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Abstract

GRW theory offers precise laws for the collapse of the wave function. These

collapses are characterized by two new constants, λ and σ. Recent work has put

experimental upper bounds on the collapse rate, λ. Lower bounds on λ have been

more controversial since GRW begins to take on a many-worlds character for small

values of λ. Here I examine GRW in this odd region of parameter space where

collapse events act as natural disasters that destroy branches of the wave function

along with their occupants. Our continued survival provides evidence that we don’t

live in a universe like that. I offer a quantitative analysis of how such evidence can

be used to assess versions of GRW with small collapse rates in an effort to move

towards more principled and experimentally-informed lower bounds for λ.

1 Introduction

One central point of disagreement in the foundations of quantum mechanics is whether

the collapse of the wave function is a genuine physical process. If collapse is to be taken

seriously, we should seek to determine physical laws that might govern this process.

Ghirardi-Rimini-Weber theory (GRW) offers possible precise laws which guarantee that

the wave function collapses during familiar quantum measurements. However, observers

and measurements have no special status in the theory, collapses happen all over the

place whether or not scientists are watching.

The laws of GRW include two new fundamental constants not present in textbook

discussions of quantum mechanics. One parameter, σ, characterizes the precision of the

collapse events and the other, λ, the rate at which collapses occur. If these parameters

are chosen properly, the theory appears to succeed in generating the correct probabilistic

predictions for experiments taken to be within the purview of non-relativistic quantum

mechanics. However, as more experiments are conducted we continue to shrink the

space of possible values for σ and λ. Potentially, the allowed region could shrink so

much it disappears and GRW could be ruled out. Alternatively, new experiments might

confirm GRW over its competitors. As of now, there seems to be a fair amount of

leeway as to what values we may assign to the parameters (figure 1). Focus on the

collapse rate λ. It is fairly well-understood how we can put experimental upper bounds
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on the collapse rate. If collapse events were too frequent, interference patterns would

be destroyed by particles collapsing mid-experiment, isolated systems would heat up,

photons would be spontaneously emitted by free particles, and in other varied ways the

experimental predictions of the theory would be corrupted (these constraints have been

reviewed recently in Adler, 2007; Feldmann & Tumulka, 2012; Bassi et al. , 2013).

Figure 1: Parameter diagram of GRW theory
from Feldmann & Tumulka (2012). ERR is
the “empirically refuted region.” PUR is the
“philosophically unsatisfactory region.” The points
labeled “GRW” and “Adler” indicate the values
suggested in Ghirardi et al. (1986) and Adler (2007)
respectively. It should be noted that Adler’s proposal
was made in the context of CSL, not GRW.

In this article, I would like to explore how we might put experimental lower bounds

on the collapse rate λ. The trend in the literature has been to dismiss low values of λ for

non-empirical reasons or for reasons that presuppose the failure of the many-worlds

interpretation. When λ is very small GRW becomes an odd theory. Macroscopic

objects are not prevented from entering superpositions and the theory takes on a

many-worlds character (§3). Such versions of GRW have been rejected as philosophically

unsatisfactory. Surely they are. But, there has been disagreement about exactly where

the problems arise. Feldmann & Tumulka (2012) give the criterion, “We regard a

parameter choice (σ, λ) as philosophically satisfactory if and only if the PO [primitive

ontology] agrees on the macroscopic scale with what humans normally think macroscopic

reality is like.” Bassi et al. (2010) impose the requirement that “any superposition

reaching the eye must be reduced before it is transformed into a perception in the

brain.”, building on a suggestion in Aicardi et al. (1991). Adler (2007) and Gisin &

Percival (1993) argue that the formation of a microscopic latent image in a detector

counts as a measurement even before this image is amplified to macroscopic scale. They

believe that the collapse rate must be high enough that even these latent images do not

enter superpositions.

