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Abstract

I address the problem of explaining why wave functions for identical particles must be

either symmetric or antisymmetric (the symmetry dichotomy) within two interpretations of

quantum mechanics which include particles following definite trajectories in addition to, or in

lieu of, the wave function: Bohmian mechanics and Newtonian quantum mechanics (a.k.a.

many interacting worlds). In both cases I argue that, if the interpretation is formulated

properly, the symmetry dichotomy can be derived and need not be postulated.

1 Introduction

When you squeeze a marshmallow or a sponge or a down comforter it compresses easily. Why?

Because these objects are mostly empty space. But, when you look closely, it turns out that

ordinary hard solid objects—bricks, forks, diamonds—are also mostly empty space. In fact, they

are almost entirely empty space. All of matter is made of atoms and atoms are mostly void.

Atoms appear solid for two reasons. First, electrons resist being squeezed toward the nucleus

because it involves an increase in kinetic energy. The lowest energy electron state balances the

decrease in potential energy achieved by being near the positively charged nucleus with the

increase in kinetic energy incurred by having a wave function which is tightly peaked. The

second reason for apparent solidity is that the Pauli exclusion principle forbids the electrons in

more energetic states extending farther from the nucleus from being squeezed into the closer,

already occupied states.

If we want to understand why objects are solid, we should seek an explanation of the

Pauli exclusion principle. The Pauli exclusion principle is a consequence of a more general

principle, the spin-symmetry connection: bosons (particles with integer spin, like photons,

gluons, and mesons) have symmetric wave functions and fermions (particles with half-integer
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spin like protons, neutrons, electrons, and quarks) have antisymmetric wave functions. The

spin-symmetry connection is a key part of quantum mechanics and essential to many of the

theory’s greatest successes. In addition to its role in the explanation of the size, structure,

and solidity of atoms, the spin-symmetry connection is central to understanding more exotic

phenomena such as Bose-Einstein condensates, neutron stars, lasers, and superfluid helium.

Within non-relativistic quantum mechanics, the spin-statistics connection is often taken to be

an additional postulate, extremely strongly supported by empirical evidence but not derivable

from more fundamental parts of the theory.

One strategy for explaining the spin-symmetry connection is to appeal to the spin-statistics

theorem in relativistic quantum field theory. The discussion here will avoid such complexities,

seeking explanation within non-relativistic quantum mechanics and considering neither the

connection between spin and symmetry nor the connection between symmetry and statistics.

In this article I focus on a logically weaker piece of the spin-symmetry connection, the

symmetry dichotomy : the wave function for a collection of identical particles (particles of the

same type, e.g., electrons) must be either symmetric or antisymmetric. Textbooks sometimes

give a quick derivation of the symmetry dichotomy relying on the fact that the particles whose

quantum states the wave function describes are identical, or at least indistinguishable (e.g.

Shankar, 1994, sec. 10.3; Weinberg, 2015, sec. 4.5). But, whether and in what sense there

are particles distinct from the wave function is left unclear. Here I examine the problem of

explaining the symmetry dichotomy within two interpretations of quantum mechanics which

clarify the connection between particles and the wave function by including particles following

definite trajectories through space in addition to, or in lieu of, the wave function: (1) Bohmian

mechanics and (2) a hydrodynamic interpretation that posits a multitude of quantum worlds

interacting with one another, which I have called “Newtonian quantum mechanics” (Hall et al.

, 2014 have called this kind of approach “many interacting worlds”). Versions of this second

interpretation have recently been put forward by Tipler (2006); Poirier (2010); Schiff & Poirier

(2012); Boström (2012); Boström (2015); Hall et al. (2014); Sebens (2015); it builds on the

hydrodynamic approach to quantum mechanics (see Madelung, 1927; Wyatt, 2005; Holland,

2005). Bohmian mechanics and Newtonian quantum mechanics are often called “interpretations”

of quantum mechanics, but should really be thought of as distinct physical theories which seek

to explain the same body of data (those experiments whose statistics are successfully predicted

by the standard methods of non-relativistic quantum mechanics).

I argue that in both interpretations the symmetry dichotomy can be derived and need not be

postulated, provided the theories are formulated properly (with certain metaphysical “links”

absent). The two derivations are structurally similar but philosophically quite different. I

first present a derivation of the symmetry dichotomy in Bohmian mechanics which builds on

Bacciagaluppi’s (2003) illuminating analysis. Because Bohmian mechanics without the symmetry

dichotomy is a perfectly coherent theory, there is a sense in which such a derivation is not possible.

I argue that the derivation is only possible if we assume that the Bohmian guidance equation

generates velocities without relying on a correspondence between particles and arguments of the
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wave function (the metaphysical basis for such an assumption is discussed later in section 5),

and even then the derivation is not as clean as one might like. I then propose an explanation

of the symmetry dichotomy in Newtonian quantum mechanics which parallels Bacciagaluppi’s,

but is simpler and stronger. In Newtonian quantum mechanics the wave function is not part of

the fundamental ontology, but simply a convenient way of describing the positions and velocities

of particles inhabiting different worlds. Because a world in Newtonian quantum mechanics is

equally well represented by multiple points in configuration space, it turns out that any wave

function constructed to describe these worlds will be either symmetric or antisymmetric. I

believe that the ability of Newtonian quantum mechanics to naturally explain this symmetry

and others—including global phase, time reversal, and Galilean boosts (Sebens, 2015, sec. 6 and

12)—is one of its primary virtues as an interpretation of quantum mechanics.

In section 4 I show that the derivations from the previous sections can be recast in reduced

configuration space where points related by a permutation of the locations of identical particles

are identified. This recasting of the arguments is useful in setting up the discussion of subtle

metaphysical questions in the conclusion. Chen (2016) recently proposed using the ability of

various ontologies for Bohmian mechanics to explain the symmetry dichotomy to help decide

between them. In the final section I conclude that such considerations provide reason to prefer

certain versions of each of these ontological accounts; for example, if one is going to take

configuration space as fundamental—as in Albert (1996, 2013); Boström (2015, sec. 4); Sebens

(2015, sec. 11, option 1)—it should be the reduced and not the full configuration space.

I am concerned primarily with the question of why identical particles behave differently from

non-identical ones, not the question of why we don’t observe them behaving in a more exotic

way: as either paraparticles or anyons. Paraparticles are automatically forbidden by the wave

function formalism used here and will only be mentioned briefly. Anyons are also forbidden by the

formalism, though I will explain in section 4 why even if we alter the formalism to allow them (by

permitting multi-valued wave functions) they cannot exist in three or more spatial dimensions

(drawing insight from Leinaas & Myrheim, 1977 but presenting a distinct argument).

2 Explaining the Symmetry Dichotomy: Bohmian

Mechanics

Let’s first consider the problem of finding an explanation for the symmetry dichotomy in the

context of Bohmian mechanics. For an introduction to the theory, see Berndl et al. (1995);

Goldstein (2013). According to Bohmian mechanics, the wave function Ψ for multiple particles

(ignoring spin) obeys the Schrödinger equation

i~
∂

∂t
Ψ(~x1, ~x2, ..., t) =

(∑
k

−~2

2mk
∇2
k + V (~x1, ~x2, ..., t)

)
Ψ(~x1, ~x2, ..., t) , (1)
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where Ψ is a complex-valued function of particle configuration (~x1, ~x2, ...) and time t, mk is

the mass of particle k, ∇2
k is the Laplacian with respect to the k-th (vector) argument of the

function it acts on, and V is the classical potential energy of particle configuration (~x1, ~x2, ...)

at t. In addition to the wave function, there are particles which at all times have well-defined

locations. There is a second dynamical law which is introduced to govern the motions of the

particles, the guidance equation. If we write the wave function in polar form as Ψ(~x1, ~x2, ..., t) =

R(~x1, ~x2, ..., t)e
iθ(~x1,~x2,...,t)—where R assigns a positive real number to each possible configuration

and θ assigns an angle (phase)—the velocity of particle k at t is given by

~vk(t) =
~
mk

~∇kθ(~x1, ~x2, ..., t) . (2)

