it ranges over absolutely all objects.

Arguably, unrestricted quantification is often presupposed in philosophical inquiry.

However, developing a semantic theory that vindicates unrestricted quantification

proves rather difficult, at least as long as we formulate our semantic theory within a

classical first-order language. It has been argued that using a type theory as

framework for our semantic theory provides a resolution of this problem, at least if a

broadly Fregean interpretation of type theory is assumed. However, the intelligi-

bility of this interpretation has been questioned. In this paper I introduce a type-free

theory of properties that can also be used to vindicate unrestricted quantification.

This alternative emerges very naturally by reflecting on the features on which the

type-theoretic solution of the problem of unrestricted quantification relies. Although

this alternative theory is formulated in a non-classical logic, it preserves the

deductive strength of classical strict type theory in a natural way. The ideas

developed in this paper make crucial use of Russell’s notion of range of

significance.

Keywords Unrestricted quantification � Type theory � Non-classical logic � Ranges
of significance � Properties � Type-free theories

1 Introduction

Call a quantifier ‘unrestricted’ if it ranges over absolutely all objects. In ordinary

discourse, our quantifiers are often restricted to some contextually salient domain.

For instance, suppose that someone asserts ‘Everyone came to the party’.
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Ordinarily, we would not take this assertion to imply that everyone in the entire

world came to the party. We would interpret the quantifier as being restricted to

some contextually relevant class of people, say, everyone who was invited to the

party. But are our quantifiers always restricted in this way? Prima facie, the answer
appears to be ‘no’. There are various contexts where it would be natural to take the

quantifiers to be unrestricted. For instance, when a philosopher asserts ‘Everything

is self-identical’ or ‘There are no abstract objects’, we typically take the quantifiers

to range over all objects whatsoever.

However, as soon as we try to make reflective sense of unrestricted quantifi-

cation, we quickly find ourselves in deep water. In ordinary model-theoretic

semantics, the domain of quantification is typically taken to be a set. But according

to our best theory of sets, viz. Zermelo-Fraenkel set theory, there is no set of all sets,

and therefore there is no set of all objects. The move to a class theory, say, Morse-

Kelley class theory, is of little use either. Although there is a class of all sets, there is

no class of all classes. Hence, if classes are objects, there is no class of all objects.

As I will rehearse in Sect. 2, the problem is quite general and it matters little

whether domains are taken to be sets, classes, properties, or objects of some other

sort. As long as domains are taken to be objects, and certain prima facie plausible

constraints are imposed on a general semantic theory, it becomes difficult to develop

a general semantic theory that admits the existence of an interpretation whose

domain contains all objects whatsoever.

It has been argued that using a type theory as framework for our semantic theory

provides a solution to this problem, at least if a broadly Fregean interpretation of

type theory is assumed (Rayo and Uzquiano 1999; Williamson 2003; Rayo and

Williamson 2003; Rayo 2006; Florio and Jones 2021). However, various concerns

about type theory have been voiced in the literature. For instance, some

philosophers have questioned the intelligibility of (the required Fregean interpre-

tation of) type theory, while others have criticised it for various expressive

limitations (Gödel 1983; Bealer 1982; Chierchia 1985; Menzel 1986; Chierchia and

Turner 1988; Linnebo 2006; Weir 2006). It is for these reasons that it is desirable to

develop some alternative solution. In this paper I will introduce a type-free theory of

properties that can be used to vindicate unrestricted quantification. One of my main

aims is to show that this theory emerges fairly naturally by reflecting on the features

on which the type-theoretic solution of the problem of unrestricted quantification

relies. I discuss some of the more formal aspects of this theory in a technical

companion paper (Picenni and Schindler in press).

The present paper is structured as follows. In Sect. 2 I rehearse the problem of

developing a general semantic theory that admits the existence of an interpretation

whose domain is unrestricted. In Sect. 3 I examine the type-theoretic resolution of

this problem. In Sect. 4 I will present my type-free alternative. In Sect. 5 I will show

that this alternative system preserves the deductive strength of classical strict type

theory. I conclude in Sect. 6 by briefly discussing the costs and benefits of both

approaches.

I should stress at the outset that this paper is concerned with only one—though

rather important—problem standing in the way of unrestricted quantification. I will

not deal with other objections that have been levelled against the possibility of
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unrestricted quantification.1 For instance, it has been argued that ontology is relative

to a conceptual framework. Hence, even if the logical problem that we will deal

with in the present paper is resolved, the most that we can hope for is quantification

over domains that are unrestricted relative to some conceptual framework. Although

I believe that, ultimately, these arguments can be resisted, each of them requires

substantial discussion in its own right. But this is a task for another occasion.

2 The problem

Let L be some given object language. The problem that we will be concerned with

in this paper is the problem of making reflective sense of the idea that the quantifiers

of L can be unrestricted, at least on certain interpretations of L. Very roughly, I will

understand the activity of semantic reflection on a language, or of interpreting a

language, as the construction of a theory of what is expressed by the sentences of

that language (under that interpretation). I will call such a theory a ‘semantic theory’

for L. To narrow down the scope of my investigation, I will assume that L is an

ordinary first-order language. Moreover, I will assume that the metalanguage ML—
the language in which we are to construct a semantic theory for L—is a formal

language as well. For the moment, we will assume that ML is an ordinary first-order

language, but later on we will consider other options as well.

Now, initially, there appears to be no major obstacle in providing an

interpretation for a given object language L in which the quantifiers are taken to

be unrestricted. For we could specify the truth-conditions of the sentences of

L directly in an inductive manner.2 The idea is familiar from the works of Tarski

(1956) and Davidson (1967). This method does not require us to assign certain

objects as semantic values to the expressions of the object language. Rather, each

sentence of the object language is ‘matched’ with a corresponding sentence of the

metalanguage that specifies its truth conditions.

Suppose that our object language L is an ordinary first-order language whose

primitive predicates are P1; ;Pk. For simplicity, let us assume that the Pi are unary

and that L contains no individual constants or function symbols. Let D;F1; ;Fk be

formulas of our metalanguage ML with exactly one free variable. Then we can

easily specify an interpretation according to which Pi means Fi (for each i) and the

quantifiers of L range over the Ds as follows.
Let ðD;FÞ abbreviate ðD;F1; . . .;FkÞ. Where u is a formula of L, we define

½u�ðD;FÞ recursively as follows.3 (Note that this definition is carried out in the

metalanguage ML.)