I will argue that very small values of λ are not just philosophically problematic, they

are empirically unacceptable even if the many-worlds interpretation is viable. In doing

so, I hope to begin shifting the burden from philosophical considerations to empirical

ones and to lay the foundation for a principled and experimentally informed approach

to determining lower bounds on λ. Although the paper will focus on GRW throughout,

many of the lessons could be applied to mutatis mutandis other collapse theories.
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2 GRW Theory

In GRW theory, the evolution of the wave function is typically governed by the familiar

Schrödinger equation,

i~
d

dt
|Ψ(t)⟩ = Ĥ |Ψ(t)⟩ . (2.1)

At some instants, the evolution of the wave function is discontinuous and not in accord

with the Schrödinger equation. The wave function collapses. According GRW, collapse

is a real physical process governed by well-defined laws and occurring frequently, not

just during measurements. Humans and other observers play no spooky role, they are

just particularly intelligent and perceptive collections of particles.

When a collapse occurs, a randomly chosen particle has its position become extremely

well-localized. Collapses occur randomly at a rate of Nλ where N is the total number

of particles. That is, once a collapse occurs at T1 the probability that the next collapse,

at T2, will happen within time interval ∆t is given by

P (T2 − T1 < ∆t) = 1− e−Nλ∆t . (2.2)

The collapse rate λ is one of two new constants of the theory, originally suggested to

be on the order of 10−16s−1 (Ghirardi et al. , 1986). The collapse localizes particle I

(randomly chosen) around location X, where X is chosen randomly with probability

density

ρI(x) = lim
t↗T

⟨Ψ(t)|ΛI(x) |Ψ(t)⟩ . (2.3)

“limt↗T ” denotes the limit as t approaches the time of collapse, T , from below. Λi(x)

is the collapse operator defined by

Λi(x) =
1

(2πσ2)
3/2

e−
(x̂i−x)2

2σ2 , (2.4)

where x̂i is the position operator for particle i. The wave function after the collapse is

given by the pre-collapse wave function multiplied by a tightly peaked three-dimensional

Gaussian centered about X and normalized,

lim
t↘T

|Ψ(t)⟩ = lim
t↗T

ΛI(X)
1/2 |Ψ(t)⟩

⟨Ψ(t)|ΛI(X) |Ψ(t)⟩1/2
. (2.5)

The second new constant in GRW, σ, appears in (2.4) and characterizes the width of

the Gaussian that localizes the particle. It was originally proposed to be on the order of

10−7m (Ghirardi et al. , 1986). In the remainder of the paper different values of λ will

be considered, but σ will be kept fixed at about 10−7m.

In the simplest version of GRW, GRW0, the wave function is all there is and its

evolution is determined by the Schrödinger equation (2.1) and the collapse process (2.2,

2.3, 2.5). In the limit where λ is taken to zero, collapse never occurs and GRW0 becomes

Everettian quantum mechanics (a.k.a. the many-worlds interpretation or S0). All there

is is the wave function and it always evolves in accordance with the Schrödinger equation.

Defenders of Everettian quantum mechanics tend to view GRW0 as the right way to
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think about GRW theory since they think that our experiences of reality can emerge

from patterns in wave functions. For Everettians and others who prefer GRW0 to the

alternatives below, this paper can be read as a discussion of GRW0 in the strange regime

where it approaches Everettian quantum mechanics.

For some, GRW0 is unsatisfactory (e.g., Allori et al. , 2008, §4.3; Maudlin, 2010).

According to GRW0 there are no objects in familiar three-dimensional space, just a wave

function in an abstract space: a vector in Hilbert space, a complex-valued function on

configuration space, or some other exotic beast. In GRWm, the universe contains a wave

function which obeys the above dynamics, but that’s not all there is, and, in some sense,

that’s not the important stuff. In particular, it’s not the stuff we’re made off. In addition

to the wave function, there also exists a distribution of matter in three-dimensional space

specified by a density,

m(x, t) = ⟨Ψ(t)| M̂(x) |Ψ(t)⟩ . (2.6)

Here M̂(x) is the mass density operator defined by

M̂(x) =

N∑
i=1

mi δ
3(x̂i − x) . (2.7)

In the limit as λ goes to zero, there is no collapse and GRWm becomes Sm, Schrödinger

evolution with a mass density (discussed in Allori et al. , 2011). Sm is a many-worlds

theory much like Everettian quantum mechanics, but where the universe contains a

distribution of mass in three-dimensional space in addition to the unitarily evolving wave

function. Some think that GRW0 and S0 are unsatisfactory because such laws would

not give rise to creatures with conscious experiences like ours, perceiving an apparently

three-dimensional world. Readers who think GRW0 is unsatisfactory can understand

this paper as a discussion of GRWm in the awkward bit of parameter space where it

approaches Sm. In the following sections, I will not differentiate between GRW0 and

GRWm. Read GRW in whichever way you think makes it the stronger theory. Read

MWI as S0 if you’re reading GRW as GRW0, as Sm if you’re reading GRW as GRWm.