Consider a collection of particles which have the same intrinsic properties: mass, charge,

spin, etc. That is, consider a collection of electrons, a collection of positrons, a collection

of photons, or some other collection of particles of the same type. I will call these identical

particles, but all I mean by that is that they are particles of the same type. Since the particles

follow distinct paths through space, they cannot be truly identical to one another and will be

distinguishable (at least from a God’s eye point of view). Associated with these N particles is

a wave function which assigns a complex number to each possible arrangement of the particles,

Ψ(~x1, ~x2, ~x3, ..., ~xN , t), where ~x1 gives a location of one of the particles, ~x2 of another, etc. The

wave function assigns a complex number to every point in 3N dimensional configuration space,

where a point in configuration space is picked out by giving the location of each of the N particles

in 3 dimensional space: (~x1, ~x2, ~x3, ..., ~xN ). Two wave functions are considered equivalent if and

only if they differ by at most a global phase. If the wave function always assigns the same

complex number to any pair of points in configuration space related by a swap of two particle

positions (a permutation), it is symmetric:

∀i, j Ψ(~x1, ..., ~xi, ..., ~xj , ..., ~xN , t) = Ψ(~x1, ..., ~xj , ..., ~xi, ..., ~xN , t) . (3)

Alternatively, the wave function may be such that the values at two such points differ by a phase

shift of π, in which case the wave function is antisymmetric:

∀i, j Ψ(~x1, ..., ~xi, ..., ~xj , ..., ~xN , t) = −Ψ(~x1, ..., ~xj , ..., ~xi, ..., ~xN , t) . (4)

General complex-valued functions of N vector arguments will be neither symmetric nor

antisymmetric, they will be asymmetric. The symmetry dichotomy is the claim that asymmetric

states are forbidden. If we assume that V is invariant under permutation of the particle locations

it takes as arguments, then the Hamiltonian in (1) acts symmetrically1 on the wave function. A

symmetric(antisymmetric) wave function will remain symmetric(antisymmetric) over time.

1To say the Hamiltonian “acts symmetrically” is just to say that it commutes with any permutation operator
(these operators are discussed at the end of the section).
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Before examining why the symmetry dichotomy holds in Bohmian mechanics, let’s consider a

brief parable. In classical mechanics the net force ~Fk on a body k with inertial mass mIk results

in an acceleration of ~Fk/mIk . This is expressed by Newton’s second law,

~Fk = mIk~a (5)

If the only relevant force is gravity, the net force can be found by summing the gravitational

attraction from all other bodies (indexed by i),

~Fk =
∑
i

G
mGk

mGi

|~rki|2
r̂ki (6)

Here G is the gravitational constant, ~rki = ~xi − ~xk, r̂ki = ~rki/|~rki|, and mGi
is the gravitational

mass of body i. As formulated here, these laws allow for each body to have a distinct gravitational

and inertial mass. It is possible that for some bodies, mGk
6= mIk . As it turns out, no body

exercises that freedom. The gravitational mass is, as far as we can tell (and we are looking2),

always exactly equal to the inertial mass. We can remove this unnecessary freedom in specifying

the state of a system by imposing the requirement that mGk
and mIk always be equal as an

additional postulate. Alternatively, we can reformulate the theory so that the equality of the

masses falls out automatically—as is trivially accomplished by replacing the two kinds of mass

in (5) and (6) with a single mass mk for each body k.

Similarly, one can coherently formulate Bohmian mechanics without the symmetry dichotomy

(below), allowing more freedom in the specification of a quantum state than nature realizes.

There is thus a sense in which proving or deriving the dichotomy is impossible. Any supposed

derivation must include some form of magic, be it overt or covert. We can, of course, forego hopes

of derivation and instead impose the symmetry dichotomy as an additional law or postulate

analogous to adding the requirement that gravitational and inertial mass never differ (e.g.,

Messiah, 1966, ch. 14; Ballentine, 1998, sec. 17.3; Gasiorowicz, 2003, sec. 13.3; Griffiths,

2005, sec. 5.1.1; Sakurai & Napolitano, 2011, sec. 7.2). Even though a certain kind of

proof is impossible, an explanation of the dichotomy can be given if the theory is properly

formulated. In the version of Bohmian mechanics I will call “unlinked Bohmian mechanics”

the dichotomy is automatically satisfied (just as the equality of gravitational and inertial mass

followed automatically from the one-kind-of-mass formulation of classical mechanics).

Suppose the symmetry dichotomy is not imposed and identical particles are permitted to

have wave functions which are neither symmetric nor antisymmetric, just like non-identical

particles. In such a theory, the value of the wave function for a collection of identical particles at

(~x1, ~x2, ~x3, ...) will generally differ from the value at (~x2, ~x1, ~x3, ...), where the first two positions

have been permuted, by more than just a phase. As a consequence, the probability assigned to

these two arrangements of particles—to these two points in configuration space—will in general

2See the Eötvös experiment and recent variations on it.
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be different. As these two arrangements of particles will look the same, one calculates the

probability of seeing that kind of arrangement by summing over the different permutations (this is

unproblematic and what is done already if the wave function on configuration space is normalized

in a standard way,3 Messiah, 1966, pg. 584). Particle velocities can be calculated perfectly well

using the guidance equation (2). Thus, the symmetry dichotomy is not a consequence of the

fact that the particles are identical. The theory just described would do well at predicting some

possible observations, but not what we’ve seen in our laboratories. It would be mysterious why

identical particles are always in symmetric or antisymmetric states and thus mysterious why

electrons in atoms always obey the Pauli exclusion principle, why neutron stars don’t implode,

why superfluid helium has zero viscosity, etc. (just like classical mechanics with unconstrained

gravitational and inertial masses would leave it mysterious why the gravitational and inertial

masses always happen to be the same).

There is an alternative way of formulating Bohmian mechanics for identical particles from

which the symmetry dichotomy can be derived. This reformulation requires modifying the

connection between particles and wave as encoded in the guidance equation. Suppose that there

is no correspondence between the particles and the dimensions of the configuration space on

which the wave function is defined. The guidance equation (2) must be revised because it relied

on this correspondence—it relates the velocity of k-th particle to the k-th gradient of the phase.

The guidance equation must somehow assign a velocity to each of the N particles given just

the wave function and the fact that there is a particle at ~x1, another of the same kind at ~x2,

another at ~x3, etc. One way to do this is to say that the velocity must be independent of the

way the particles are mapped to coordinates in configuration space, satisfying (2) for any of the

N ! mappings. The velocity of the particle at ~x1 would then be calculable in many ways,

~v~x1
(t) =

~
m
~∇1θ(~x1, ~x2, ~x3, ..., t)

=
~
m
~∇2θ(~x2, ~x1, ~x3, ..., t)

=
~
m
~∇3θ(~x2, ~x3, ~x1, ..., t)

... . (7)

In the second line, ~∇2θ(~x2, ~x1, ~x3, ..., t) is the derivative with respect to its second argument, ~x1.

To be a little more careful, we can write this as ~∇~z θ(~x2, ~z, ~x3, ..., t)
∣∣
~z=~x1

, where “
∣∣
~z=~x1

” indicates

that the gradient is evaluated at ~x1. It will be useful to introduce an alternative notation “~∇~x1
”

which indicates the gradient with respect to whichever argument ~x1 sits in, evaluated at ~x1. The

same gradient can then be written as ~∇~x1
θ(~x2, ~x1, ~x3, ..., t).

For (7) to yield a well-defined velocity—and to avoid inconsistency—the different lines of

the above equation must agree. That is, in any physical history allowed by the laws these lines

3That is, if it is normalized such that integrating |Ψ|2 over all of configuration space gives one.
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must always agree. It is this requirement that will generate the symmetry dichotomy.4 Let’s call

this modified version of Bohmian mechanics where the connection between particle and wave

is weakened unlinked Bohmian mechanics and the original version linked Bohmian mechanics.

Exactly what this “link” might be (metaphysically) and how this distinction relates to debates

about the ontology of Bohmian mechanics will be discussed in section 5.

The explanation of the symmetry dichotomy in unlinked Bohmian mechanics will proceed

in three steps, using unlinked Bohmian mechanics to provide a foundation for the derivation

in Bacciagaluppi (2003) (and noting deficiencies in the derivation, so understood). First step:

showing that the gradients of the phase θ are symmetric under permutation. Second step:

deriving from this that the phase differs by an integer multiple of π at points of configuration

space related by a permutation of particle locations. Third step: arguing that the magnitude of

the wave function is also symmetric under permutation.

