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The quantum Zeno effect ( Q Z E )  is often associated with the ironic maxim. 
"'a watched pot never boils,'" although the notion of  "watching" suggests a con- 
tinuous aetieity at o(kls with the usual (pulsed measurement) presentation o f  tile 
QZE. We show how continuous watching can provide the same halting o f  decay 
as the usual QZE, and. for  incomplete hindrance, we provide a precise connection 
between the interval between projections and the response time o f  the continuous 
observer. Thus, watching closely, but not so closely as to halt the "boiling," is 
equivalent to--gives the same degree of  partial hindrance as--pulsed measure- 
ments with a particular pulsing rate. Our demonstration is accooq~lished by 
treating the apparatus .~or the continuous watching as a fully quantum object. 
77zis m turn allows us a secomt perspective on the QZE, in which it is the modilTed 
lecel structure (~f the combined system/apparatus Hamiltonian that slows the 
decay. This and other considerations fat:or the characterization "dominated tittle 
evolution"for the QZE. 

1. I N T R O D U C T I O N  

"A watched pot never boils" suggests that irony may be a law of nature. 
Alternatively, this maxim may be an example of anthropocentrism com- 
bined with selective editing of data. The so-called quantum Zeno effect 
seems to cast a vote for the first possibility, although the alternative desig- 
nation, "watched pot effcct," has long (1,2) given rise to a puzzle: for many 
decay situations there is plenty of "watching" going on and yet this does 
not appear to hinder the decay. For example, in the famous quantum jump 
experiments (3) there was careful monitoring of decay; nevertheless, the rate 
appeared to be normal. 
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The point I will make in this article is that any form of continuous 
observation has a characteristic response time. The eye that "watches" 
relies on physical processes, none of which is truly instantaneous. Now in 
the usual phrasing of the quantum Zeno effect (QZE) there is a pulsed, 
intermittent observation (generally a projection onto the initial state), such 
that if this pulsing is of too low a frequency the decay proceeds normally. 
What I will show here is that the response time of the continuously "watch- 
ing" observer plays the role of pulsing interval. If indeed you watch a decay 
with a detector having sufficiently rapid response time, then the decay 
won't happen. 

The statement we will make actually goes beyond the decay/no decay 
dichotomy of the last paragraph. Consider pulsed measurements--projec- 
tions onto the initial s tate--at  intervals fit. For any particular 6t there will 
be some degree of hindrance of the decay. What we will here show is that 
if the continuous observer has a characteristic response time Zo, then 
pulsing and continuously observing provide the same degree of hindrance to 
the decay when 6t = 4r o. 

As we will see below, there is a characteristic time, the "jump time," 
rj,(4,5) such that only for c~t < rj  is there substantial hindrance. It follows 
then that for a continuously watching observer, if ro  >> rj ,  the decay will 
be unaffected. This is the explanation of the puzzle alluded to above. 

The way that we reach the conclusions just summarized is by making 
a model for the continuous measuring device. This has the advantage that 
the process can be studied without coming up against the mysteries of 
quantum measurement theory. There is a second advantage: it gives 
another perspective to the QZE. In practice we take the original decay 
Hamiltonian and bring in the apparatus Hamiltonian as well. If you allow 
the system to decay under the full Hamiltonian it is found that it decays 
more slowly--that 's the continuous form of the QZE. However, you can 
ask what are the energy levels of this combined Hamiltonian. It turns out 
that the quasi-continuum of levels into which the original decay took place 
has been pushed away; that is, for the combined apparatus/system the 
original level is not unstable (or has a longer lifetime). This second way of 
looking at the problem favors the name "dominated time evolution," 
proposed in Ref. 6. The observer overwhelms dominates--the system, 
stopping its decay. This can also lead to a certain amount of semantic 
debate. For example, in Ref. 7 we showed that intense laser illumination of 
an unstable atom can stop its decay, a case of "close watching" managing 
to do the QZE job. However, one could look at this as a kind of inverse 
of the phenomenon of induced transparency. So is this QZE or is it another 
phenomenon? As indicated, this is only a matter of semantics, the physical 
phenomenon is the same however you choose to describe it. 
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Including the apparatus Hamiltonian allows yet another question to 
be answered, a question that I am particularly happy to address here, since 
it was raised by Prof. M. Namiki in connection with Ref. 7. One way to 
look at the QZE is that there is a transient regime, before the exponential 
decay sets in. There are various ways to see this, for example in terms of 
features in the complex plane when one derives the system behavior by 
inverting a Laplace transformation. The question then is, if our "con- 
tinuous observation" gives a steady exponential, but with a longer lifetime, 
what happened to the early transients? We will show below that for the 
combined system/apparatus there are of course transient, nonexponential 
regimes. But these will be on an even shorter time scale than for the system 
alone. In fact, an estimate of the combined system/apparatus transient era 
shows it to be cut down by the ratio of unmonitored to continuously 
monitored lifetimes. 