There is a third version of GRW, GRWf. Here one supplements the wave function

with a primitive ontology of flashes. Taking λ to be small in this version of the theory

raises entirely different concerns from those faced by GRW0 and GRWm. The problem

for GRWf when λ is small is not that human lives are constantly ending, but that such

life may be absent altogether. Understanding the empirical adequacy of GRWf in this

region of parameter space would require a very different kind of analysis and for that

reason GRWf will not be discussed in the remainder of the article. A brief discussion of

GRWf in this regime can be found in Feldmann & Tumulka (2012, §4).

3 Branches and Stumps

GRW was originally formulated with the rate of collapse λ ≈ 10−16s−1. With this

rate, when a measurement occurs the wave function just starts to branch into a

superposition of outcomes when, with very high probability, the wave function collapses
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to a single definite outcome.1 This is how GRW solves the measurement problem: a

definite outcome is guaranteed by the rapid collapse of the wave function and the fact

that probabilities for collapsing to different outcomes are given by the Born rule is a

non-trivial2 consequence of the collapse process (2.2, 2.3, 2.5). If the rate of collapse

is taken to zero, then collapses never occur and GRW becomes MWI. In MWI, every

possible outcome of a quantum measurement actually occurs.

What if λ is chosen so that it is not quite zero, but is very small (λ ≪ 10−16s−1,

keeping σ ≈ 10−7m3)? In this regime collapses occur, but only very rarely. When a

collapse occurs, the results are catastrophic. After a spin measurement, the laboratory

enters into a superposition of a world in which the scientists record an up result and

another in which they record down. Later, if any of the particles that compose the

scientists or the measurement readout collapse, one of the worlds will be destroyed.

Imagine 15 minutes pass between the moment when the measurement occurred and the

time when collapse chooses a world to eliminate.4 In this time, the scientists in both

worlds can walk, think, and talk. After collapse, only one world remains. When a

collapse like this occurs, all of the inhabitants of the other world are instantaneously

and painlessly killed. Or, maybe the collapse doesn’t cause the other world to go out of

existence, but instead the tail of the Gaussian distorts the world and alters its evolution

so that it is inhospitable to human life.5 In this case, death is quick but perhaps not

instantaneous. Either way, in this region of parameter space collapses are not helpful

shifts which prevent macroscopic superpositions from forming, they’re colossal natural

disasters.

The way the universe (a.k.a. multiverse) evolves in each of these three regions of

parameter space is depicted in figure 2. With λ at or near zero, worlds branch every time

a measurement occurs and each outcome happens on some branch. For standard values

of λ, branching is prevented by the collapse of the wave function and each measurement

has a definite outcome. For small values of λ branching occurs before collapse is able to

prevent it; collapse events occur after branching. Living in such a universe is extremely

dangerous as entire worlds are constantly being obliterated. If you are lucky enough to

find yourself living a long life, you should be shocked. Repeated improbable occurrences

often indicate failure of a theory. This is no exception. The data you receive from your

survival provides strong empirical evidence against the theory.

1There has been some debate over whether the destruction of other branches is successful; see the
literature on the problem of tails. Here I assume that the problem can be solved. If it cannot, GRW is
not a viable solution to the measurement problem. In particular, I will assume that if collapse chooses
one part of the state and massively shrinks the rest, it is not merely improbable to find oneself in a part
of the state that was not fortunate enough to be the center of the collapse, it is impossible. There is no
life in those other parts after collapse.