1 For an introduction to these objections see Rayo & Uzquiano (2006, chapter 1), Florio (2014) or Studd

(2019, chapter 1). For a fuller development of some of these objections see e.g. Fine (2006), Glanzberg

(2004), Hellman (2006), and Studd (2019, chapter 7).
2 See Parsons (2006, section 8.3) for a similar suggestion.
3 This method for assigning truth conditions to the sentences of a language is often utilised in the

metamathematics of set theory, e.g. Takeuti & Zaring (1971, chapter 12).
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• ½Pix�ðD;FÞ � FiðxÞ
• ½:u�ðD;FÞ � : ½u�ðD;FÞ

• ½u ^ w�ðD;FÞ � ½u�ðD;FÞ ^ ½w�ðD;FÞ

• ½8xu�ðD;FÞ � 8x ðDðxÞ ! ½u�ðD;FÞÞ

For purposes of illustration, consider a basic object-language generalisation

8x PiðxÞ. It follows from the above definition that ½8x PiðxÞ�ðD;FÞ is equivalent to

the metalanguage sentence 8x ðDðxÞ ! FiðxÞÞ.
Now, where u is a closed formula of L, i.e. a sentence, we can define (again, in

ML):

puq is true in ðD;FÞ � ½u�ðD;FÞ

Now, assume that the quantifiers of our metalanguage are unrestricted. I take this to

be a plausible, although defeasible position. Given this assumption, we can easily

provide an interpretation in which the quantifiers of L are unrestricted by letting

D(x) be the formula x ¼ x.
It would be premature to claim victory though. The above method merely allows

us, for any particular choice of formulas D;F1; . . .;Fk, to specify an interpretation

according to which Pi means Fi and the quantifiers range over the objects satisfying

D. But for many theoretical purposes, we require a general semantic theory, i.e. a

theory about all possible interpretations a language might take. Such a theory

enables us to establish general semantic properties of a sentence. For example, we

would like to be able to provide definitions of semantic validity and logical

consequence, and derive from such definition that e.g. every sentence is a logical

consequence of itself. To take another example, we might want to use such a theory

to establish that the standard deduction systems for first-order logic are sound.

Unfortunately, the above method for specifying the truth conditions of a sentence

in an interpretation ðD;FÞ is not suitable for that purpose. Suppose, for example,

that we define logical consequence as preservation of truth in all interpretations,
roughly:

puq is a logical consequence of pwq iff for all formulas D;F1; . . .;Fk (of the

metalanguage), if pwq is true in ðD;FÞ then puq is true in ðD;FÞ.

But this will not work for two reasons. First, the above definition is ungrammatical.

Second, this definition makes the notion of logical consequence depend too much on

what predicates are available in the metalanguage.

Let’s start by considering the first difficulty in more detail. The problem here is

that we cannot bind the formulas D;F1; . . .;Fk by a quantifier—at least not if our

metalanguage is an ordinary first-order language. This is so because the formulas

D;F1; . . .;Fk are used in the definition of ‘puq is true in ðD;FÞ’. That is, they occur

in a syntactic position that cannot be replaced by a variable (in a first-order

language).

To see this more clearly, consider the claim that p8x Pixq is a logical

consequence of itself. According to our above definition, this is equivalent to

saying that for all metalanguage formulas D;F1; . . .;Fk, if p8x Pixq is true in ðD;FÞ
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then p8x Pixq is true in ðD;FÞ. And this, in turn, is equivalent to saying that for all

metalanguage formulas D;F1; . . .;Fk, if 8x ðDðxÞ ! FiðxÞÞ then

8x ðDðxÞ ! FiðxÞÞ. But this is ungrammatical in first-order languages, as it

involves quantification into the syntactic position of the formulas D and Fi.

It might be suggested that we augment our metalanguage with substitutional
quantifiers that can bind variables in the syntactic position of a formula (where the

class of admissible substitution instances consists of the formulas of ML that do not

contain the new vocabulary). This would indeed solve the first difficulty; but there is

a second problem. Typically, we do not want our definition of logical consequence

to depend too much on what predicates are available in the metalanguage.

Counterexamples to an alleged claim of logical consequence might arise as soon as

new predicates become available in our metalanguage.4

In order to solve both of these problems, two things need to be done. First, we

need to find a method that allows us to generalise—directly or indirectly—on the

syntactic position of every formula of the metalanguage. Second, we need to make

sure that the existence of interpretations does not depend too much on what

predicates are available in the metalanguage.

A natural suggestion at this point is that we appeal to sets, classes, properties, or

other suitable abstract objects. As Parsons (1983) has remarked, talk about sets,

classes, and properties answers a need to generalise on the syntactic position of

formulas. I’d venture to say that this is one of the main reason why semantics is

typically carried out in a set-theoretic metalanguage.

Suppose, for example, that there are y0; yi such that the following is provable in

our metatheory:

x 2 y0 $ DðxÞ
x 2 yi $ FiðxÞ

Given these equivalences, we can generalise indirectly on the position of D;Fi, by

generalising on the singular terms y0; yi.
In slightly more detail, we can proceed as follows. Let us say that I is an

interpretation (of L) if there are y0; y1; . . .; yk such that I ¼ ðy0; y1; . . .; ykÞ. Given
some arbitrary interpretation I, we can define ½u�I as follows.

• ½Pix�I � x 2 yi
• ½:u�I � : ½u�I

• ½u ^ w�I � ½u�I ^ ½w�I

• ½8xu�I � 8x ðx 2 y0 ! ½u�IÞ

4 One way to fix this problem is to construe the range of the substitutional quantifiers as open ended by

allowing substitutions involving predicates of admissible expansions of the metalanguage. For a

precedent to this, see Fujimoto (2019). Alternatively, one could, following Bolzano and Quine, define a

sentence as valid if it remains true on every uniform substitution of its non-logical terms. This account has

been criticised in an influential paper by Boolos (1975, Appendix). See, however, Halbach (2020) for a

contemporary take on the Bolzano-Quine approach of defining logical consequence. It is beyond the

scope of the present paper to discuss either of these views, so I will set them aside for the remainder of the

paper.
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Now, let D;F1; . . .;Fk be formulas of the metalanguage and suppose that there is an

interpretation I ¼ ðy0; y1; . . .; ykÞ such that x 2 y0 $ DðxÞ and x 2 yi $ FiðxÞ for
all 1 6 i 6 k. Then it is easily seen that

½u�I $ ½u�ðD;FÞ

But while we could not quantify into the position of the formulas D;F1; . . .;Fk, we

can now straightforwardly quantify into the position of the terms y0; y1; . . .; yk.
Thus, appealing to sets or classes enables us to generalise over interpretations.

Moreover, we can safely assume that there are sufficiently many sets that cannot be

yet specified by a formula of our metalanguage, so that the second difficulty is taken

care of as well. I have focused on sets here, but similar remarks apply to properties

and other suitable entities as well.