Step 1: Symmetry of ~∇θ Enforcing consistency between the first two lines of (7) yields

the requirement that

~∇1θ(~x1, ~x2, ~x3, ..., t) = ~∇2θ(~x2, ~x1, ~x3, ..., t) . (8)

In the new notation introduced above, we can rewrite this as,

~∇~x1
θ(~x1, ~x2, ~x3, ..., t) = ~∇~x1

θ(~x2, ~x1, ~x3, ..., t) . (9)

Bacciagaluppi (2003) motivates this key constraint as follows: “the velocity ... of particle 1 in a

given configuration is equal to that of particle 2 in the configuration with the particles exchanged.

This is the natural requirement of indistinguishability at the level of particle trajectories.” I take

unlinked Bohmian mechanics to provide an explanation of why we might expect this critical

“requirement of indistinguishability” to hold. The intelligibility of linked Bohmian mechanics

shows that this requirement is not a trivial feature of the Bohmian mechanics of identical

particles.

As each particle must have a unique velocity, we can generalize (9) to

∀i, ~∇~xi
θ(~x1, ~x2, ~x3, ..., t) = ~∇~xi

θ(~x2, ~x1, ~x3, ..., t) . (10)

Step 2: α = nπ For this step it is necessary to assume that (10) does not just hold for the

actual arrangement of particles, but for other possible arrangements as well. However, it is not

4Instead of taking the guidance equation (2) as the dynamical law governing the motion of particles in Bohmian
mechanics, one might prefer to take the second order equation giving each particle’s acceleration as the dynamical
law and treat (2) as a constraint on initial conditions which, because of the nature of the dynamics, will then hold
at all times (as in Bohm, 1952, sec. 4). On this understanding of the theory, instead of modifying the guidance
equation as in (7), it would be natural to modify the second order equation so that the acceleration of the particle
does not rely on a particular connection between particles and arguments of the wave function. I can then see two
possible strategies for deriving the symmetry dichotomy. First, one could also modify the constraint on initial
velocities as in (7). With both modifications in place, (7) will hold at all times and the derivation can proceed
as described in this section. Second, one could argue from the modified second order equation of motion alone
that the magnitude R of the wave function must be symmetric (see footnote 9 and Bacciagaluppi, 2003) and then
argue from this that the wave function must be either symmetric or antisymmetric (as outlined in footnote 10).
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obvious why the condition should be extended. According to Bohmian mechanics, there really

are particles with particular locations and velocities. If those velocities are to obey the guidance

equation for unlinked Bohmian mechanics, (10) must hold for the actual particle locations at

all times. But, why must it hold for other possible locations? We cannot allow combinations

of wave function and particle configuration for which the guidance equation does not generate

well-defined particle velocities, but why must we reject combinations where the velocity would

be undefined were the particles in different locations? That is, why must we reject as physically

impossible (as forbidden by the theory) the apparently possible physical states (of particles and

wave) where (10) holds across the N ! points in configuration space that accurately represent the

true particle positions but does not hold everywhere throughout the vast reaches of configuration

space?

Ultimately, I believe the danger from violations of (10) is indirect. Typically, wave functions

that fail to satisfy (10) somewhere in configuration space will quickly fail to satisfy it almost

everywhere, including whichever points give the actual particle locations. Wave functions which

violate (10) at points in configuration space that don’t represent the actual configuration are thus

ruled out not because they are in violation of the laws, but because they will lead to violation of

the laws in the future. This is legitimate reasoning as the laws must be obeyed everywhere and

always. So, these wave functions really are forbidden. However, the way in which these wave

functions are forbidden is somewhat odd. In ordinary physical theories states which are allowed

by the laws do not evolve into ones which are in violation of them. I take this oddity to be

a disadvantage of the explanation in unlinked Bohmian mechanics as compared to explanation

offered by Newtonian quantum mechanics (to be discussed in the following section): the Bohmian

explanation is temporally non-local. Also, note that the above reasoning may not rule out all

(10) violating wave functions: there may be some mischievous wave functions which manage

to always satisfy (10) at the actual configuration while violating it elsewhere in configuration

space.5 Despite these concerns, let us proceed under the assumption that (10) is satisfied for

merely possible particle configurations as well as the actual one.

Still, we cannot assume that (10) holds absolutely everywhere in configuration space

since—even in linked Bohmian mechanics—the velocities particles would have if they were in

a particular configuration are not defined everywhere in configuration space by the guidance

equation. In particular, they are not defined where the wave function is zero (as the phase

of the wave function is undefined). If θ and its gradients were defined everywhere, we could

straightforwardly conclude that θ(~x1, ~x2, ~x3, ..., t) = θ(~x2, ~x1, ~x3, ..., t) from the fact that the

gradients agree everywhere (10) and that the equality must hold when ~x1 = ~x2. If the region

on which R 6= 0 is connected, it follows from the fact that the gradients with respect to every

position vector must agree that the phase can only differ by at most a global additive constant

5It is not clear how much of a problem it would be if the Bohmian derivation permitted a few rare asymmetric
wave functions. My feeling is that it would be empirically fine (you wouldn’t expect to see these weird wave
functions), but unsettling from a foundational perspective.
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between locations in configuration space that differ by a swap of the first and second argument,

θ(~x1, ~x2, ~x3, ..., t) = θ(~x2, ~x1, ~x3, ..., t)− α . (11)

Since (11) holds wherever θ is defined, the value of θ at a point where the locations ~x1 and ~x2

are permuted is always α more than its value at the original point. As two permutations return

you to where you started,

θ(~x1, ~x2, ~x3, ..., t) = θ(~x1, ~x2, ~x3, ..., t)− 2α , (12)

α must be either 0 or π.6

One can easily construct troublesome states where the R 6= 0 region is not connected.

For example, consider any real-valued antisymmetric wave function, which must be positive

some places and negative others—to be antisymmetric—and yet its phase cannot move

continuously from 0 to π as it never takes intermediate values. Since the permutation symmetry

of the Hamiltonian entails that a symmetric(antisymmetric) wave function will always be

symmetric(antisymmetric), it would suffice to find a time when the R 6= 0 region is connected

and demonstrate that at that time the wave function must be symmetric(antisymmetric).

Bacciagaluppi’s proof thus requires7 that there is a time when the region of configuration space

in which the wave function is non-zero is connected.8 Let us assume that there is.

Step 3: Symmetry of R There are two routes to showing that R is symmetric. The

first route appeals to probabilities. If we assume that the probability, R2, for the particles being

6Here is another way to see that alpha in (11) is an integer multiple of π which more closely parallels the
explanation in section 4. Consider integrating the gradients of θ along a path C in configuration space from the
point (~x1, ~x2, ~x3, ...) to the point (~x2, ~x1, ~x3, ...) where ~x1 and ~x2 have been permuted and call the result α,∫

C

{∑
i

[
~∇iθ · d~̀i

]}
= α . (13)

This might be, for example, the path of the solid arrow connecting the cross and the dot in figure 1. Next
consider a return path C′ which proceeds not back along C, but instead along the path generated by permuting
each point in C (as in the dotted path in figure 1). Integrating the gradients of theta along C′ must give the

same contribution α since each ~∇iθ is symmetric under the permutation of ~x1 and ~x2. But, the path formed by
fusing C and C′ is a closed loop which returns us to our starting point and integrating along such a path must
give an integer multiple of 2π (as θ is single-valued). Thus, 2α = 2πn.

7Bacciagaluppi (2003, §3) acknowledges this requirement. Bacciagaluppi argues that we can exclude
problematic wave functions by varying the potential V in (1) and requiring that the velocities would be well-defined
even if the potential were different. He uses this trick again in step 3.