2For a recent version of the story, see Goldstein et al. (2012, §6.5).
3This ensures that, in general, a single collapse will be sufficient to destroy branches in which the

measurement turned out differently.
4This would be typical if we choose λ to be on the order of 10−33s−1 and assume that there are

about 1030 fundamental particles brought into an entangled superposition by the experiment (using
(2.2)).

5See the brief discussion in Allori et al. (2011, §4).
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Figure 2: Plot of GRW evolution for a sequence of three measurements for different
values of λ.

4 The Rarity of Longevity

To judge the empirical adequacy of a given theory, I will focus on the likelihood of the

evidence given the theory, P (E|T ). If, for some evidence E and theories T1 and T2,
P (E|T1) > P (E|T2), then the evidence E confirms T1 over T2. If one updates on E by

Bayesian conditionalization, then for any theory T , the credence assigned to T after

gaining the evidence can be expressed in terms of the prior probabilities as Ppost(T ) =

P (T |E).6 It follows from the fact that P (E|T1) > P (E|T2) that, if one changes their

credences in response to E by Bayesian updating, the ratio of one’s credence in T1 to

their credence in T2 will rise,

Ppost(T1)
Ppost(T2)

=
P (E|T1)
P (E|T2)

P (T1)
P (T2)

>
P (T1)
P (T2)

(4.1)

Theories that are empirically equivalent will assign the evidence equal probability and

the data that comes in will not discern between them.

The theories to be compared are: versions of GRW with different parameter values,

6Although I expect that this straightforward account of theory confirmation applies to the cases
under discussion, one might reasonably be concerned. The situations considered involve self-locating
uncertainty (see Sebens & Carroll, 2014) and Bayesian conditionalization must be somehow modified to
handle such cases (see Arntzenius, 2003). Some modifications will vindicate the use of conditionalization
here, others will not. To avoid controversy, I focus primarily on the probability of the evidence given
the theory and not the posterior probabilities that result from updating on the evidence.

6



e.g., GRWλ=10−16s−1 ; the many-worlds interpretation, MWI; and some unspecified

theory which gives the correct Born rule probabilities and guarantees survival, QM.7

The constraint that QM gives the Born rule probabilities is the constraint that: the

probability of seeing the outcome corresponding to eigenvalue Oi of the observable

operator Ô is given by

P (Oi|QM) = | ⟨Oi|Ψ⟩ |2 . (4.2)

Throughout I’ll assume that the agent knows whatever is useful to know about the

universal wave function, Ψ, including | ⟨Oi|Ψ⟩ |2 for all i. This allows us to focus on the

confirmation of alternate dynamical theories without worrying about how agents learn

about the universe’s wave function.

I will assume that MWI is capable of recovering the Born rule probabilities.8

Convenient Conjecture In MWI, after a measurement of the observable Ô has been

made and before outcome is observed, the probability one ought to assign to seeing

the outcome corresponding to eigenvalue Oi is given by P (Oi|MWI) = | ⟨Oi|Ψ⟩ |2.

This is a highly controversial assumption, so let me clarify the spirit in which I am

introducing it. In order to put empirical lower bounds on λ we need to consider cases

where GRW becomes more and more like MWI. If we don’t have quantitative predictions

from MWI, it will not be possible to quantify the success of GRW in these bits of

parameter space. Later I’ll discuss how things change when the conjecture is removed

(§5).
In the notation used here, GRWλ=0 is MWI. So, when a measurement is made,

P (Oi|MWI) = P (Oi|GRWλ=0). Thus if we are assuming that the Convenient

Conjecture is true and thereby that MWI is empirically adequate, it follows that

GRWλ=0 is empirically adequate as well.

The question, then, is for what values of λ is GRW approximately empirically

equivalent to QM and when do the predictions of GRW and QM diverge? If the

predictions diverge significantly, GRW becomes empirically inadequate—the data we

actually have fits the predictions of QM. Let’s assume for the remainder of this section

that the rate of collapse λ is sufficiently small that whenever a measurement occurs we

can expect there to be copies of the experimenter who record each outcome. From the

Convenient Conjecture and the fact that the dynamics are the same in GRW and

MWI before collapse, it is reasonable to suppose that for these small values of λ the

probability of seeing each result is given by

P (Oi|GRWλ) = | ⟨Oi|Ψ⟩ |2 . (4.3)

But, the observed experimental outcome is not the only data one has to update on.