In the next section we calculate the decay properties for both con- 
tinuous and pulsed observations. Following that, in Sec. 3, we provide 
the larger perspective mentioned above, bringing the apparatus into the 
Hamiltonian in a realistic way. This also allows demonstration of the 
reduced transient period under these circumstances. Finally, Sec. 4 provides 
a discussion of our results. 

2. DECAY CALCULATIONS 

A general form for the Hamiltonian of a decaying system is 

where qs is an N by 1 column vector and co an N by N diagonal matrix. 
The initial undecayed quantum state [an ( N +  1)-vector] thus has a single 
entry, one, in its first component, all others zero. The N-vector qs 
represents the coupling to a quasi-continuum of N levels, with the energy 
zero falling somewhere within the band defined by co. An example of such 
a system is an atom in an excited state (11)), able to decay to the ground 
state (10)) through the emission of photons. The Hamiltonian can be taken 
to be 

H~tor~ = a5 0 ] 1 ) (  1] + ~  c5~a+,ak+ ~, [a~qb, [ 0 ) (  l] + a~ qs~ ]1 ) ( 0 ] ]  
k k 

In this form, the atom's ground state energy is zero and its excited state has 
energy c50, falling somewhere in the band of energies, { cSk}, associated with 
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the photons. Aside from this shift in the zero of energy, the matrix form of 
this Hamiltonian is given by Eq. (1). 

The time dependence of our decay system can be found from the 
Schr6dinger equation. For the Hamiltonian of Eq. (1), with wave function 

= (y) (with multi-component y and taking h = 1 ), this becomes 

i2 = Oty ,  if~ = my + O x  (2) 

The way to go from a Hermitian Hamiltonian to irreversible decay is a 
long story, started by Wigner, Weisskopf, Breit and others. A good review 
of this technique (with many other things as well) is the article by Prof. 
Namiki and his coworkers. (8) My introduction to this material was in 
Ref. 9 where the 2-decay-state system is considered (since Kabir is worried 
about K-meson decay), and I continue to find this reference useful. The 
appearance of irreversibility and time asymmetry is no paradox, since the 
boundary conditions are asymmetric. But not having a paradox and a de 
facto complex eigenvalue for H are not quite the same thing. Of course it 
is exactly these considerations that give rise to the QZE (and to long-time 
tails). In any case, for present purposes a certain amount of Laplace trans- 
forming and hand waving allows one to substitute the time dependence 

~ e x p ( -  izt) and to find that z must satisfy 

1 
z = O  t 0 

Z - -  f D  

Actually at this stage one can still find real z, and it is the continuum limit 
of the decay levels that leads to complex z. (See Ref. 10 for discussion.) For  
the continuum limit O scales as 0/x/N.  In going from the discrete sum to 
an integral over co there is a density of states factor that is essentially 
p ~ 1/NAco, with Aco the spacing between levels of the quasi-continuum. 
Going to this limit and setting z = E - - i F / 2 ,  one obtains 

F 
E -  i ~ =  f dco p(c~ I0(c~ 

E---oJ--- ~ 2  (3) 

From Eq. (3) one obtains the Fermi Dirac Golden rule, which gives the 
decay rate as 

F - -  2z~p(0) 10(0)12 

It is convenient to define rL = l /F,  the decay lifetime. 
As remarked, the complex "eigenvalue" does not describe the short 

time behavior of the system and we therefore return to the original time- 
dependent differential equations. The appropriate initial conditions for 
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those equations are x(0) = 1 and y ( 0 ) =  0. We will only look at very short  
times and in fact will only study the survival probability, p( t )  - I x ( t ) l  2. For  
our  purposes it is sufficient to look at the first few derivatives of  p, which 
are 

Dp = x * D x  + c.c,, D2p = x*D2x + D x * D x  + C.C. 