8Actually, a weaker condition may be sufficient. It follows from (1) that

∂θ

∂t
=
∑
i

{
~

2m

∇2
iR

R
−
m

2~
| #–v i|2

}
−
V

~
; (14)

see Bohm (1952, eq. 17); Bacciagaluppi (2003, eq. 7); Sebens (2015, eq. 14). Thus the time derivative of theta is
fixed by the particle velocities and R. If we require that the magnitude of Ψ agree at two permuted points (15),
then ∂θ

∂t
must be the same at (~x1, ~x2, ~x3, ..., t) and (~x2, ~x1, ~x3, ..., t). Since the derivative of θ(~x1, ~x2, ~x3, ..., t) and

θ(~x2, ~x1, ~x3, ..., t) with respect to every argument (including time) must agree, all that is required is that there is
some period of time over which the region of configuration-space-time for which R 6= 0 is connected. Analogous
reasoning applies to the case of Newtonian quantum mechanics. I am uncertain whether realistic cases satisfy
either the stronger requirement in the main text or the weaker requirement discussed here, though unrealistic
cases with everlasting infinite potentials will clearly cause trouble for both.

9



in the configuration (~x1, ~x2, ~x3, ...) must be the same as that for (~x2, ~x1, ~x3, ...), then it follows

immediately that

R(~x1, ~x2, ~x3, ..., t) = R(~x2, ~x1, ~x3, ..., t) . (15)

The idea behind this requirement is that probabilities are being assigned to the very same

arrangement of particles and thus cannot differ. What exactly would we take to be more probable

than what if R(~x1, ~x2, ~x3, ..., t) was greater than R(~x2, ~x1, ~x3, ..., t)? However, such concerns are

far from decisive (though textbooks sometimes appear to find them so, e.g., Ohanian, 1990, sec.

9.4). As was discussed when introducing linked Bohmian mechanics, we can simply say that

the probability of finding the particles in this arrangement is the sum of R(~x1, ~x2, ~x3, ..., t)
2 and

R(~x2, ~x1, ~x3, ..., t)
2 and R2 for all other points in configuration space reached by permuting the

particle positions. The terms in the sum need not themselves correspond to probabilities of

anything in particular and need not be equal.

The second route to (15) appeals again to the fact that the velocities must be well-defined.

(This is the route taken by Bacciagaluppi, 2003.) If the magnitude of the wave function is

not symmetric, this will tend to destroy the symmetry of the gradients of θ because the time

evolution of the wave function depends on both its magnitude and phase. By examining how the

phase would change over time in accordance with the Schrödinger equation (1), Bacciagaluppi

(2003, sec. 3) gives a complex proof (which I will not reproduce here) that R must be symmetric

if (10) is to hold at all times no matter the potential V .9 Though the details of the argument

are complicated, the result should seem plausible. Just as allowing the gradients of the phase

at permuted points that don’t represent the actual configuration to disagree will lead to trouble

for the actual velocities being well-defined in unlinked Bohmian mechanics, so will allowing R to

not be symmetric.10 This is a second point where the explanation offered in unlinked Bohmian

mechanics is temporally non-local: wave functions violating (15) may not be breaking any laws

at that moment, but such momentary indiscretion will typically lead to future unlawful behavior.

In the next section we will see that Newtonian quantum mechanics does not need to appeal to

merely possible configurations or potentials and can provide a cleaner, quicker, and temporally

local derivation of (15).

Since R must be symmetric under the permutation of the first two arguments (step 3) and θ

must shift by a multiple of π under permutation (step 2), it follows that the wave function must

9One can see that an asymmetric R would be problematic by looking at (14) in footnote 8. If the potential V

and the velocities #–v i are symmetric, then any asymmetry in R which leads to an asymmetry in
∑
i

{
∇2

iR

R

}
will

cause the phase to become asymmetric.
10If (unlike me) you think that considerations of probability necessitate that R must be symmetric at all times

in unlinked Bohmian mechanics, you could alternatively take this as the starting point for the derivation of the
symmetry dichotomy (as opposed to the modified guidance equation). The intermingling of phase and magnitude
just mentioned could be used to argue that the gradients of θ must be symmetric, as derived in step 1. Asymmetric
gradients of θ would be forbidden because they would generally lead to an asymmetric R as R evolves via

∂R

∂t
=
−1

2R

∑
i

~
mi

~∇i ·
(
R2 ~∇iθ

)
, (16)

which is derivable from the Schrödinger equation like (14). Step 2 could then proceed as before.
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be either symmetric or antisymmetric under the permutation of the first two arguments. As the

decision to permute the first two arguments was arbitrary, the wave function must be symmetric

or antisymmetric under any permutation of two particle positions.

As of now it appears to be an open possibility that the wave function might be symmetric

with respect to some permutations and antisymmetric with respect to others. In fact, such a

mix of symmetries is not possible (Blokhintsev, 1964, pg. 396, fn. 2; Van Fraassen, 1991, sec.

11.4; Bacciagaluppi, 2003, sec. 4).

Define the permutation operator P̂ij as swapping the i-th and j-th vector arguments of the

function it acts on. Consider two arbitrary permutations P̂ij and P̂mn such that

P̂ijΨ(~x1, ..., ~xi, ..., ~xj , ..., t) = Ψ(~x1, ..., ~xj , ..., ~xi, ..., t)

= eiαijΨ(~x1, ..., ~xi, ..., ~xj , ..., t) . (17)

and similarly for P̂mn, where each alpha is an integer multiple of π; that is, where Ψ is either

symmetric or antisymmetric under each permutation. The swapping of ~xi and ~xj can be enacted

simply by the operator P̂ij or circuitously via P̂mjP̂niP̂mnP̂niP̂mj . Acting on the wave function

with this second string of operators yields

P̂mjP̂niP̂mnP̂niP̂mjΨ(~x1, ..., ~xi, ..., ~xj , ..., t)

= e2iαmje2iαnieiαmnΨ(~x1, ..., ~xi, ..., ~xj , ..., t)

= eiαmnΨ(~x1, ..., ~xi, ..., ~xj , ..., t) . (18)

Since the result of the operation in (17) and (18) must be the same, eiαij = eiαmn and thus

either both permutations flip the sign of the wave function or neither do. Since this holds for

every pair of permutations, the wave function must be either symmetric for all permutations or

antisymmetric for all permutations.

At this point it is worth noting that the above derivation of the symmetry dichotomy in

Bohmian mechanics does not explain why identical particles do not behave like anyons or

paraparticles—it utilizes a framework in which such behavior is impossible. We could have

alternatively started with a wider space of possible quantum states. For example, one might

permit the wave function to be multi-valued. This would allow for wave functions which describe

anyons, satisfying (11) and (15) but neither (3) nor (4) as α is not an integer multiple of

π (Leinaas & Myrheim, 1977, §3.2; Wilczek, 1982; Morandi, 1992, ch. 3). As none of the

fundamental particles are anyons, one should seek to remove this possibility. Fortunately, by

using single-valued wave functions we have already forbidden such states. (An arguably deeper

explanation as to why they’re forbidden, appealing to the single-valued nature of the gradient of

the phase as opposed to the wave function itself, is given in section 4.) Similarly, the formalism

used here already rules out the possibility of paraparticles (Baker et al. , 2015, §2). Here quantum

states are taken to be given by collections of complex-valued functions which differ by at most

a global phase factor whereas paraparticle states would be represented by larger collections of
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functions. Though it may be possible to construct paraparticle theories which are consistent

with the data, one need not allow them and forbidding them leaves us with fewer possible states.

Just as Newtonian gravity with one kind of mass automatically rules out disagreement between

gravitational and inertial mass, the wave function formalism used here conveniently rules out

anyons and paraparticles.

