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Abstract

We introduce BPDL, a combination of propositional dynamic logic PDL with the
basic four-valued modal logic BK studied by Odintsov and Wansing (‘Modal logics
with Belnapian truth values’, J. Appl. Non-Class. Log. 20, 279–301 (2010)). We
modify the standard arguments based on canonical models and filtration to suit the
four-valued context and prove weak completeness and decidability of BPDL.
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1 Introduction
Propositional dynamic logic PDL is a well-known logical framework that allows
to express properties of regular programs and formalises reasoning about these
properties [8,15]. The framework sees programs as state transitions, or binary
relations on states, where states of the computer are viewed as complete and
consistent possible worlds. A more general notion of computer state has been
put forward by Belnap and Dunn [3,2,6]. In a possible world, every formula
is either true or false. In a Belnap–Dunn state, formulas can be (only) true,
(only) false, both true and false, or neither true nor false. Informally, Belnap–
Dunn states are seen as bodies of information about some domain and the
four truth values correspond to presence or absence of information about the
domain. More precisely, the four possible truth values of a formula � express
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four possible answers to the query ‘What is the available information about
�?’, namely:

• there is information that � is true and no information that � is false (‘true’);

• there is information that � is false and no information that � is true (‘false’);

• there is information that � is true but also information that � is false (‘both’);

• there is no information about � (‘neither’).

Belnap and Dunn stress the importance of this generalisation to computer sci-
ence, pointing mainly to databases as a potential area of application. Later
work on bilattices, a generalisation of the Belnap–Dunn notion of state,
has confirmed their assessment and extended the applications to other areas
[12,11,1,9,10].

Putting things together, a version of PDL using Belnap–Dunn states would
formalise reasoning about regular programs that modify (possibly incomplete
and inconsistent) database-like structures. Such structures abound and a log-
ical formalisation of reasoning about their algorithmic transformations could
be of vital importance to AI and related areas. In addition to practical appli-
cations, theoretical questions pertaining to the properties of such generalised
versions of PDL are interesting in their own right. However, Belnap–Dunn
versions of PDL are yet to be investigated.

This article fills the gap. We discuss BPDL, a logic that adds program
modalities to Odintsov and Wansing’s [16] basic modal logic with Belnapian
truth values BK (see also [17,18]). Our main technical results concerning
BPDL (introduced in Section 3 of the article) are a decidability proof using a
variation of the standard argument based on filtration (Section 4) and a sound
and weakly complete axiomatisation (Section 5). We assume familiarity with
PDL, but a short overview of BK is provided in Section 2.

We note that there are other well-known four-valued modal logics, but there
are reasons to favour BK when it comes to combinations with PDL. Priest’s
basic modal First-Degree-Entailment KFDE [19] lacks a sensible implication
connective (e.g., Modus ponens fails), which is a problem given the importance
of implication in stating properties of programs such as partial correctness.
Goble’s KN4 [13] corresponds to a fragment of BK. The framework of Riv-
ieccio, Jung and Jansana [20] is more complicated than BK in that it treats
the modal accessibility relation itself as many-valued. As a result, for instance,
the familiar ‘K axiom’ 2(� !  ) ! (2� ! 2 ) is not valid. This is prob-
lematic from the viewpoint of PDL which is a normal modal logic. (However,
a non-normal version of PDL built on this framework might still be interest-
ing to look at in the future.) Another approach is to add to PDL a modal
DeMorgan negation in the style of [7]. However, the modal negation in this
framework does not fit in with implication as nicely as the negation in BK (for
instance, ⇠(� !  ) does not entail �, where ‘⇠’ is the DeMorgan negation).
Nevertheless, this approach is pursued by the present author in [21].
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The general idea of providing many-valued versions of PDL is not new.
Teheux [22] formulates PDL over finitely-valued  Lukasiewicz logics to model
the Rényi–Ulam searching game with errors. However, the non-modal frag-
ments of his logics are non-classical, as opposed to BK which can be seen as
an extension of the classically-based logic K with a strong negation. Běhounek
[4,5] suggests that PDL with fuzzy accessibility relations is suitable for rea-
soning about costs of program executions, but the states in his models remain
classical.