D3p = x * D 3 x  + 3Dx*D2x  + c.c. 

with D =-d/dt and c.c. the complex conjugate. We require in turn the 
derivatives of  x, deduced from Eq. (2) 

x(O) = 1, Ox(O) = O, D2x(O) = ~b~-~, D3x(0) = iqStcofiO .... 

Using the fact that  ~*cocb is real, a power series expansion then gives 

t 2 
Ix( t ) i  2 = 1 --  7 z  + O( t  4) (41 

where 

1 _  , H 2  7 = ~  ~= <~,ol I~,o> (5)  

r z has dimensions of  time (in our  h = 1 units) and is known as the Zeno 
time/6) In the second equality above 00 refers to the initial undecayed 
state, and if ( 0 o ]  H IOo) were no t  zero (which it is in this case) it would  
have to be subtracted from H before squaring. 

In discussing short  time behavior  I will assume that  Tz is nonzero.  If  
the second momen t  o f  the Hamil tonian,  c b ~ ,  is infinite, the transient  
behavior  may be considerably different from what  we calculate in this 
article. (11) In that case one may  not  even get the QZE, and our  derivations 
do not  apply to such systems. 

In Table I is a list of  the times defined in this article, some of  which 
have not  yet been defined. 

Table I. Times Defined 

r L Lifetime--ordinary 
r z Zeno time 
r j Jump time 
3t Time interval for pulsed measurements 

rEp Effective lifetime when subject to Pulsed observations 
r o Response time of Observer's apparatus 
rEC Effective lifetime when being observed Continuously 
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2.1. Pulsed Interruptions 

We now suppose that the system is repeatedly checked for whether or 
not it has decayed. Formally this means it is projected on its initial state. 
Suppose these checks occur at intervals est. After each check the standard 
rules for interpreting quantum mechanics assign a multiplicative factor 
1 -  (6t/~z) 2 to the probability that the system is still in its original state. 
Moreover, after each such check the time evolution for the undecayed por- 
tion is restarted with the same initial conditions (the phase o fx  is irrelevant). 
This means that after N such measurements the probability of finding the 
system undecayed is 

Pr(nondecay at time-T) = 1 -_--25- 
rz  J 

with T = N 6t. For  fixed T and large N this gives 

Pr(nondecay at time- T ) = exp( - r2 /Nr  ~) 

This goes to unity for N ~ ~ ,  which is one version of the standard QZE 
story. For finite N, however, there will still be decay. If 6t - T IN  is small 
enough for the leading approximation in Eq. (4) to hold, then we can get 
an effective decay rate by setting 

(6t) 2 
- - ~ z  ~ e x p ( - 6 t / r z p )  (6) 

In this way we have an effective lifetime, extended by the pulsed 
measurements and dependent on the pulsing interval, &, whose value 
[from Eq. (6)] is 

= (7) 

2.2. Jump Time 

Besides the usual lifetime, rL, and the Zeno time, Zz, it is of interest 
to define another characteristic time for decay. This is intended to 
correspond to how long it takes for the system to go from being in one 
state to being in the other. Of course in quantum mechanics such a concept 
can be slippery. The problem is that being or not being in a state is some- 
thing only well defined if you measure it, while the measurement itself will 
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disturb the system. The approach I took to this in Ref. 5 was to make use 
of the measurement process itself to define this time, which is not so much 
a time, as a time scale. This time scale is called the "jump time," and it is a 
transition time in the following sense: interruptions (fi la QZE) at intervals 
equal to or less than the jump time will disturb the decay. Less frequent 
interruptions do not. Using the material above this takes the following 
quantitative form. To say that interruptions at intervals fit have significant 
effect on the decay means that 

exp( - t/rE1-) > exp( -- t/rL) 

that is, decay is retarded relative to ordinary decay. Cessation of such effect 
will occur when z~p ~ r L .  Using Eq. (7), in terms of ~t this means 
6t ~ z~/~L. We now identify this as the time scale for interruptions to affect 
the decay, hence the jump time. Thus 

r j  = - -  ( 8 )  
~L 

As developed in Ref. 5, this jump time is analogous to the tunneling time 
for barrier transmission. In some cases (6) they are the same. 