3 Explaining the Symmetry Dichotomy: Newtonian

Quantum Mechanics

Let us now consider the problem of explaining the symmetry dichotomy from the perspective of

Newtonian quantum mechanics, a close relative of Bohmian mechanics. According to Newtonian

quantum mechanics, at the fundamental level there are just particles with definite positions and

velocities—no wave function. These particles are grouped into worlds (all of which are taken to

have the same number of each type of particle11). Each world can be represented by a point

moving through configuration space. The flow of this large collection of worlds in configuration

space is described (at a coarse-grained level12) by a density of worlds ρ(~x1, ~x2, ..., t) (normalized

so that integrating it over all of configuration space gives 1) and a velocity field ~vi(~x1, ~x2, ..., t)

for each particle i. As worlds are neither created nor destroyed, the flow obeys a continuity

equation
∂ρ(~x1, ~x2, ..., t)

∂t
= −

∑
i

~∇i ·
(
ρ(~x1, ~x2, ..., t)~vi(~x1, ~x2, ..., t)

)
. (19)

The dynamical evolution of the velocity fields is given by a Newtonian force law

mk~ak(~x1, ~x2, ..., t) = −~∇k

[∑
i

−~2

2mi

(
∇2
i

√
ρ(~x1, ~x2, ..., t)√
ρ(~x1, ~x2, ..., t)

)
+ V (~x1, ~x2, ..., t)

]
, (20)

where the second term in the brackets generates the classical force and the first encodes a force

from the interaction between quantum worlds. The acceleration can be expressed in terms of

the velocity fields via,

~ak(~x1, ~x2, ..., t) =
∑
i

(
~vi(~x1, ~x2, ..., t) · ~∇i

)
~vk(~x1, ~x2, ..., t) +

∂~vk(~x1, ~x2, ..., t)

∂t
. (21)

11Though this would presumably not hold in a relativistic version of the theory where particles can be created
and destroyed (unless the legendary Dirac sea is real).

12As stated here, the theory only gives the dynamics of worlds at a coarse-grained level where they are described
by a density and velocity field which incompletely specify their precise states (just like one might describe a fluid
in terms of a density and velocity field). The density ρ(~x1, ~x2, ..., t) gives the average number of worlds per
volume of configuration space around the point (~x1, ~x2, ...) at t and ~vi(~x1, ~x2, ..., t) gives the average velocity of
the particle whose location is given by the i-th argument around that point in configuration space (see Sebens,
2015, sec. 5; this is similar to the way fluids are coarse-grained in, e.g., Chapman & Cowling, 1970, sec. 2.2).
There is assumed to be some “microdynamical,” fine-grained story about how the individual worlds are moving
and interacting which justifies this coarse-grained description (see Hall et al. , 2014 for progress on this front).
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To link up with standard discussions of quantum mechanics, one might want to introduce

a wave function (a non-fundamental entity) to describe the positions and velocities of the

particles—the magnitude giving the density of worlds (when squared) and the phase giving

the particle velocities (when the gradient is taken and multiplied by ~
m , as in (2)),

Ψ(~x1, ~x2, ..., t) =
√
ρ(~x1, ~x2, ..., t)e

iθ(~x1,~x2,...,t) (22)

~vk(~x1, ~x2, ..., t) =
~
mk

~∇kθ(~x1, ~x2, ..., t) , (23)

One can only find an angle θ whose gradients give the velocity fields ~vi via (23) if the velocity

fields satisfy the quantization condition (see Takabayasi, 1952, sec. 7; Wallstrom, 1994; Sebens,

2015, sec. 6): Integrating the momenta of the particles along any closed loop in configuration

space gives a multiple of Planck’s constant, h = 2π~,

∮ {∑
i

[
mi~vi · d~̀i

]}
= nh , (24)

where the arguments of ~vi are omitted to simplify notation. Because the velocity fields are

undefined where ρ = 0 (as there are no worlds to include particles with velocities), this condition

only applies to loops which do not pass through—though they may encircle—points where ρ = 0.

The fact that wave functions which differ by a global phase describe the same state follows

immediately from (and is explained by) (22) and (23)—the putatively distinct wave functions

describe the same world density and velocity fields.

Suppose for simplicity that every world contains just two identical particles. In a given world

I label one “particle 1” and the other “particle 2” and attempt to calculate the motion of particle

1. To do so I need to use (20) which requires as input to the quantum potential the density of

worlds ρ. Suppose that in a second world there are two particles at ~y and ~z, each near one of

those in the first world. Does the presence of this world contribute positively to ρ(~y, ~z, t) or to

ρ(~z, ~y, t)? This will matter for determining the acceleration of particle 1 via (20). The answer

to the question seems to depend on whether it is particle 1 which is at ~y in the second world

and particle 2 at ~z or vice versa. More precisely, it will depend on whether the particle at ~y

in this second world bears a certain connection to the particle labeled 1 or the one labeled 2

in the first world. Suppose first that there is a fact of the matter about whether in the second

world it is particle 1 at ~y and particle 2 at ~z or vice versa; that there is a correspondence

between particles in different worlds. Then we can sensibly imagine densities of worlds ρ and

velocity fields ~vi which are not symmetric and these will be described by wave functions which

are neither symmetric nor antisymmetric. This theory can be called linked Newtonian quantum

mechanics. The introduction of such connections between particles in different worlds by linked

Newtonian quantum mechanics is unnatural and unnecessary. Unlinked Newtonian quantum

mechanics simply omits the connections. Note that the link under discussion here is distinct

from the one considered in the previous section; it is a link between particles across worlds, not
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a link between particles and the wave function.13

In unlinked Newtonian quantum mechanics the symmetry dichotomy is a result of the way

wave functions are constructed : one can allow arbitrary arrangements of the fundamental

objects—particles inhabiting different worlds—but the wave function constructed to describe

these particles will always be either symmetric or antisymmetric. The reason asymmetric states

are forbidden is that no arrangement of the fundamental objects could give rise to them. This is

in contrast to unlinked Bohmian mechanics where we began with the constraint that the various

gradients in (7) must yield the same velocities and showed that the symmetry dichotomy ensures

that this will always be so.14

Step 1: Symmetry of R Demonstrating that R must be symmetric is more immediate

than in the previous section and presented here as step 1. According to unlinked Newtonian

quantum mechanics there is no correspondence between particles in different worlds; that is, there

is no fact of the matter about whether the particle at ~y in the second world (in the example

above) corresponds to particle 1 or particle 2 in the first world. If this is the case, we cannot say

that the second world contributes to just ρ(~y, ~z, t) or ρ(~z, ~y, t). Instead, we should say that it

contributes to both. Each world should be plotted twice in configuration space and ρ introduced

to describe the density of these points. For N particles, each world must be plotted N ! times.

A density constructed in this way for multiple particles will automatically be symmetric under

the exchange of two particle locations,

ρ(~x1, ~x2, ..., t) = ρ(~x2, ~x1, ..., t) . (25)

Since ρ = R2 and R > 0, R must be symmetric. The density ρ does not merely describe the

worlds. It also determines how they move—in conjunction with the potential V via the force

law (20). This recipe for constructing ρ clarifies how the force law is supposed to function in

unlinked Newtonian quantum mechanics (much like unlinked Bohmian mechanics came with a

certain understanding of the guidance equation, as discussed in the previous section). When

the density is constructed in this way, the force on a given particle does not to depend on any

identification of particles across worlds.

Step 2: Symmetry of ~∇θ The velocity fields which are generated from the actual particle

13These links are reminiscent of the haecceities which philosophers have introduced to pick out the same object
across possible worlds. But, as in this case the quantum worlds are interacting entities not separate possibilities,
it’s not quite right to think of the links as haecceities. However, one could say that linked Newtonian quantum
mechanics posits “quasi-haecceities” or “quantum haecceities.”

14To be fair, unlinked Newtonian quantum mechanics does include its own constraint on allowed states, the
quantization condition (24). However, unlike the Bohmian constraint, relaxing the quantization condition would
not permit asymmetric wave functions, just states in which no wave function at all can properly describe
the positions and velocities of the particles. Further, linked Newtonian quantum mechanics (which allows for
asymmetric wave functions) also includes the quantization condition. For these reasons, I say that it is the way
wave functions are constructed—as opposed to a constraint on allowed states—which explains why asymmetric
wave functions cannot occur in unlinked Newtonian quantum mechanics.
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velocities will satisfy

~v1(~x1, ~x2, ~x3, ..., t) = ~v2(~x2, ~x1, ~x3, ..., t)

~v2(~x1, ~x2, ~x3, ..., t) = ~v1(~x2, ~x1, ~x3, ..., t)

~v3(~x1, ~x2, ~x3, ..., t) = ~v3(~x2, ~x1, ~x3, ..., t)

... . (26)

Whether we map a world to (~x1, ~x2, ...) or (~x2, ~x1, ...) in configuration space, the velocity of the

particle at ~x1 will be the same (and similarly for ~x2, etc.). The condition on the phase of the

wave function in (10) follows from (23) and (26) and holds in exactly the same cases (when

ρ 6= 015).