Unfortunately, the above strategy faces severe limitations. It seems reasonable to

impose the following constraint (C) on a general semantic theory (cf. Williamson

2003; Linnebo 2006):5

(C) For all formulas D;F1; . . .;Fk (with appropriate number of free variables)

of the metalanguage ML, there is an interpretation I of the object language L
according to which Pi means Fi and the quantifiers of L range over the Ds (in

the sense that ½u�I iff ½u�ðD;FÞ for all u in L).6

This constraint is intuitively plausible and, more importantly, seems to be required

for certain theoretical purposes. For instance, suppose that we want to give a proof

of soundness for one of our standard deduction systems, i.e. that every L-sentence
derivable without assumptions in our deduction system is true in every interpre-

tation. (As we will see in a moment, the notion of soundness I have in mind here

differs from the notion found in most handbooks of logic.) Earlier we have seen

how for any particular choice of formulas D;F1; . . .;Fk of the metalanguage, we can

specify an interpretation ðD;FÞ according to which Pi means Fi and the quantifiers

of L range over the objects satisfying D, by specifying the truth-conditions of the

sentences of L Tarski and Davidson. Hence, it might be argued that if a sentence is

derivable without assumptions, then soundness should entail that the sentence is true

in ðD;FÞ. However, if our general semantic theory—let’s call it T—does not satisfy
(C), then it is logically possible that a sentence is true in all interpretations

recognised by T without being true in ðD;FÞ:7

5 Note that this constraint is formulated in a metametalanguage, i.e. a metalanguage for ML. Moreover,

note that the formulation of this constraint requires quantification into the syntactic position of formulas

as well. However, in this particular case we can appeal to substitutional quantifiers, because here we are

only concerned with the formulas available in the metalanguage ML.
6 If we want to exclude free logics from our consideration, we should stipulate here that the formula D is

satisfied by at least one object. In what follows, I will assume that this stipulation is in place.
7 It should be noted that one can develop semantic theories that do not satisfy (C) but that arguably lead

to extensionally correct definitions of logical validity and consequence. For example, Kreisel’s squeezing

argument provides a good reason for accepting the standard model-theoretic definition of logical

consequence and validity as extensionally correct (Kreisel 1967). However, as Field (2008, chapter 2.4)

has pointed out, one cannot utilise Kreisel’s squeezing argument to argue for the soundness of our

standard deduction systems for first-order logic. This is so because Kreisel’s squeezing argument
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Alas, constraint (C) cannot be satisfied if our semantic theory is formulated over

classical first-order logic. For let DðxÞ;F1ðxÞ; . . .;FkðxÞ be arbitrary formulas of our

metalanguage (some set-theoretic language, say). In order to satisfy constraint (C),

there need to be y0; y1; . . .; yk such that x 2 y0 $ DðxÞ and x 2 yi $ FiðxÞ for all
1 6 i 6 k. Since the formulas DðxÞ;F1ðxÞ; . . .;FkðxÞ were arbitrary, this requires

that some form of naı̈ve comprehension holds in our metatheory. And of course we

know that this is impossible in classical first-order logic, due to Russell’s paradox.

Let F(x) be the formula x 62 x. The assumption that there is a class y such that

x 2 y $ x 62 x leads straight into paradox.

Thus, in order to develop a general semantic theory that satisfies (C), one needs

to go beyond classical first-order logic.

3 Type theory and ranges of significance

In order to set up a general semantic theory satisfying constraint (C), we need to

be able to generalise on the syntactic position of every formula of our

metalanguage. A natural suggestion at this point is to appeal to some type

theory, which allows us to quantify directly into the syntactic position of a

formula. I believe that this indeed provides a solution to the problem of

unrestricted quantification, at least if a certain interpretation of the higher-order

quantifiers is intelligible or legitimate.

That the problem of unrestricted quantification can be solved by moving to a

type-theoretic language has been argued for by various authors Rayo and

Uzquiano (1999); Williamson (2003), Rayo and Williamson (2003), Rayo (2006);

Florio and Jones (2021). My goal in this section, then, is not to provide yet

another argument for the type-theoretic solution (although I will present an

argument for it, of sorts), but rather, by examining how the type-theoretic

response works, to draw some general lessons that will allow us to formulate a

type-free resolution of the problem of unrestricted quantification. (That, then, is

my ultimate argumentative goal, which will be carried out in Sect. 4.) To this end,

it will be convenient to have a look at different type theories. For ease of

exposition, we will restrict our attention to simple, rather than ramified type

theories. Moreover, we will deal only with type-theoretic languages all of whose

predicate variables are monadic.

In a simple, monadic, type-theoretic language, we have an infinite stock of types

0, 1, 2, ..., and for every type n we have countably many variables xn; yn; zn; . . . of
that type. In this framework, various type theories can be formulated.

Footnote 7 continued

presupposes soundness. Hence, if one wants to establish soundness, one cannot appeal to Kreisel’s

squeezing argument without begging the question. (One can, of course, prove that our standard deduction

systems for first-order logic are sound with respect to the class of all models. But as Russell’s paradox
shows, it is not the case that there is a model corresponding to every interpretation ðD;FÞ. Hence, the so-
called soundness theorem does not establish soundness in the intuitive sense.).
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In strict type theory, an atomic formula of the form xm½yn� is well-formed, or

meaningful, if and only if m ¼ nþ 1. Strict type theory contains axioms of

comprehension

9xnþ1 8yn ðxnþ1½yn� $ uÞ

where xnþ1 is not free in u.
In strict type theory, grammaticality coincides with meaningfulness, but this is

not mandatory. For instance, one can formulate a variant of strict type theory—for

lack of a better term, let’s call it 3-valued strict type theory—where an expression of

the form xm½yn� is counted as well-formed for all choices of m, n, but considered to

be meaningless whenever m 6¼ nþ 1. Thus, 3-valued strict type theory counts the

same formulas as meaningful as strict type theory, but admits more expressions as

well-formed.8

In (3-valued) strict type theory, types are mutually exclusive. This assumption is

not mandatory either. In cumulative type theory, an atomic formula of the form

xm½yn� is well-formed, or meaningful, if and only if m[ n. Cumulative type theory

has comprehension axioms

9xm ð8ym�1 ðxm½ym�1� $ um�1Þ ^ . . . ^ 8y0 ðxm½y0� $ u0ÞÞ

where xm does not occur free in any ui (cf. (Florio and Jones 2021, section 5)).9

On the other hand, in liberal type theory an expression of the form xm½yn� is well-
formed for all choices of m, n, but considered as false (rather than meaningless)

whenever m 6 n (cf. (Florio and Jones 2021, section 6)). Thus, liberal type theory

could be viewed as a relaxation of cumulative type theory.