2.3 .  C o n t i n u o u s  O b s e r v a t i o n  

The forms that may be taken by "continuous observation" are many, 
so that specific conclusions will depend on the model of observation. 
Furthermore, the traditional approach to measurement may further hinder 
discussion, since "quantum measurement" is there viewed as a traumatic, 
instantaneous event, possibly involving nonquantum dynamics. Our 
approach, consistent with certain recent views of the measurement pro- 
cess,(t0, 12, 13) is that there is no evolution but quantum evolution. As such 
it makes sense to treat the apparatus as a quantum system in its own rights 
and include its degrees of freedom in the Hamiltonian. With this perspec- 
tive, the measurement is no trauma at all, and "continuous observation" 
can be studied in a systematic way. 

One way to monitor a decay would be to have a laser shine on an 
atom at the frequency of a transition from its ground state to some other 
state, say one with an extremely short lifetime. In this way, "as soon as" the 
decay (from I1) to 10)) occurred, the atom would be yanked to the other 
state whose irreversible decay would provide the measurement. This is the 
way that "quantum jumps" were first observed. (3~ This is also the framework 
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of Ref. 7 where much stronger fields are contemplated and the decay can 
be stopped. Alternatively, the apparatus could be a counter near the a tom 
and extremely sensitive to the emitted photon (labeled by k). 

A full model Hamiltonian for this observation is easy to provide: one 
can add interaction terms of the form [ [other s t a t e ) (0 ,  nk0 = I I + adjoint],  
where nk refers to the state of the created PhOton. However, in the present 
section we will take a simplified view and assume that there is s o m e  form 
of interaction that removes the system from the Hilbert space that is 
considered when the Hamiltonian is written as in Eq. (1). Let this removal 
(by an observer) have a characteristic time scale To, and let 7 - l/To. Then 
we model the action of this apparatus by adding a term - i 7 /2  to co. This 
replacement will be justified in Sec. 3 below. Thus each state to which [1 ) 
can decay is itself unstable with decay rate 7. The Hamiltonian for con- 
tinuous observation then becomes 

where 

s - co - -  i7/2  (9) 

We analyze the extent to which this additional interaction retards the 
decay. We are not looking at early time quadratic behavior, as in the pulsing 
case, but rather at the later exponential decay of the system in the presence 
of the continuous observation. (See Sec. 3 for a discussion of transients for 
the combined system/apparatus.) As is confirmed numerically, (14) for large 
values of 7 the decay is severely suppressed. To evaluate the new decay life- 
time when under observation we return to Eq. (3) and let co be replaced 
by g2. The "F"  that we now obtain will be an effective decay rate under 
continuous observation. For sufficiently large 7 this becomes 

F 1 
E - i ~ = q~ * i ~  cb (10) 

This yields F = 4q~tq~/7. If  rEc - 1 / F  is called the effective lifetime for con- 
tinuous observation (when observing with response time To), then from 
Eq. (10) 

TEC - -  4T  O 
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On the other hand, we earlier found an effective rate for continuous obser- 
vation, namely from Eq. (7), rEp=r2 /d t .  Comparing these two efl'cctive 
rates, we find that for the same degree of suppression of decay (that is, 
sctting rEc = rEp) one should have 

gt = 4 r  o (11) 

In this way, (4 times j the response time of the observer has been shown to 
play the role of pulse time for an equivalent modification of the decay. 

3. AN ALTERNATIVE VIEW OF " C O N T I N U O U S "  OBSERVATION: 
RESTRUCTURING ] 'HE STATES OF THE SYSTEM 

Our discussion of "continuous" observation modeled such a process 
by modifying the Hamiltonian. a modification that plausibly could be 
associated with the inclusion of apparatus degrees of freedom within the 
total quantum system studied. The present section has as its first goal 
filling in the details of that association, namely a justification of the adding 
o f " - i ; , / 2 "  to the diagonal co, i.e., the replacement of co by/'2 of Eq. (9). 

The second part of this section takes a broader view of the entire pro- 
cess. Instead of thinking of the new coupling as an "apparatus" we look at 
the energy levels of the combined system. In this perspective the attachment 
of the lnonitoring device turns out to destroy the continuum of levels into 
which the original system decayed. This ambiguity is the price paid for 
taking quantum mechanics seriously. 