Step 3: α = nπ From (10) it follows, as before, that the values of the wave function

at points in configuration space related by a permutation differ by a constant phase (11) and,

because two permutations returns you to the original point, that the wave function must be

either symmetric or antisymmetric under this permutation. The same generalization applies: a

multi-particle wave function will be either symmetric under all permutations or antisymmetric

under all permutations.

The explanation of the symmetry dichotomy in Newtonian quantum mechanics can be

summarized as follows: At the fundamental level there are just particles whizzing about in

space (satisfying (24)). These particles are grouped into a number of worlds, each of which has

some quarks, electrons, photons, etc. in it. When we represent this collection of worlds in terms

of a density and a set of velocity fields on configuration space, we introduce a redundancy. To

properly fill up the configuration space, each world must appear multiple times. The restriction

on states which emerges at the non-fundamental level (the symmetry dichotomy) is a result of

the redundancy introduced by this choice of representational mechanism.

By constraining the behavior of identical particles the quantization condition (24) reveals an

important aspect of its strength. In Sebens (2015, §6) I gave an example of how the quantization

condition leads to the quantization of angular momentum. It also plays a role in explaining

why permuting the locations of two particles yields a phase shift of nπ.16 Consider the possible

configurations of two identical particles in two dimensional space. We can describe these particles

in terms of the center of mass coordinate ~xcm = ~x1+~x2

2 and the relative coordinate ~xrel = ~x2−~x1.

In these coordinates, the quantization condition becomes,∮
m

(
2~vCM · d~̀CM +

1

2
~vrel · d~̀rel

)
= nh , (27)

15For the next step we must assume, as in the case of Bohmian mechanics, that this region is connected (or at
least, that it is over time—see footnote 8).

16In the previous argument it played the role of ensuring that the velocity fields can be expressed as gradients
of a phase, via (23), which was needed to move from (26) to (10).
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where ~vCM = ~v1+~v2
2 and ~vrel = ~v2 − ~v1. The relative coordinates are plotted in figure 1 for

fixed center of mass; the center point represents coincidence and points equally and oppositely

displaced from the origin correspond to the same arrangement of particles. Consider the path

through configuration space shown in figure 1 which starts at the point marked by a cross and

ends at the circle. These marked points are related to each other by permutation of the particle

positions. As the path is not a closed loop in configuration space, it might initially appear that

the integral of the relative momentum m~vrel = 2~ ~∇~xrel
θ along the path is not constrained.

However, the integral along the dotted path must be the same as that on the first path (since we

are taking a second trip through the same worlds; the direction is reversed but so is ~vrel since

~v1 ↔ ~v2 by (26)) and the closed loop formed by both paths must result in an integer multiple of

2h by (27). Thus the integral of the relative momentum along first path must yield a multiple

of h and the integral of ~∇~xrel
θ along this path must yield a multiple of π.17 The quantization

condition is odd and the fact that the explanation of the symmetry dichotomy relies on it may

be unsatisfying as the condition itself has yet to be explained. The point here is just that no

further symmetrization postulate is needed in addition to the quantization condition to arrive

at the symmetry dichotomy.

Figure 1 may help us understand the origin of the Pauli exclusion principle in Newtonian

quantum mechanics. If the particles are fermions, the integral of the relative momentum along

the loop must be non-zero. Further, it must be constant as we consider contracting the loop

(provided we don’t cross a point where R = 0). Since the length of the loop decreases, the

particle velocities must increase. The point of coincidence is in “the eye of the hurricane” and

the density of worlds must drop to zero since the relative velocity ~vrel cannot be defined at the

origin.

Figure 1: Paths through the space of relative configurations of two particles in two spatial
dimensions.

17Takabayasi (1952) imposes a version of this as a second quantization condition—requiring fermionic wave
functions to yield an odd multiple of h, in his eq. 7.6—in addition to the quantization condition discussed above,
(24).
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An important lesson of the discussion in this section and the one before is that on neither

the Bohmian nor the Newtonian picture is the source of the symmetry dichotomy the fact that

multiple particles of the same type are in some heavy sense “identical” beyond being just “of

the same type.” For the Bohmian, it is not about the identity of the particles with each other,18

but the connection between the particles and the dimensions of the configuration space on which

the wave function is defined. For the Newtonian, it is not about the identity of particles within

a world, but the connection between particles in different worlds.

4 Explaining the Dichotomy using Reduced Configuration

Space

There is something odd about the full configuration space in the previous sections: the same

arrangement of particles is represented by multiple distinct points in the space. This redundancy

can be removed by moving to a reduced configuration space where each distinct arrangement

appears once and only once (discussed in Laidlaw & DeWitt (1971); Leinaas & Myrheim (1977)

and in Bohmian mechanics by Sjöqvist & Carlsen (1995); Brown et al. (1999); Dürr et al.

(2006, 2007); Dürr & Teufel (2009); Goldstein et al. (2014)). There are a variety of ways to

mathematically formulate quantum mechanics on reduced configuration space; here I adopt what

I take to be the most straightforward method, using multi-valued wave functions.19 Reduced

configuration space provides a new arena in which to rerun what are essentially the same

arguments as before. Doing so is worthwhile for seeing that the same assumptions are needed

and for setting up the discussion of metaphysics in the next section.

We are free to express the dynamical evolution of a wave function for two identical particles

using center of mass and relative coordinates, ~xCM = ~x1+~x2

2 and ~xrel = ~x2 − ~x1. In these

coordinates, the Schrödinger equation (1) becomes,

i~
∂

∂t
Ψ(~xCM , ~xrel, t) =

(
−~2

2m

(
1

2
∇2
~xCM

+ 2∇2
~xrel

)
+ V (~xCM , ~xrel)

)
Ψ(~xCM , ~xrel, t) . (28)

Let us now move to the reduced configuration space by identifying points where ~x1 and ~x2 are

swapped, that is, by identifying each point ~xrel with −~xrel and calling it ~xR where the capital

R indicates that the coordinate is both “reduced” and “relative.” In two dimensions this can

be achieved by introducing a coordinate r giving the separation between the two particles and

φ specifying the angle the line connecting the two particles makes with the x-axis, ranging from

0 to π. The point ~xR = (r, φ) corresponds to both {[~xrel]x = r cosφ and [~xrel]y = r sinφ} and

{[~xrel]x = −r cosφ and [~xrel]y = −r sinφ} (points in the gray and white regions of figure 1

are identified). As two points in the full configuration space are mapped to one in the reduced

18Holland (1993, sec. 7.1.4) makes this point nicely.
19Dürr et al. (2006, 2007); Dürr & Teufel (2009); Goldstein et al. (2014) instead prefer to use single-valued

wave functions on a universal covering space of the reduced configuration space.
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configuration space, there will in general be two wave function values at a given point (r, φ) (for

N particles, there would be N ! values). We can introduce a single function Ψ(~xCM , ~xR, t) to

describe the system provided we allow it to be a double-valued function. The phase of a general

double-valued wave function on this space is shown in figure 2.c. As is apparent from the figure,

the wave function has two parts, branches,20 on each of which the magnitude and phase of Ψ

may potentially independently vary. Each branch obeys the same dynamic law—the Schrödinger

equation (28) with ~xrel replaced by ~xR.

As we will see in step 2 of the derivation below, the constraint that the wave function

in full configuration space must be single-valued (which I will consider relaxing) restricts the

allowed multi-valued wave functions in the reduced configuration space. However, any wave

function on the full configuration space can be represented as a multi-valued wave function on

the reduced configuration space. Thus, it is not the use of the reduced configuration space

alone that generates the symmetry dichotomy. Still, we can derive the symmetry dichotomy in

unlinked Bohmian mechanics using reduced configuration space along with a slight variant of

the argument from section 2.

Step 1: Symmetry of ~∇θ The wave function for two identical particles can be written in

polar form as Ψ(~xCM , ~xR, t) = R(~xCM , ~xR, t)e
iθ(~xCM ,~xR,t), where R and θ may be multi-valued.