The experimenter should also take into account the fact that she has survived for a

7What wonderful theory succeeds in recovering the Born rule, as is demanded of the theory I’ve called
“QM”? This will be a matter of disagreement. Let QM stand in for your favorite theory, whichever you
think recovers the right probabilities, be it MWI, GRWλ=10−16s−1 , Bohmian mechanics, or something
else.

8For an extended defense of this conjecture, see Wallace (2012). See also Carroll & Sebens (2014);
Sebens & Carroll (2014).
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time ∆t beyond the moment when the measurement was performed. The probability

for surviving to ∆t can be calculated as

P (∆t|GRWλ&Oi) = 1− P (fatal collapse by ∆t|GRWλ&Oi)

= 1− P (death|collapse by ∆t&GRWλ&Oi)× P (collapse by ∆t|GRWλ&Oi) .

(4.4)

The probability of a collapse occurring by ∆t can be approximated using (2.2) along

with the simplifying assumption that there are NS particles whose collapse would cause

a jump to a single outcome: P (collapse by ∆t|GRWλ&Oi) = 1 − e−NSλ∆t.9 The

probability of dying in the event of such a collapse is just the probability that the collapse

is centered around some branch other than one’s own: 1− | ⟨Oi|Ψ⟩ |2.10 Inserting these

two expressions into (4.4) yields

P (∆t|GRWλ&Oi) = | ⟨Oi|Ψ⟩ |2 + e−NSλ∆t − | ⟨Oi|Ψ⟩ |2e−NSλ∆t . (4.5)

The probability of the total evidence can be assessed by combining (4.3) and (4.5),

P (Oi&∆t|GRWλ) = P (∆t|GRWλ&Oi)× P (Oi|GRWλ)

=
(
| ⟨Oi|Ψ⟩ |2 + e−NSλ∆t − | ⟨Oi|Ψ⟩ |2e−NSλ∆t

)
| ⟨Oi|Ψ⟩ |2 . (4.6)

We can better understand this formula by considering a simple case. Imagine λ ≈
10−33s−1 and NS ≈ 1030 so that the experimenter can expect to have approximately 15

minutes between measurement and collapse (as in footnote 4). In this time, she can form

expectations about what will happen and look around. Suppose she sees an outcome,

OA, with low Born rule probability, | ⟨OA|Ψ⟩ |2 = 1
10 . She should be somewhat surprised

and also afraid. Now she knows that she only has a one in ten chance of survival. If she

makes it through the day, she should be surprised again. The probability assigned to

the total evidence (surviving and seeing that outcome) is 1
10 × 1

10 = 1
100 , which follows

from (4.6) with ∆t ≫ 1
NSλ .

11

If λ is so small that no collapses are expected to occur within any reasonable

length of time ∆t and the Convenient Conjecture holds, the predictions of GRWλ

approximately match those of QM. However, as has been noted (Feldmann & Tumulka,

2012, §4), there would be little motivation for such a theory. It would be simpler to

9More realistically, NS would increase as a function of time.
10This is an optimistic estimate. In fact there will usually be many worlds corresponding to each

outcome and thus even when a collapse is centered on the right outcome Oi, one’s world might be
destroyed.

11What if instead she learns that she’s survived before she observes the outcome? Assume for
simplicity that there are just two possible outcomes, OA and OB . In this case her survival should
not be much of a surprise, the probability is 82%. The probability of OA is 10% and the chance of
survival given OA is 10%. The probability of the other outcome, OB , is 90% and the chance of survival
given OB is 90%. Thus the total chance of survival is 1

10
× 1

10
+ 9

10
× 9

10
= 82

100
. The probability she

should assign to OA given that she survived can be calculated by Bayes’ theorem as the probability of
survival conditional on OA, 1

10
, times the probability of OA, 1

10
, divided by the probability of survival,

82
100

. This yields 1
82

. The probability assigned to her total evidence is the probability of surviving times

the probability of seeing OA upon surviving, 82
100

× 1
82

= 1
100

.
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just set λ to zero and remove the collapses all together, yielding MWI. As λ grows it

becomes more likely that a collapse will have occurred within ∆t and the disagreement

between GRWλ and QM gets worse. QM predicts that you will be alive whereas GRWλ

assigns a certain probability to your death. For fixed λ, the larger ∆t is the larger the

disagreement between QM and GRWλ. However, once λ is sufficiently large the crucial

assumption that branching precedes collapse becomes invalid. In the next section I’ll

consider cases in which branching is prevented by collapse.