To accomplish the goals just described we enlarge our "universe" to 
include the measuring apparatus, the instrument that provides the con- 
tinuous observation studied earlier. The job of this instrument is to notice 
when the system has decayed to the set of levels denoted earlier by ':v,'" and 
to pull it away from there, irreversibly, with a time constant to .  We 
provide a Hamiltonian that does this. Instead of the Hamiltonian given in 
E q . ( l h  we use 

H = / / o r i g i n a l  = (2) 

\(o o) o o 
(12) 

The additional set of levels, { W}, represent the apparatus and we 
assume the coupling "0"  is quite strong. Also the levels are numerous 
enough and so distributed that the transition induced by this coupling is 
effectively irreversible. 
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We want the new eigenvalue structure in the presence of the apparatus 
interaction. Setting H 0  = z0 and successively eliminating the apparatus 
levels, the decayed levels, and the original unstable level, we find 

z=q~*[  1 I q ~ (13) 
z - c o - O * ( 1 / ( z -  W)) 0 

We approach this equation in two ways. First we replace the action of 
"O" by a continuum coupling and thereby justify our replacement of co by 
c o -  iy/2 in Sec. 2. Second we deal with Eq. (13) as a real eigenvalue equa- 
tion and see what happens to its levels as the strength of O increases. 

3.1. Treating the Apparatus as an Effective Damping 

We first evaluate Ot(z  - W) - 1 0 .  With p and 0 
tinuum quantities [as in Eq. (3)], this becomes 

appropriate con- 

Ot z-1W O=~ z I O(k)l 2 -  W(k) -~ f dwp(w)z -I ~ I = w  

Assuming that Im z is small (to be self-consistently verified), this becomes 

1 P( W) IO( W)l z 
O '  "__.2___ 0 ~- ~ ~ d W  

z - W  J - W  
izcp(O) [0(0)12 (14) 

Substituting in Eq. (13) we find 

1 
z=qSt  

z - c o  - - A E +  i~zp(O) 10(0)l 2 

with A E  the real part of the last expression in Eq. (14). Comparing this to 
the substitution in Eq. (9), we identify 

= 2~p(0) 10(0)[ 2 

Thus the effective observation time used in Sec. 2 is the decay or relaxation 
rate for transfer of the system out of the states of interest for the decay of 
the original level 

Note by the way that our self-consistency assumption is justified. The 
imaginary part of z is indeed small, provided O (hence y) is large. 
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3.2. True Eigenvalues in the Presence of the Apparatus 

We return  to Eq. (13) with 11o con t inuum approx ima t ion .  To see wha t  
happens  we have posi ted  var ious  forms for O and d iagonal ized  the full 
Hami l ton i an  numerical ly .  

F o r  Fig. 1 the form of  O used is descr ibed in detai l  in Ref. 14. Cal l ing 
c the overal l  coupl ing  s t rength (scaling O), we find that  for small  c the 
quas i -con t inuum into which the or iginal  level decays remains  in tac t  and  
decay occurs. ( F o r  some cases the exponent ia l  t imc evolut ion  of  the decay 
was also checked.)  However ,  as c increases, the levels of  interest  move  
away, in encrgy, from the or iginal  level. There  is no longer  a con t inuum 
and the system no longer  decays. F o r  the example  shown in the figure this 
occurs  for c > 0.5. Note  that  the t o ta l  Hami l ton i an  cont inues  to have levels 
all over  the place, including match ing  those of  the system. However ,  mos t  
of  these do  not  subs tant ia l ly  couple  to the or iginal  level. F o r  the plot  in 

o~ 

"El 

.,Y: 

> 0 

r 

Lu 4 

N= 7. M= 13. Cn= 0.1. EN= 4. h= 0.1. EM= 12. 
i 

. . r - - - . . .  

~ - " S .  