The particle velocities are given by the guidance equation,

~vCM (t) =
~

2m
~∇~xCM

θ(~xCM , ~xR, t)

~vR(t) =
2~
m
~∇~xR

θ(~xCM , ~xR, t) , (29)

and only well-defined if each branch of the wave function yields the same velocities. Thus ~∇~xCM
θ

and ~∇~xR
θ must have the same value on each branch at every point in the reduced configuration

space (as is the case in figure 2.a and 2.b but not 2.c). As in section 2, we must assume that this

agreement holds for merely possible particle configurations, not just the actual one (this can be

given the same temporally non-local justification as before).

Step 2: α = nπ At every point in the reduced configuration space where they are defined,

the gradients of the phase are single-valued. Because the gradients of θ are single-valued, the path

integral of the gradients of θ along a curve (giving the change of θ along the curve) is invariant

under deformations of the path (keeping the endpoints fixed) that don’t cross a point where R = 0

(where the gradients of θ are undefined). If there are no points where R = 0, θ is single-valued.

If there are points where R = 0, θ may be multi-valued (as in figure 2.b). For example, R may be

zero at the points of the reduced configuration space where the particles coincide, where ~xR = 0.

Call these points the “region of coincidence.” If the two particles are moving in one dimensional

space, the region of coincidence is a hyperplane which separates the reduced configuration space

20Though this should be clear from context, let me be explicit: these are branches in the sense of the
mathematical analysis of multi-valued functions; they are not the branches of the wave function which are taken
to correspond to worlds in the (Everettian) many-worlds interpretation.
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(a) symmetric (b) antisymmetric

(c) asymmetric

Figure 2: Here are three plots of possible wave function phases in the reduced relative
configuration space for two particles in two dimensional space. The first plot depicts a
single-valued symmetric wave function. The second depicts a double-valued antisymmetric wave
function. Note that the two branches have the same gradient ~∇~xR

everywhere. In the second
figure a corner of the top branch is cut off as it passes 2π and reappears at the bottom of the
plot. The phase is undefined at r = 0 where |Ψ| = 0. The third figure depicts a wave function
which is neither symmetric nor antisymmetric. There are two branches whose gradients generally
disagree. The two branches happen to cross each other. Imagine rotating one of the branches
180◦ around the θ-axis to picture the wave function over ~xrel in the full configuration space. In
the first two figures I have included the paths discussed in step 2 as double-lines going from an
arbitrary point in the reduced configuration space back to itself.
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into two disconnected regions. (A hyperplane is a subspace of dimension one less than the

original space. In the case of two particles in one spatial dimension, the region of coincidence is

a one dimensional subspace of the two dimensional reduced configuration space.) As in section

2, the symmetry dichotomy cannot be derived if the R 6= 0 region is disconnected—which it

would be if R = 0 in the region of coincidence.

If the particles are moving in two dimensions the region of coincidence is a two dimensional

subspace of the four dimensional reduced configuration space. The region of coincidence can

helpfully be thought of as a “hyperline” since it has two fewer dimensions than the reduced

configuration space. Consider a path from an arbitrary point in the reduced configuration space

back to itself which encircles the region of coincidence once (e.g. the path from the cross to the

circle in figure 1, which becomes a closed curve when represented in the reduced configuration

space as in figures 2.a and 2.b; note that in 2.b two values are assigned to each point along

this path because the phase is double-valued). This curve cannot be continuously deformed to

a point without crossing the region of coincidence and thus the integral of the gradients of θ

along it may be non-zero. Now consider the same path repeated twice. The new longer path is

the image of a closed path on the full configuration space (e.g. the solid and dotted paths in

figure 1 taken together). Since the wave function must be single-valued on the full configuration

space, this integral must yield a phase difference of 2πn. But, it must also be twice the integral

along the original path. Thus the original integral must be 0 or π (in figure 2.a following the

original path gives a net contribution of 0 to θ whereas in 2.b there is a contribution of π from

circling the origin once). So, θ must either have a single value or two values that differ by π at

the original point.21

If the particles are moving in three dimensions the region of coincidence is a three dimensional

subspace of a six dimensional space (a “hyperpoint” since the difference in dimensions is three).

In this situation the previous argument is equally applicable but another is available as well, one

which does not assume that the wave function is single-valued on the full configuration space.

Again consider a path from an arbitrary point in the reduced configuration space back to itself

which encircles the region of coincidence once, repeated twice. It turns out that such a path

can be continuously deformed to a point without crossing the singularity (though the single

encircling of the singularity cannot). For details of how the deformation is done, see Leinaas &

Myrheim (1977, pg. 9) (they employ this topological insight in a different way, not considering

particle interpretations or integrating the gradients of the phase). It should be noted that this

trick fails if there is a sufficiently troublesome set of additional points where R = 0 limiting

one’s ability to deform the curve; the appeal to single-valuedness of the wave function on the full

configuration space will generally still be legitimate (both methods fail, as discussed in section 2,

if the configuration space is broken into disconnected pieces by regions where R = 0). This trick

is by no means only available in the reduced configuration space. If we consider, for example,

21The quick derivation of α = nπ given in section 2 cannot be repeated since two points in (11) have been
identified. Instead we need to integrate the phase along curves, as in footnote 6.
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a path of constant ~xCM encircling the origin in the full relative configuration space the above

deformation will look like taking this loop and trivially deforming it continuously to a point

by going around the point of coincidence at the origin (a move which cannot be done if the

particles are moving in two dimensional space). Just as in ordinary space a curve encircling

a line cannot be contracted to a point without crossing it but a curve encircling a point can,

in the full configuration space a curve encircling the “hyperline” of coincidence (in the two

dimensional case) cannot be contracted to a point but a curve encircling the “hyperpoint” (in

the three dimensional case) can.22 This provides a proof that anyons are forbidden in three or

more dimensions (even if multi-valued wave functions are allowed) which does not require the use

of reduced configuration space (in contrast to the topological approach of Leinaas & Myrheim,

1977).

Step 3: Symmetry of R As in section 2, the single-valuedness of R can be argued for either

by requiring that R2 straightforwardly yield probabilities or by arguing that a double-valued R

will cause the gradients of the phase to become double-valued and the velocities ill-defined.

A single-valued wave function on the reduced configuration space corresponds to a symmetric

wave function on the full configuration space. A double-valued wave function on the reduced

configuration space for which the amplitude of the wave function is the same on both branches

though the phases always differ by π corresponds to an antisymmetric wave function on the

full configuration space. As these are the only possibilities allowed by the above argument, the

symmetry dichotomy has been established.23

Here and in section 2 we arrived at a restriction on allowed wave functions from the fact

that the Bohmian velocities generated from the wave function must be well-defined. Although I

think the explanation of the symmetry dichotomy is essentially the same in reduced configuration

space, I’ll argue in the next section that the option of running the argument in this alternative

space is relevant to subtle ontological questions about Bohmian mechanics.

In the previous section we saw that in unlinked Newtonian quantum mechanics each world is

equally well represented by multiple points in the full configuration space. This redundancy was

central to explaining the symmetry dichotomy. Reduced configuration space may thus appear

a more natural setting in which to present the theory: each world will only appear once. The

density of worlds ρ and the velocity fields ~vCM and ~vR will describe this collection of worlds at

22A curve encircling the “hyperpoint” once in reduced configuration space cannot be contracted to a point
because of the more complex structure of the space (Leinaas & Myrheim, 1977, pg. 9).

23The above argument is somewhat similar to the one given by (Dürr et al. , 2006, §5, 2007, §1, Dürr & Teufel,
2009, §8.5). They require that there be unique well-defined Bohmian velocities throughout reduced configuration
space. I take unlinked Bohmian mechanics together with the story about troublesome time evolution (in section
2) to ground this important assumption. Here I’ve sought to connect their sort of approach to Bacciagaluppi’s
(2003). Dürr et al. use advanced mathematics which, though certainly compact, is (in my opinion) more difficult
to understand physically than the version of the story presented in this section.
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a coarse-grained level (as before). These worlds can be described by a wave function such that

Ψ(~xCM , ~xR, t) =
√
ρ(~xCM , ~xR, t)e

iθ(~xCM ,~xR,t)

~vCM (~xCM , ~xR, t) =
~

2m
~∇~xCM

θ(~xCM , ~xR, t)

~vR(~xCM , ~xR, t) =
2~
m
~∇~xR

θ(~xCM , ~xR, t) . (30)

Step 1: Symmetry of R There is a single density of worlds ρ on the reduced configuration

space and thus R is single-valued (ρ = R2).