The fact that one’s own continued survival is used as evidence for assessing theories

is undeniably odd. Experimenters don’t typically keep track of the time elapsed since

the experiment was performed. But, epistemologists have contemplated cases much like

this where survival is relevant data. Consider the following much-discussed example

(Leslie, 1989; Swinburne, 1990):

Firing Squad Suppose that a dozen well-trained shooters are ordered to execute you

by firing 12 shots each. While blindfolded you hear 144 shots ring out but you

survive unscathed.

In such a scenario, your own survival provides evidence that the shooters intentionally

let you live over the alternative hypothesis that you got lucky because each of the 144

shots missed its intended target.

The situation here is similar to Firing Squad. The hypothesis that the squad

intentionally misses is like the hypothesis that QM is true and there are no cataclysmic

collapse events. The hypothesis that the shooters were attempting to kill you is like the

hypothesis that GRWλ is true for some troublesome small-but-not-too-small choice of λ

where worlds are constantly snuffed out quickly and without warning. However, there

is an important difference: In Firing Squad, the target will either survive or be killed.

In GRWλ with troublesome λ, there will be many versions of the experimenter that are

killed and always at least one that survives. A closer non-quantum analogy is:

Prison Poisoning On New Year’s Day you wake up in a nondescript prison cell, #27.

A coin was flipped. On New Year’s Eve, you were blindfolded and shipped either

to Alcatraz, if heads, or Arkham, if tails. Each prison contains 100 numbered cells

and you were randomly assigned to #27.12 While you slept in your cell the ball

dropped and the new year began with a randomly chosen 99 of the 100 cells in

Arkham being filled with deadly poison gas. Those in Alcatraz were safe. You

knew the plan all along.

In this case, you should initially think it equally likely that you ended up in either prison.

After surviving the night you should come to believe that you were probably shipped

to Alcatraz since being shipped to Arkham would have likely resulted in your death.

It was guaranteed that one of the prisoners in Arkham would survive, but it was not

likely to be the one in cell #27. Alcatraz is like MWI and Arkham is like GRW with

troublesome λ.13 The cells represent 100 possible results of a measurement and the gas

12For the closest analogy, imagine that each cell of the prison is occupied by a copy of you that
resulted from a 1-to-100 fission midday on New Year’s Eve.

13For an analogue of GRW with a normal collapse rate, consider a prison with a single cell, randomly
numbered and free of poison. In this case, the fission in footnote 12 should not be supposed.
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plays the role of collapse.14

Those who are attracted to the idea of quantum immortality may object to the

conclusions reached in this section. Consider a dangerous branching event from the

perspective of the many-worlds interpretation (a “quantum suicide” scenario). Suppose

you survive on one branch and die immediately, or quickly, on all others. It is tempting to

think you should expect survival with certainty. As Lewis (2004) put it, “The experience

of being dead should never be expected to any degree at all, because there is no such

experience.” If death is indeed immediate on all branches but one, the thought has some

plausibility. But if there is any delay, it should be rejected. In such a case, there is a

short period of time when there are multiple copies of you, each (effectively) causally

isolated from the others and able to assign a credence to being the one who will live.

Only one will survive. Surely rationality does not compel you to be maximally optimistic

in such a scenario.15 The situation in GRW with a troublesome collapse rate is just like

the delayed-death version of the above quantum suicide scenario and, as in that case,

survival should not receive probability one. If the collapse rate is raised so that the

agent never splits into multiple copies, there is no danger of death and survival can be

expected with certainty.