The quantifiers of a given type theory can be interpreted in various ways—for

example, as ranging over sets, classes, properties, or pluralities. For our purposes it

will be convenient to think of them as ranging over properties or concepts (I will use

these notions interchangeably), but we will return to this issue later on.

Now, let us return to the suggestion that we use a type theory for providing a

general semantic theory for our object language L. First, let us reconsider our

constraint (C) on a satisfactory general semantic theory, which we introduced in the

previous section:

(C) For all formulas D;F1; . . .;Fk (with appropriate number of free variables)

of the metalanguage ML, there is an interpretation of the object language L
according to which Pi means Fi and the quantifiers of L range over the Ds.

8 It is quite straightforward to set up a system of natural deduction for 3-valued strict type theory. For

instance, reasoning with meaningless formulas can be handled by inference rules for Weak Kleene logic

(Petrukhin 2017). In order to recover the deductive strength of (classical) strict type theory, we may adopt

an instance of the law of excluded middle for every expression of the form xnþ1½yn�. Then a formula will

be provable in 3-valued strict type theory if and only if it is provable in its classical counterpart.
9 For alternative formulations of cumulative type theory, see Degen and Johannsen (2000) and Button

and Trueman (in press).
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This constraint was formulated with a classical first-order language as

metalanguage in mind. Once we take type-theoretic languages as potential

metalanguages into account, this constraint needs to be slightly adjusted.

Consider a basic generalisation 8x Pix, and let DðxnÞ;FiðymÞ be formulas of the

metalanguage, i.e. formulas of some type theory. If we want to assign D as

domain of quantification and interpret Pi by Fi, then the truth condition for

8x Pix should be as follows:

½8x Pix�ðD;FÞ � 8xn ðDðxnÞ ! FiðxnÞÞ

But it is quite obvious that this will not work for arbitrary choices of DðxnÞ and

FiðymÞ. For example, if m 6¼ n, then substituting xn for ym in FðymÞ will not result in
a well-formed expression of strict type theory; whereas in 3-valued strict type

theory, the expression, though grammatical, will be meaningless.

In order to formulate our constraint in a way that is general enough to be

applicable to the various type theories considered above, it will be convenient to

invoke Russell’s notion of a range of significance (Russell 1903, 1908).10

Incidentally, Russell made use of this notion when he introduced readers to his

first type theory in Appendix B of Principles of Mathematics:

Every propositional function UðxÞ—so it is contended—has, in addition to its

range of truth, a range of significance, i.e. a range within which x must lie if

UðxÞ is to be a proposition at all, whether true or false. This is the first point in

the theory of types; the second point is that ranges of significance form types

[...] (Russell 1903, 771)

There is some scholarly debate as to what exactly Russell meant by

‘propositional function’ (Chihara 1972). Are propositional functions simply open

formulas of the language or rather some ontological correlate thereof or

something entirely different? We need not decide the matter here. In what

follows, we will use the notion of range of significance in connection with both

open formulas and properties, as the context will require. If a property is

expressible or definable by a formula of the language, we assume that their

ranges of significance coincide.

The notion of a range of significance of a property implies that the question

whether a property c applies to some entity a or not is meaningful if and only if a is

in the range of significance of c. If a is outside c’s range of significance then the

expressions c[a] and :c½a� are both meaningless.

Although Russell introduced the notion of range of significance in the context of

a particular formulation of the theory of types, it is quite independent from it. In

particular, the notion of range of significance can be applied no matter whether

types are taken to be strict, cumulative, or liberal.

10 The idea of using Russell’s notion of range of significance to defend the coherence of unrestricted

quantification has been explored, independently, by Schindler (2019) and Florio and Jones (2021).
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Now, using the notion of range of significance, we can easily reformulate our

earlier constraint on a satisfactory general semantic theory. If the quantifiers of our

object language are to range over the entities that satisfy some metalanguage

formula D, then each predicate Pi of our object language needs to be interpreted by

a metalanguage formula Fi that is significant for all Ds: if there is an object d falling

under D but such that d is not in the range of significance of Fi, then the question ‘Is

d an Fi?’ is not even significant. Hence, the range of truth of D must be included in

the range of significance of Fi for every i.
Thus, let us reformulate our constraint on a satisfactory general semantic theory

as follows:

(C�) For all formulas D;F1; . . .;Fk (with appropriate number of free variables)

of the metalanguage ML such that Fi is significant for all Ds for all 1 6 i 6 k,
there is an interpretation of L according to which Pi means Fi and the

quantifiers of L range over the Ds.

Note that (C�) implies our older criterion (C) for classical first-order languages, at

least if we assume that all (classical) first-order predicates are significant for all

objects. Thus, I would consider (C�) as a generalisation rather than a weakening of

(C).

It is not hard to see that (C�) is satisfied, for example, in (3-valued) strict type

theory. Let D;F1; . . .;Fk be formulas such that each Fi is significant for all Ds. In (3-
valued) strict type theory, this will be the case if and only if the distinguished free

variables in D;F1; . . .;Fk are all of the same type, say m. Strict type theory

guarantees then that there are ymþ1
0 ; ymþ1

1 ; . . .; ymþ1
k such that ymþ1

0 ½xm� $ DðxmÞ and
ymþ1
i ½xm� $ FiðxmÞ for all 1 6 i 6 k.11

But this does not amount to a vindication of unrestricted quantification yet. Let’s

retrace our steps. We started by noting that we can specify the truth conditions for

the sentences of a given object language assuming that the quantifiers of the

metalanguage are unrestricted, or in other words, that there is some formula of the

metalanguage that is satisfied by all objects whatsoever. One of the problems that

we encountered then was that, in order to formulate a general semantic theory, we

need to generalise on interpretations. Given our constraint that there be an

interpretation for all assignments of metalanguage formulas to predicates of the

object language, this requires us to generalise on the syntactic position of every

formula our metalanguage. In order to generalise on the syntactic position of a

formula, a principle of comprehension is needed. In a first-order theory,

comprehension cannot hold for all formulas of the language due to Russell-like

paradoxes—at least as long as the underlying logic is classical. This motivated the

move to a type-theoretic metalanguage. But the move to a type-theoretic

metalanguage vindicates unrestricted quantification only if there is some quantifier

of type theory that is unrestricted, or in other words, if there is a formula of type

theory that is satisfied by all objects whatsoever.

11 The constraint is also satisfied in cumulative type theory. By contrast, it is not satisfied in liberal type

theory, as a moment’s reflection will show.

T. Schindler

123



Now, in type theories we can find a formula that is satisfied by all entities of type

0, for instance, the formula x0 ¼ x0. There is no formula that is satisfied by all

entities that type theory recognises though. Is this a problem?