J 

Coupling constant for the larger system 

Fig. 1. Energy levels of system plus apparatus for continuous observation. For 
zero coupling (O =0) the decay levels are the original "'o)"s (forming a quasi- 
continuum). These are plotted vertically as the lcftmost points in the figure. As 
the coupling is increased, these change, Once the coupling is sutficiently strong 
there remain no quasi-continuum levels into which the original level can decay, 
For O and q~ we use smooth curves centered on the optimum level matching. 
(See Ref. 14 for numerical details,) The horizontal axis is an overall scale lhctor 
for O. Only those levels of the total Hamiltonian are plotted whose coupling to 
the original level exceeds 20% of the original coupling, 

825/27/I 2-2 
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Fig. 1 only those levels were used for which there was a coupling of at least 
20 % of the original coupling, that is, the original "q~." 

This result agrees with that reported in Ref. 7. There because of the 
simplicity of the analytic form we could actually show where the original 
quasi-continuum had been pushed. 

Using the Hamiltonian in Eq. (12) we can also examine the transient 
behavior of the combined system (decay microsystem plus apparatus). In 
effect we address the following question. The QZE is often phrased as the 
observation of a decay system during its quadratic decay interval. In our 
continuous formulation it is the new exponential decay lifetime that we 
calculate. What happened to the transient period for the combined system? 
We now show that indeed the combined system has a transient period, but 
that it is cut down, essentially by the ratio of the monitored to unmoni- 
tored lifetimes. 

As shown earlier, an estimate of the duration of the quadratic regime is 
the jump time, z j, given by vz/rL. Thus we must evaluate--for the combined 
system--the values of r z and rL. However, this is easy: r z doesn't change, 
while r L is what Sec. 2 was concerned with, and in particular was denoted 
z o in that section. [And the calculation of Sec. 2 was related in the present 
section to the full Hamiltonian of Eq. (12).] To see that Vz is unchanged, 
recall [ Ref. 6 and Eq. (5) above ] that an alternative phrasing of Zz is 

1 
2 -- (~'l (H- -  (~'l H I~b)) 2 I~b) 

~z 

essentially the second moment of the Hamiltonian. "~" is the initial 
undecayed state, in our case a vector with 1 in the first entry, zeros else- 
where. All that must be done is to square the Hamiltonian in Eq. (12) and 
look at its 1-1 component. The answer is ~ t ~ ,  as in Eq. (5). It follows that 
the duration of the quadratic decay regime scales like the lifetimes. 

In Sec. 4 we will further comment on the perspective presented here. 
The ability to see the QZE as a restructuring of the total Hamiltonian is 
provided by including the "apparatus" in the Hamiltonian. The insistence 
that this kind of continuous observation is "only" a matter of changing the 
system, not seeing the "true" Zeno effect, is in my view an artifact of the 
traditional but no longer tenable separation of the world into apparatus 
and system. More on this below. 

4. DISCUSSION 

Although early formulations of the so-called quantum Zeno effect 
phrased the phenomenon in terms of repetitive projections on the initial 
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state of the system, it was soon realized that essentially the same 
phenomenon could take the form of continuous observations and of obser- 
vations that varied in time and thereby forced the system to move, rather 
than stay still. 

In the present article we have presented a precise connection between 
the pulsing time for intermittent observation and the response time for con- 
tinuous observation. This provides an answer to questions of the form: if 
I believe the QZE, how can an atom decay if I look at it? The answer is 
that the response time of your eye (or whatever) is far longer than the 
times needed to stop that decay via intermittent QZE. (In fact that time is 
the "jump time" of Ref. 5.) This also explains why observations of quantum 
jumps (3) did not stop the decay, nor even seriously affect the lifetime. 

In establishing this result the apparatus was treated as an ordinary 
quantum system. This allowed us take an alternative view of the QZE, in 
which the observer's halting of the decay can be phrased as the system- 
cum-apparatus ceasing to be an unstable system. This alternative view can 
sometimes obscure the issue of whether a given observational scheme is or 
is not an example of the QZE. However, this question is mainly a matter 
of semantics, and its "answer," whether positive or negative, has no effect 
on the behavior of the physical systems. In fact, to allay any confusion on 
this issue it would be better to call the QZE "dominated time evolution," 
as advocated in Ref. 6. 

Yet another reason to prefer the foregoing terminology is the fact that 
halting change is only one manifestation of the effect. By varying the pro- 
jections it has long been known that the system may be forced to follow 
that variation. An example of this, along with a continuous version of such 
dynamic forcing, is presented in Ref. 14. 
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