5 Averting Branching

If collapse occurs sufficiently soon after a measurement, branching can be averted. As

the other branches of the universe where the outcome was different are just beginning to

form, the collapse event occurs, ensuring that the macroscopic readout gives a definite

result and the experimenter sees a single outcome. The simplest way to implement this

feature of the theory is by imposing a cutoff characterizing the amount of time that

passes before branching occurs if there is no collapse. If a collapse happens within τ ,

branching is averted and a single outcome occurs. If collapse does not occur until after

τ , then there is a branching of worlds before the collapse, as in the previous section. Let

C<τ indicate that collapse occurs before the cutoff, C>τ indicate after. Including both

of these possibilities, the probability of the data given the theory can be expressed as

P (Oi&∆t|GRWλ) =

¬︷ ︸︸ ︷
P (Oi&∆t|GRWλ&C>τ )×

­︷ ︸︸ ︷
P (C>τ |GRWλ)

+ P (Oi&∆t|GRWλ&C<τ )︸ ︷︷ ︸
®

×P (C<τ |GRWλ)︸ ︷︷ ︸
¯

. (5.1)

The first piece, ¬, is just as in (4.6) where it was assumed that branching preceded

collapse. The fourth piece, ¯, is the probability that a collapse happens by τ . This

14Cases like Prison Poisoning and Firing Squad have a curious feature: one hypothesis cannot
be confirmed by the subject in the scenario. If the poison acts instantly, no course of experience
would support the Arkham hypothesis over Alcatraz. Similarly, if collapse kills instantly there are no
experiences one could have that would provide evidence for GRW with troublesome λ over QM (if the
Convenient Conjecture holds).

15The situation here is like that of the prisoner in Arkham if the period between the splitting event
(see footnote 12) and the deaths were made much shorter.
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follows directly from (2.2), ¯ = 1− e−NSλτ . The second piece is simply the probability

that a collapse does not occur, ­ = 1−¯. The third piece, ®, is the probability that a

given outcome resulted from the GRW collapse process in a case where branching does

not occur. Here we have GRW working as intended and the probability should be in

approximate agreement with the Born rule provided λ is not so large as to push us into

the empirically refuted region of parameter space (figure 1), ® ≈ | ⟨Oi|Ψ⟩ |2. Inserting

these expressions in (5.1) and rearranging gives,

P (Oi&∆t|GRWλ) = | ⟨Oi|Ψ⟩ |2 −
(
1− | ⟨Oi|Ψ⟩ |2

)(
1− e−NSλ∆t

)
| ⟨Oi|Ψ⟩ |2e−NSλτ ,

(5.2)

which limits to the Born rule probabilities as λ goes to zero or infinity.16 (5.2) is not

valid if λ is large enough that the probabilities in ® deviate significantly from those

given by the Born rule. It cannot be extended in a simple and general manner as the

way in which ® deviates from | ⟨Oi|Ψ⟩ |2 will be depend on the particular experiment

under consideration.

To recap: If λ is so extremely small that you should not expect (relevant) collapses

to have occurred in your lifetime (figure 2.a), then GRWλ is empirically adequate if the

Convenient Conjecture holds. If λ is large enough that collapses must be considered

but small enough that branching typically precedes collapse (figure 2.c), then early death

is the norm and one’s continued survival provides strong evidence against the theory. If

λ is increased to around the initially proposed value of 10−16s−1 (figure 2.b), the theory

may again be empirically adequate as branching is prevented by collapse and the collapse

process ensures that the probabilities of various outcomes are given by the Born rule. If λ

is increased even further, so that λ > 10−8, the theory is again empirically inadequate as

collapses occur too frequently. Superpositions are destroyed mid-experiment and other

maladies ensue (see Feldmann & Tumulka, 2012; Bassi et al. , 2013).

What happens if the Convenient Conjecture is false and MWI gives different

probabilities from QM? Then, GRWλ=0 is empirically inadequate as GRWλ=0 is MWI.

This failure also rules out GRWλ for very small λ where collapses can be neglected.

For larger values of λ where collapse is rare but non-negligible, there are now two ways

in which the theory fails: the probabilities of the various outcomes are incorrect and

there is, in general, some probability that one would not have survived to ∆t. For still

larger values of λ that successfully avert branching, the theory again has a chance of

being empirically adequate since the probabilities of outcomes are now determined by

the collapse process and the MWI probabilities are irrelevant.