The answer to this question depends on how our chosen type theory is

interpreted. If the various variables of type theory range over objects of some sort or

other (say, sets of a particular rank), then there is no formula that is satisfied by all

objects. On such an interpretation, type theory is actually more of a multi-sorted

first-order language rather than a higher-order language.

A natural alternative is to take the higher-order variables to range over properties

or concepts.12 However, one needs to be careful how the notion of concept is

understood here.

On an objectual conception of concepts, concepts have a predicable nature as

well as an objectual nature. Since, on this conception, concepts are objects and

concepts are stratified into different levels, there is no predicate that applies to all

objects whatsoever. Thus, this interpretation does not give rise to a solution to the

problem of unrestricted quantification.

By contrast, on a broadly Fregean conception of concepts, concepts have a

merely predicable nature. On this conception, concepts are not objects at all. We can

think of them as being obtained by ‘‘omitting’’ some argument from a proposition,

e.g. by omitting a from Fa or by omitting F from 8x Fx. The range of significance of
a concept is then naturally understood as comprising all the arguments that can

‘‘saturate’’ the concept in question, e.g. the range of significance of a second-level

concept consists of all first-level concepts and the range of significance of a first-

level concept consists of all objects. According to this conception, the quantifier 8x0
ranges over all objects whatsoever. The quantifiers 8xn (for n[ 0) range over n-th-
level concepts, but these are not objects at all. Thus, on a broadly Fregean

interpretation, there is a formula of type theory that applies to all objects

whatsoever, namely x0 ¼ x0.
To be sure, the foregoing characterisation of the broadly Fregean conception of

concepts is highly problematic, as Frege’s infamous concept horse paradox

demonstrates (see e.g. Hale and Wright (2012)). In natural language, ‘concept’ is an

ordinary noun, so when one says that no concept is an object—which we may

formalise as 8x ðConceptðxÞ ! :ObjectðxÞÞ—then one quantifies into the syntac-

tic position of a name, hence over objects.

Recently, there have been various attempts to improve on the above character-

isation of the broadly Fregean conception of concepts, e.g. Williamson (2013),

Jones (2018), Trueman (2021). For instance, according to primitivists about type

12 A further alternative is to interpret the higher-order variables plurally. Plural interpretations of second-

order logic are familiar from the work of Boolos (1984). In order to interpret third- and higher-order

variables, one would need to appeal to super-pluralities, super-super-pluralities, and so forth. Assuming

that one can make sense of super-plurals and so on (see Rayo (2006) for an attempt), there remains one

problem. Pluralities are extensionally individuated, and this seems to cause various problems when one

tries to develop a general semantic theory for object languages that contain modal operators (see

Williamson (2013, chapter 5.8)). Moreover, the plural interpretation only seems to make sense for strict

type theory, but not cumulative type theory (Button and Trueman in press). We will therefore set the

plural interpretation of type theory aside.
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theory, type theory does not require a reductive explanation in terms of an

antecedent understanding of sets or concepts. Rather, type theory can be adequately

explained only using type theory itself—it must be understood ‘from the inside’

(Williamson 2013, 260). Primitivists about type theory often continue to talk about a

hierarchy of concepts or properties; but such talk is derivative and needs to be

understood in terms of the type-theoretic quantifiers, and not the other way round. It

is simply a manner of speaking that makes the exposition more accessible.

If this interpretation of type theory is an intelligible or legitimate one, then

unrestricted quantification (over objects) is vindicated, at least by my lights. Of

course, whether the antecedent of this conditional holds is another (controversially

discussed) question.13 It is not my intention to settle that debate here. I will leave it
to the adherents of type theory to defend their position. However, given that the

intelligibility or legitimacy of a Fregean interpretation of type theory is at least

controversial, it would be desirable if a solution to the problem of unrestricted

quantification could be found that did not depend on it for its success. In the

remainder of the paper, I will outline what I take to be the most promising

alternative to the type-theoretic approach.

4 Ranges of significance without types

The problem of developing a general semantic theory boils down to the problem of

generalising on the syntactic position of formulas of the metalanguage, and

Russell’s paradox imposes severe limitations on our ability to do so. Type theories

avoid Russell’s paradox by banning self-applicable properties or—to use Russell’s

notion of range of significance—by claiming that no property lies in its own range

of significance. Strict type theory assumes that ranges of significance are mutually

exclusive. Cumulative type theory, on the other hand, rejects the assumption that

ranges of significance are mutually exclusive, and assumes that they are cumulative

instead.

To be sure, it is not mandatory to think of ranges of significance as forming types

at all, whether strict or cumulative, as Gödel pointed out. He notes that

the theory of types brings in a new idea for the solution of the [logical]

paradoxes, especially suited to their intensional form. It consists in blaming

the paradoxes not on the axiom that every propositional function [or formula]

defines a concept or class, but on the assumption that every concept gives a

meaningful proposition, if asserted for any arbitrary object or objects as

arguments. (Gödel 1983, 466)

13 See e.g. Weir (2006, 335–340) and Linnebo (2006, section 4) for some doubts about (strict) type

theory as a legitimate tool for semantic theorising. Another pressing question is whether a broadly

Fregean interpretation is also available for cumulative type theory. That cumulative type theory can

support unrestricted quantification has been argued for by e.g. Florio & Jones (2021, section 5). It has

been denied by e.g. Krämer (2017) and Button and Trueman (in press).
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Thus, the general idea here is that for every open formula uðxÞ there is some

property fu, with the proviso that

• the range of significance of fu comprises exactly those things x such that uðxÞ is
meaningful (i.e. true or false), and

• for all x in fu’s range of significance, fu½x� and uðxÞ coincide in truth value.

Strict type theory can be seen as instance of this general idea, based on the

additional assumption that ranges of significance are mutually exclusive (Gödel

1983, 466). Cumulative type theory provides another instance, based on the

additional assumption that the ranges are cumulative. The general idea, however, is

logically independent from the assumption that ranges of significance form types at

all.

Since we are searching for a type-free solution to the problem of unrestricted

quantification, let us now return to a first-order framework and assume that

properties are objects (rather than higher-order entities, as in the Fregean tradition).

Hence, in an expression of the form x[y], both variables must be taken to be first-

order, and therefore x[y] must express a binary relation between x and y. We could

write this, more transparently, as A(x, y) (x applies to y), but in order to facilitate

comparison with type theory, we will stick to the notation x[y].
Since, for certain values of the variables, y might not be in range of x, our

framework must admit the possibility that the formula x[y] is meaningless. There are

various logics to deal with meaningless formulas, but in my mind the most natural

way is to adopt the Weak Kleene rules for the logical connectives.14 That is to say, a

compound formula is considered as meaningless if and only if one of its

subformulas is meaningless. And if a formula is meaningful (and hence all its

subformulas are meaningful as well), then it is evaluated just as in classical logic.