Step 2: Symmetry of ~∇θ Similarly, the velocity fields on the reduced configuration space

will be single-valued. From (30) it follows that the gradients of the phase of the wave function

describing the worlds, ~∇~xCM
θ and ~∇~xR

θ, will be single-valued as well—provided that there is

such a function θ whose gradients yield both ~vCM and ~vR. In the full configuration space the

existence of such a function was ensured by the fact that the velocities satisfy the quantization

condition (24). In the reduced configuration space, the condition becomes∮
m

(
2~vCM · d~̀CM +

1

2
~vR · d~̀R

)
= nh , (31)

as in (27). However, this condition need only be satisfied for paths that form closed loops both

in the reduced configuration space and the full configuration space. There are closed paths in

the reduced configuration space—like the solid arrow in figure 1—which are not closed in the full

configuration space (though taking such a path twice over will form a closed path). A constraint

on these paths, that the integral in (31) yield nh
2 , thus follows from imposing (31) on paths

closed in the full configuration space.

Step 3: α = nπ Since ~∇~xCM
θ and ~∇~xR

θ are well-defined and single-valued everywhere

where ρ = 0, this step proceeds exactly as in Bohmian mechanics. Again, the wave function

must be single-valued or double-valued where the two values differ by a phase shift of π

As in the case of Bohmian mechanics, the use of reduced configuration space for Newtonian

quantum mechanics serves as an alternative arena to run what is essentially the same argument

as in section 3.

5 The Symmetry Dichotomy and Ontology

For the purposes of deriving the symmetry dichotomy, the key departure of unlinked Bohmian

mechanics from the linked version was a revision of the guidance equation, (2) to (7). The

motivation for the guidance equation of unlinked Bohmian mechanics was the fact that a certain

connection between particles and wave was not available for the equation to appeal to. Whether

or not such a connection is present is a metaphysical question, related to metaphysical questions

about the fundamental space on which the dynamics occurs and the ontological status of the

wave function. Some metaphysically explicit versions of Bohmian mechanics that have been
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proposed include such a connection and others do not.

One radical proposal is that the wave function is a field on configuration space guiding a single

“marvelous point” or “world-particle” moving through configuration space (Albert, 1996, 2013).

On this picture it is the motion of this point in high dimensional configuration space which is

fundamental, and the appearance of particles in three dimensional space is to be explained as

resulting from the motion of this point. The connection between particle and wave appealed

to in linked Bohmian mechanics is present: the motion of particle 1 is just the motion of the

world-particle in the first three dimensions of configuration space, dimensions which we can

straightforwardly take the gradient of the phase with respect to in order to calculate a velocity

for that particle. One could instead take the reduced configuration space, as opposed to the full

configuration space, as fundamental in which case unlinked Bohmian mechanics is more natural

(it would be strange, but not unthinkable, to have the world-particle associated with both a

point in the reduced configuration space and a particular branch of the wave function).

Alternatively, one might think that, at the fundamental level, there are both particles

moving around in familiar three dimensional space and a wave function living in a separate

high dimensional space. These two spaces may or may not be linked in the relevant sense—that

is, there may or may not be a correspondence between certain particles and certain dimensions

of the high dimensional space on which the wave function lives.

A third set of options takes three dimensional space alone as fundamental. The wave function

might be a multi-field, a law of nature, or a property encoding the dispositions for Bohmian

particles to move in certain ways (Belot, 2012). The “multi” in “multi-field” refers to the fact

that the field takes multiple particle positions as input, not that it spits out multiple outputs (like

the multi-valued functions in section 4). If the multi-field takes an ordered list of the locations

of each particle as input, we have the connection needed for linked Bohmian mechanics. If the

inputs of the multi-field are unordered (when the particles are identical) only unlinked Bohmian

mechanics is possible (but the multi-field must be allowed to be multi-valued if antisymmetric

wave functions are to be permitted). If the wave function is a law or property, it could determine

velocities either from ordered or unordered lists of particle positions—yielding linked or unlinked

versions of the theory.

If we take the wave function to be a Humean law (as in Miller, 2014; Callender, 2015),

there is a sense in which the way the guidance equation works is to be derived from the particle

trajectories and not vice versa. If the trajectories are sufficiently orderly as to obey (7) (extended

to all particles) and not just (2) (for some wave function), then the wave function which is

introduced to describe the particle motions will be one which satisfies the symmetry dichotomy.

This turns out to allow for a simpler set of laws than general Bohmian trajectories would—such

a wave function only needs to be specified on 1
N ! of the configuration space and then its values

everywhere else are fixed by its symmetry(antisymmetry).

The lesson I want to draw for ontology is that, as far as explaining the symmetry dichotomy

goes, the various unlinked versions of the theory are superior. Chen (2016) insightfully recognized

that one way to evaluate options for the ontology of Bohmian mechanics is by how well they
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ground explanations of the symmetry dichotomy and the analysis here has arrived at similar

conclusions about which variations of Bohmian mechanics best explain the dichotomy.

I should mention that there is also the possibility of mongrel theories with linked metaphysics

and unlinked dynamics. In this case the ontology would include the connections between particles

and wave function necessary for linked Bohmian mechanics but the dynamics would not make use

of them. As it was the dynamics of unlinked Bohmian mechanics—in particular, the guidance

equation—which was used to derive the symmetry dichotomy, one might hope to defend these

linked ontologies by positing unlinked dynamics. Though such mongrel theories are consistent,

they have the disadvantage of positing unnecessary metaphysical structure which is irrelevant to

the dynamics.

The link which is present in linked Newtonian quantum mechanics is a link between particles

in different worlds, specifying which particle in some other world is “the same one as” or really

“the one corresponding to” a particular particle in this world. As was discussed in section 3,

if we take the fundamental ontology of the theory to be a collection of particles belonging to

different worlds moving around in a single three dimensional space (the second ontological option

discussed in Sebens, 2015, sec. 11) then such a link would be unnatural because it would require

positing additional structure beyond the position, velocity, and world of each particle. There

is also a radical ontology for Newtonian quantum mechanics analogous to Albert’s proposal for

Bohmian mechanics where there are many world-particles moving through a 3N dimensional

space (the first option in Sebens, 2015, sec. 11; see also Boström, 2015, sec. 4). This ontology

would have the structure necessary for a linked version of the theory because each set of three

dimensions would give the location of “the same particle” in each world. However, we could

instead take the space on which these world-particles move to be the reduced configuration

space of section 4, yielding an improved unlinked version of the theory.

To the extent that we cannot decide between between competing interpretations of quantum

mechanics through empirical testing,24 we must rely on comparison via theoretical virtues like

simplicity, elegance, and explanatory power to determine which proposals are most promising.

One virtue we can use to rank various interpretations is their ability to explain the symmetry

dichotomy. In this article I’ve argued for the following ranking: The best explanation is provided

by unlinked Newtonian quantum mechanics (in one of its subtle variations described in the

previous paragraph). The symmetry dichotomy is automatically satisfied because symmetric

and antisymmetric wave functions describe all possible states of the fundamental objects.

Unlinked Bohmian mechanics earns a close second place. The wave function must be either

symmetric or antisymmetric if the particle velocities derived from the wave function are to

be independent of any identification between dimensions of configuration space and particular

particles. This explanation is ranked lower for two main reasons (discussed in section 2). First,

asymmetric wave functions are forbidden in an indirect, temporally non-local way. Second,

24Empirical data decisively favors relativistic quantum field theory over non-relativistic quantum mechanics.
Thus, one should also consider prospects for a relativistic extension in evaluating the promise of competing
interpretations.
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the proof that the magnitude of the wave function is symmetric is much more complicated

than in Newtonian quantum mechanics. At the bottom of the ranking are interpretations in

which the symmetry dichotomy must be postulated, but for which such a postulate receives

no explanation beyond the fact that it is needed to account for the data. This includes linked

versions of Newtonian quantum mechanics and Bohmian mechanics along with interpretations

of quantum mechanics that do not include particles following definite trajectories, like the

(Everettian) many-worlds interpretation and spontaneous collapse theories.
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