16In this simplified story, the probability of surviving to ∆t and seeing a certain outcome Oi

depends dramatically and discontinuously on whether collapse happens before or after branching. The
expressions for ¬ and ® are quite different. A more careful analysis would ideally give a smooth
transition, but this would require wading into the murky territory of collapses that occur during
branching (as branching is gradual not instantaneous) and settling questions of personal identity there
(in particular, when exactly personal fission occurs and whether it can, in any relevant sense, partially
occur). It might be seen either as intriguing or disconcerting that we must answer questions of personal
identity to put precise lower bounds on λ.
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6 The Race: Decoherence vs. Collapse

For GRW to be tenable, there must be values of λ for which the theory is empirically

adequate. On the one hand, λmust be large enough that collapse practically never occurs

after the experimenter has branched into multiple copies. Otherwise, one’s continued

survival empirically refutes GRWλ, (5.2). On the other hand, λ must be small enough

that collapses do not spoil the results of experiments that have been performed. That

is, λ must lie below the experimentally refuted region of figure 1. But, are there any

values in this range? To answer this, we need to determine whether decoherence-induced

branching tends to occur before or after collapse.

We know that for values of λ near the originally suggested value, 10−16s−1, the

experiment readout and the experimenter are in a well-defined state corresponding to

a single outcome very soon after the measurement occurs. But, what is not clear is

which of two possibilities occurred immediately after the measurement (figure 3): (a)

the world briefly branched and then a collapse event destroyed some of the copies of the

experimenter, or (b) there was never a branching event because collapse prevented the

microscopic superposition from causing the experimenter to enter into a superposition.

Figure 3: Two potential close-ups of figure 2.b.

A proper analysis is warranted, but beyond the scope of this paper. Here is

a very rough calculation of how quickly collapse would have to occur to prevent

decoherence-induced branching: Decoherence is fast. A slow estimate might be 10−23s

for 1 gram of matter at room temperature in a superposition of two locations separated

by one centimeter (Zurek, 2003). To ensure a 95% probability of collapse by 10−23s, λ

would have to be at least 3 s−1 (from (2.2), assuming the number of particles is on the

scale of moles, N = 1023). But, experiments restrict λ to being at most 10−8s−1 (figure

1). This calculation suggests trouble. There may not be a safe region of parameter

space.

Let me highlight two of the most pernicious simplifications in this rough calculation:

First, it is assumed that the bit of matter starts in a superposition. In actuality, it
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would take time for the matter to enter a superposition and a collapse event could occur

in this interval, preventing the macroscopic superposition from forming. Second, when

decoherence occurs in this scenario one may doubt whether there is a branching of worlds

and in particular whether the experimenter branches. In GRW0, it’s tempting to say

there that the experimenter has branched as there are now two well-separated parts

of the wave function that will never again interact (non-negligibly), even if no future

collapses occur. In GRWm, it is easier to resist this conclusion as the mass-density of

the experimenter may be unaffected by the decoherence of this macroscopic object.

I’ll close by summarizing the key lessons of the analysis. First, to determine precise

experimental bounds on the parameters λ and σ in GRW, we must determine the

probabilities assigned to different outcomes in MWI (§4). This provides additional

motivation for that ongoing research program. Second, even if the Convenient

Conjecture holds and MWI is empirically adequate, some of the philosophically

unsatisfactory region of parameter space is also empirically refuted (§3, 4, & 5).

Surprisingly, it is not refuted by the outcomes we observe, but by the fact that we

live long enough to observe so many of them. Third, it is not clear how to draw a

principled border for the philosophically unsatisfactory region if our dissatisfaction is

purely “philosophical” (§1). But, with the realization that small values of the collapse

rate λ are empirically refuted, we now have a method to begin drawing principled lower

bounds on λ: determine whether the experimenter branches before or after collapse

(§5 & 6). Simple calculations suggest that the lower bound generated from empirical

considerations will be stronger than the bound generated from a distaste for long lasting

macroscopic superpositions, perhaps strong enough to rule out GRW entirely (§6). This
merits further study.
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