Setting up a system of natural deduction suitable for Weak Kleene logic is quite

straightforward; I refer the reader to Petrukhin (2017) for details.

According to the Russell-Gödel idea, every formula u determines a property fu.
In order to implement this idea, we assume that there is an abstraction term fu for

every formula u in the language.15 Moreover, our theory should have some

unrestricted principle of comprehension, at least in rule form.

uðtÞ
fu½t�

fu½t�
uðtÞ

(Note that in Weak Kleene logic, where conditional proof fails, this does not entail

the biconditional fu½t� $ uðtÞ).
It is natural to assume that the standard laws for identity statements hold, that is,

reflexivity, symmetry, transitivity, and Leibniz’ law. Given reflexivity, there is a

14 However, there appears to be no major obstacle to carrying out the following ideas in a Strong Kleene

framework if one prefers to do so.
15 More precisely, where uðx; y1; . . .; ynÞ is a formula with all free variables displayed, we assume that

there is a term f xu in which the variable x is bound. To ease readability, we will omit the superscript in

what follows.
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formula (namely, x ¼ x) that holds for all objects, and consequently, there is a

property that applies to all objects.

Constructing a theory that satisfies the above demands is actually not too

difficult. It is well known by now how to construct theories that satisfy naı̈ve

comprehension in rule form, by utilising fixed-point constructions. This method was

popularised by Kripke (1975) and Martin and Woodruff (1975), who have used it to

develop type-free theories of truth, and has been applied to classes and properties by

authors such as Maddy (1983), Feferman (1984), Field (2004), and Weir (2006),

among many others. (See Feferman (1984) or Cantini (2009) for a historical

overview of work in this area.)

Equipped with an unrestricted rule of comprehension and the existence of a

universal property, it might seem now that we have everything we need to solve the

problem of unrestricted quantification.

Unfortunately, things are not that simple. Consider, once more, our constraint on

a general semantic theory:

(C�) For all formulas D;F1; . . .;Fk (with appropriate number of free variables)

of the metalanguage ML such that Fi is significant for all Ds for all 1 6 i 6 k,
there is an interpretation of L according to which Pi means Fi and the

quantifiers of L range over the Ds.

Let D, F be formulas of our metalanguage such that F is significant for all Ds. Given
a theory that satisfies naı̈ve comprehension in rule form, we can construct an

interpretation by letting fD (the property determined by D) be the domain and

assigning fF (the property determined by F) as semantic value to P. Now, what we
want is that our assignment of truth conditions to the sentences of L entails that

p8x Pxq is true if and only if every D is an F. Suppose we formalise ‘Every D is an

F’ as 8x ðDðxÞ ! FðxÞÞ, where ! is the material conditional (i.e. defined in terms

of negation and disjunction). It is quite obvious that, for certain choices of D, F, the
expression 8x ðDðxÞ ! FðxÞÞ will not be a meaningful formula of our

metalanguage.

Consider, for example, the formula x[x], which expresses that x applies to itself.

It is a straightforward consequence of the definition of range of significance that the

formula x[x] is significant for all properties that apply to themselves. Now, let D be

the formula x[x] and let F be the same formula. Since F is significant for all Ds, as
we just noted, the antecedent of (C�) holds. By definition, 8x ðDðxÞ ! FðxÞÞ is

8x ðx½x� ! x½x�Þ, which is equivalent to 8x ð: x½x� _ x½x�Þ. It is immediate that

certain instances of this generalisation cannot be meaningfully asserted. For

example, let r be the property of not applying to itself. Then the instance r½r� _
: r½r� cannot be a meaningful formula in theories of the kind envisaged here.

There are various ways to get around this difficulty though. One possibility is to

introduce some kind of primitive conditional � into the language such that, for all

formulas A, A � A will turn out to be valid. While this suggestion may be

reasonable enough within a Strong Kleene framework, it does not sit well with the

Weak Kleene approach that we have adopted here. According to the latter approach,

a formula should be meaningless (i.e. receive the value 1
2
) whenever one of its
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subformulas is meaningless. Thus, whenever A is meaningless, A � A ought to be

meaningless as well.

Another possibility—one that I find especially appealing—is to introduce

operators that restrict the range of a variable to a particular range of significance.

This can be done in a straightforward way. Let u be a formula, x a variable, and t a
term (variable or abstraction term) designating a property. Then we stipulate that

8x : tu is a well-formed formula, whose intended meaning is:

For all x in the range of significance of t; it is the case that u:

This form of quantification is not much different from the kind of quantification one

finds in type theories. In type theories, variables are equipped with an upper index

indicating the type or range of values that the variable can take on. These types are

nothing other than ranges of significance. Of course, in type theories each variable

wears its range of significance on the sleeves. By contrast, in the present system,

which features only one kind of variable, a variable can take on any value, and in

order to restrict it to a particular range of significance, one needs to make that

restriction explicit by using the quantifier 8x : t.
Let us be a bit more precise about the semantics of the restricted quantifier.16 A

model for our property theory has the form M ¼ ðU; JÞ where U is a non-empty set,

the universe or domain of discourse of M, and J is a function that assigns to each

term an appropriate value, and assigns to each primitive predicate or relation symbol

an appropriate extension and anti-extension. We will denote the extension of the

relation symbol x[y] by Aþ and its anti-extension by A�. Where d is an element of

U, we denote the set fe j ðd; eÞ 2 Aþg by AþðdÞ and the set fe j ðd; eÞ 2 A�g by

A�ðdÞ. Finally, we denote the union AþðdÞ [ A�ðdÞ by R(d).
Intuitively, for a given property d, we can think of AþðdÞ as the range of truth of

d, i.e. the range of objects to which the property d applies (the expression ‘range of

truth’ is taken from the Russell quote cited in the previous section); we can think of

A�ðdÞ as the range of falsity of d, i.e. the range of objects to which the property d
does not apply (or: the range of objects to which the negation of d applies); and we

can think of R(d) as the range of significance of d, i.e. the range of objects of which
it can be meaningfully asked whether the property d applies to it or not. This

intuitive reading can be implemented as follows. Let h be a variable assignment; we

denote the value of a term t relative toM and h by tM;h. Atomic formulas of the form

t[s] are evaluated according to the following clauses:

• vhMðt½s�Þ ¼ 1, if sM;h 2 AþðtM;hÞ
• vhMðt½s�Þ ¼ 0, if sM;h 2 A�ðtM;hÞ
• vhMðt½s�Þ ¼ meaningless, otherwise

The logical connectives and the ordinary quantifiers are evaluated according to the

Weak Kleene rules. Finally, the restricted quantifier is interpreted according to the

16 I stress that this model-theoretic semantics is merely a technical tool to aid the reader in figuring out

what inferences are (in)valid in the theory. The proper semantics for our property theory should be given

in a non-classical metatheory as well.
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following clauses (where h d
x refers to the variable assignment which is just like

h except that it assigns d to x):

• vhMð8x : tuÞ ¼ 1, if RðtM;hÞ 6¼ £ and for all d 2 RðtM;hÞ; vh
d
x

MðuÞ ¼ 1

• vhMð8x : tuÞ ¼ 0, if RðtM;hÞ 6¼ £ and there is d 2 RðtM;hÞ s.t. vh
d
x

MðuÞ ¼ 0

• vhMð8x : tuÞ ¼ meaningless, otherwise

In words, 8x : tu is true if the range of significance of t is non-empty and every

object within that range satisfies u; false if the range of significance of t is non-

empty and some object within that range falsifies u; and meaningless otherwise.

It’s straightforward to lay down natural deduction rules for the restricted

quantifiers. (Note that they behave quite similar to the quantifiers of free logics.) For

instance, we have the following introduction and elimination rules:

8x:f u Rðt; f Þ
uðt=xÞ ½Rðx; f Þ�

uðxÞ
:::

Rðs; f Þ
8x:f uðxÞ

where t must be free for x. The elimination rule (left) allows us to conclude uðt=xÞ
from 8x : f u, provided that t is indeed in the range of significance if f. The intro-

duction rule (right) allows us to conclude that 8x : f u, if uðxÞ holds under the

assumption that x is in the range of f and the range of f is non-empty (which is

secured by the condition R(s, f), for some arbitrary term s).17 For more details on the

formal system, I refer the reader to our technical companion paper (Picenni and

Schindler in press).

With this in hand, let us now return to the claim that every D is an F, where F is a

formula of our property theory that is significant for all Ds. Given our restricted

quantifier, we can formalise ‘Every D is an F’ as

8x : fD ðDðxÞ ! FðxÞÞ

where fD is the property determined by D. Under the assumption that F is significant

for all Ds (and that there is at least one object satisfying D), the displayed gener-

alisation will be meaningful on the intended reading of the quantifier phrase 8x : fD.
Thus, once we have the restricted quantifiers on board, our theory is able to

satisfy criterion (C�). Since there is, moreover, a formula that is satisfied by all

objects whatsoever (namely, x ¼ x), our theory provides a type-free resolution of

the problem of unrestricted quantification.

17 Since we are working in a non-classical system, it is natural to adopt similar rules for the introduction

and elimination of negated quantifiers, and we’ll assume that such rules are in place. It is also convenient

to assume that we have a primitive restricted existential quantifier in our language, with corresponding

semantics and deduction rules.
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5 Recovering the theory of types

In the previous section I have outlined an alternative to the type-theoretic response

to the problem of unrestricted quantification. One of the main points of our

discussion is that this alternative emerges quite naturally by reflecting on the

features on which the type-theoretic solution of the problem of unrestricted

quantification relies. Before concluding this paper, I will present a result that sheds

further light on the relation between the two theories. Very roughly, the result is that

a natural extension of the system presented in the previous section preserves the

deductive strength of classical strict type theory. This can be shown by defining

within our type-free theory a hierarchy of properties that mirrors the type-theoretic

hierarchy. Indeed, one may think of this (ontological) hierarchy of properties as the

first-order projection of the (ideological) hierarchy of types that results from

reifying Fregean properties.

In order to do this, we need one new tool. In the previous section, we have

introduced quantifiers ranging exactly over the objects falling within the range of

significance of some property. Similarly, we can introduce quantifiers ranging

exactly over the objects falling within the range of truth of some property. (The

range of truth of a property t is the range of objects x such that t applies to x. The
phrase ‘range of truth’ is taken from the Russell quote cited earlier.) This results in a

major boost of the expressive power of the language. It enables us to define the

above mentioned (ontological) hierarchy of properties that mirrors the (ideological)

hierarchy of types.

Let u be a formula, x a variable, and t a term (variable or abstraction term)

designating a property. Then we stipulate that ð8x: t½x�Þu is a well-formed formula,

whose intended meaning is:

For all x in the range of truth of t; it is the case that u:

We can implement that in our model-theoretic semantics as follows:

• vhMðð8x: t½x�ÞuÞ ¼ 1, if AþðtM;hÞ 6¼ £ and for all d 2 RðtM;hÞ; vh
d
x

MðuÞ ¼ 1

• vhMðð8x: t½x�ÞuÞ ¼ 0, if AþðtM;hÞ 6¼ £ and there is d 2 RðtM;hÞ s.t. vh
d
x

MðuÞ ¼ 0

• vhMðð8x: t½x�ÞuÞ ¼ meaningless, otherwise

In words, ð8x: t½x�Þu is true if the range of truth of t is non-empty and every object

within that range satisfies u; false if the range of truth of t is non-empty and some

object within that range falsifies u; and meaningless otherwise.

As before, it is straightforward to set up natural deduction rules for this quantifier.

For details I refer the reader to [Author2].

With this new restricted quantifier in hand, it is fairly easy to see that our type-

free system can recover the deductive strength of the classical strict theory of types

(STT, for short).

First, let us define a hierarchy of properties g0; g1; . . ., such that, intuitively, gn’s
range of truth contains all entities of type n. To this end, let I(x) be a primitive

predicate applying to all and only individuals (i.e. objects that are not properties)

and let g0 be the property determined by the predicate I(x). We stipulate that g0 has
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an unrestricted range of significance and that there is at least one individual. Now

for n[ 0, let gnþ1 be the property determined by the formula

ð8y: gn½y�ÞRðy; xÞ

Thus, g0 is the property being an individual, g1 is the property being a property that
has all individuals in its range of significance, g2 is the property being a property
that has all properties falling under g1 in its range of significance, and so on.

It can be shown that every property gn has a non-empty range of significance and

a non-empty truth range.18

Next, in order to show that we can recover the deductive strength of STT, we

define a translation � from STT into our type-free language.

We translate formulas of the form ynþ1ðxnÞ as y[x], and formulas of the form

8xn w as ð8x: gn½x�Þw�, where w� is the translation of w. Naturally, our translation
commutes with the propositional connectives. Identities x0 ¼ y0 are translated as

x ¼ y, while xnþ1 ¼ ynþ1 is translated as

ð8z: gnþ2½z�Þ ðz½x� $ z½y�Þ

Let’s consider a simple example. The formula

9y2 8x1 ðy2ðx1ÞÞ

is translated as

ð9y: g2½y�Þ ð8x: g1½x�Þ y½x�

This sentence will turn out to be (provably) meaningful in our system, implying that

we can reason classically with it. Informally, this can be seen as follows. A formula

of the form y[x] is meaningful if and only if x is in y’s range of significance. Now, in
the above sentence, the values of x and y are restricted to the truth ranges of the

properties g1 and g2 respectively. These truth ranges are non-empty, and the defi-

nitions of g1; g2 entail that x is in y’s range of significance.

Given that we can reason classically with translations of formulas of STT, it is

straightforward to derive the translations of the comprehension axioms of STT in

our type-free theory, using simply the comprehension rules of the latter. (For more

details, I refer the reader to Picenni and Schindler (in press).) Putting all of this

together, we obtain the following result:

Theorem 5.1 Let w;u1; . . .;un be closed formulas of the language of STT. If w is
derivable from u1; . . .;un in STT, then w� is derivable from u�

1; . . .;u
�
n in our type-

free system.

18 This can be proved by induction in the meta-language. Roughly, g0 has a non-empty range of truth

because I(x) is satisfied by at least one object. For every n, gnþ1 has a non-empty range of truth because

the property being self-identical satisfies its defining condition. The non-emptyness of the range of

significance follows from the non-emptyness of the range of truth.
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6 Conclusion

There is no major obstacle in specifying the truth conditions of the sentences of

some object language in which the quantifiers are unrestricted; for we can match

sentences of the object language with sentences of the metalanguage Tarski and

Davidson. However, as soon as we try to provide a general semantic theory, that is a

theory that makes general claims about interpretations, we run into difficulties.

Developing a general semantic theory requires us to generalise over interpretations,

which in turn requires us to quantify into the syntactic position of formulas of our

metalanguage. And Russell’s paradox imposes severe limitations on our ability to

do that. One way out is to use a type theory as our metalinguistic framework,

assuming a broadly Fregean interpretation of type theory. However, the intelligi-

bility of this interpretation has been questioned. In this paper, I have tried to do two

things: first, to introduce an alternative to the type-theoretic response; second, to

show that this alternative emerges fairly naturally by reflecting on the features on

which the type-theoretic solution of the problem of unrestricted quantification relies.

The theory I have offered here is based on a non-classical logic. Such a proposal

raises many difficult questions. To begin with, one may wonder whether the

principles of logic can be rationally revised at all. Another question concerns the

metatheory of non-classical theories. To emphasise this important point again, the

model-theoretic semantics that I have presented is a mere tool for guiding the reader

in figuring out what inferences are (in)valid in the theory. I still owe the reader an

explicit statement of the official metatheory. Another difficult question concerns the

status of identity statements involving property terms. Suppose we define identity

between a and b as indistinguishability of a and b in terms of the actual properties

and relations they have or stand in. Then the non-classicality of ‘a has property f’
may entail the non-classicality of a ¼ b (see e.g. Parsons and Woodruff (1995) and

Field (2005, p. 37)). It is beyond the scope of this paper to discuss these issues here.

At any rate, it should be clear that weakening classical logic is not something to be

done lightly. There are many good reason for keeping classical logic, such as

simplicity, familiarity, and so on.

This is a strong argument in favour of type theory, which is based on classical

logic. Another point in favour of type theory is that it has been fruitfully applied in

the foundations of mathematics. For example, it can be used to formulate axiom

schemata such as mathematical induction, separation, replacement and reflection

principles as single axioms.

Fortunately, we do not have to forgo these applications in a type-free framework.

As we have seen in the previous section, the deductive power of type theory is

preserved in the type-free theory presented here. The latter contains a hierarchy of

first-order properties mirroring the hierarchy of higher-order properties.19

Moreover, type theory has some severe costs as well, even if we set questions

about the intelligibility of the required Fregean interpretation aside. For example,

19 This is in stark contrast to many other type-free theories of properties that have been proposed in the

literature, such as Field (2004). I consider this to be a major advantage of the theory presented here. See

[Author2] for more discussion on this point.
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one objection that is often raised against type theory is that type theory is inadequate

for formalising many (intuitively valid) natural language arguments involving

property terms (e.g. (Bealer 1982, sections 6–8, 23–24), Chierchia (1985), (Menzel

1986, pp. 1–5), (Chierchia and Turner 1988, section 1.3.)). For instance, consider

Annie. Annie loves Galen and Annie loves wisdom. It would be natural to conclude

that there is a property that applies to both Galen and wisdom, namely being loved
by Annie. But according to (strict) type theory, this is not the case. Instead,

properties such as being loved by Annie are broken up into a sequence of properties

of higher and higher type, each of which can only apply to entities of the

immediately preceding level. There is a first-level property applying to Galen and a

second-level property applying to wisdom. But there is no property shared by Galen

and wisdom. Obviously, this problem does not arise in our type-free system.

The observation that predicates such as ‘Annie loves x’ cannot be represented by

a single predicate, but are split into an infinite series of predicates of increasing type,

also violates Davidson’s finite-learnability requirement, i.e. that there should be a

finite number of undefined constants only (Bealer 1982, pp. 32–33). Of course, it

might be responded that the hierarchy of languages is merely potential or open-

ended. But that response causes various problems as well. For example, it seems to

entail that claims of the form ‘the hierarchy is so-and-so’ are, strictly speaking, non-

sense (see e.g. Rayo (2006, p. 247)).

The last point is related to another, similar objection that is often levelled against

type theory, namely that type theory does not allow us to express any cross-type

generalisations (e.g. Gödel (1983, p. 466), Linnebo (2006, section 6.4.)). Again, no

such problem arises in a type-free framework.

No doubt, there are a few things that could be said in response to these

objections. But I hope that these remarks are sufficient to show that the type-

theoretic solution of the problem of unrestricted quantification also has its problems.

The type-free approach proposed here should be considered as a serious contender

because it avoids these problems while preserving the deductive power of type

theory.

Ultimately, I believe that the question as to which of the two theories is

preferable needs to be decided by more holistic considerations. In particular, one

should look how well the two theories mesh with theories that have been developed

in response to other problems, especially the paradoxes of truth and of vagueness.

Presumably, if one is willing to restrict the law of excluded middle because of the

sorites or the liar paradox, then one will be more amenable to adopt a non-classical

solution to Russell’s paradox for properties as well. Conversely, if one is not willing

to weaken classical logic in response to the sorites and the liar paradox, then it is

unlikely that one will be willing to weaken classical logic in face of Russell’s

paradox.
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