2 Modal logic with Belnapian truth values
This section provides background on BK and motivates our extension of the
logic with program modalities. The language Lmod consists of AF , a countable
set of atomic formulas, a nullary connective ?, unary connectives ⇠,2,3 and
binary connectives ^,_,!. ¬� is defined as � ! ?, > is defined as ¬? and
�$  is defined as (�!  ) ^ ( ! �). Fmod is the set of formulas of Lmod.

Definition 2.1 [16, 285–286] An Odintsov–Wansing model is a tuple M =
hS,R, V +, V �i where S 6= ;, R ✓ (S ⇥ S) and V � : AF 7! 2S , � = {+,�}.
Every M induces a pair of relations |=+

M , |=�
M ✓ (S ⇥ Fmod) such that (we

usually drop the subscript ‘M ’):

(i) x |=+ p i↵ x 2 V +(p); x |=� p i↵ x 2 V �(p)

(ii) x |=+ ? for no x; x |=� ? for all x

(iii) x |=+ ⇠� i↵ x |=� �; x |=� ⇠� i↵ x |=+ �

(iv) x |=+ � ^  i↵ x |=+ � and x |=+  ; x |=� � ^  i↵ x |=� � or x |=�  

(v) x |=+ � _  i↵ x |=+ � or x |=+  ; x |=� � _  i↵ x |=� � and x |=�  

(vi) x |=+ �!  i↵ x 6|=+ � or x |=+  ; x |=� �!  i↵ x |=+ � and x |=�  

(vii) x |=+ 2� i↵ for all y, if Rxy, then y |=+ �
x |=� 2� i↵ there is y such that Rxy and y |=� �

(viii) x |=+ 3� i↵ there is y such that Rxy and y |=+ �
x |=� 3� i↵ for all y, if Rxy, then y |=� �

|�|+M = {x | x |=+
M �} and |�|�M = {x | x |=�

M �}. Entailment in the resulting
logic, BK, is defined as |=+-preservation in every state of every model (X |=BK

� i↵, for all M ,
T

 2X | |+M ✓ |�|+M ). Validity is defined as usual (� is valid in
BK i↵ ; |=BK �).

States x 2 S can be seen as database-like bodies of information. The fact
that x |=+ � can then be read as ‘x provides information that � is true’ (or
‘x supports �’, ‘x verifies �’) and x |=� � as ‘x provides information that � is
false’ (‘x falsifies �’). Consequently, |�|+ is seen as the set of states in which � is
true (the truth set of �) and |�|� as the set of states in which � is false (falsity
set). Entailment then boils down to the usual notion of truth-preservation.
The distinguishing feature of the Belnap–Dunn picture is that some bodies of
information xmay support conflicting information about some � (if x |=+ � and
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x |=� �) and some bodies of information x may not provide any information
about some � at all (if x 6|=+ � and x 6|=� �). In other words, |�|+ and |�|�
may have a non-empty intersection and their union is not necessarily identical
to S.

The two negations ‘⇠’ and ‘¬’ can be explained as follows. The formula
⇠� may be read as ‘� is false’ (as x |=+ ⇠� i↵ x |=� �). On the other hand,
the formula ¬� is read as ‘� is not true’ (note that x |=+ � ! ? i↵ x 6|=+ �).
In general, neither ⇠� ! ¬� nor ¬� ! ⇠� are valid. In other words, the
present framework treats ‘false’ and ‘not true’ as two independent notions.
The presence of ‘⇠’ and ‘¬’ in our language allows to express the four possible
Belnapian truth values of a formula �:

• � ^ ¬⇠� (� is only true, i.e., true and not false);

• ¬� ^ ⇠� (� is only false, i.e., not true and false);

• � ^ ⇠� (� is both true and false);

• ¬� ^ ¬⇠� (� is neither true nor false).

Theorem 2.2 The following axiom system, H(BK), is a sound and strongly
complete axiomatisation of BK:

(i) Axioms of classical propositional logic in the language {AF,?,!,^,_}
and Modus ponens;

(ii) Strong negation axioms:

⇠⇠�$ �,

⇠(� ^  ) $ (⇠� _ ⇠ ),
⇠(� _  ) $ (⇠� ^ ⇠ ),
⇠(�!  ) $ (� ^ ⇠ ),

> $ ⇠?;

(iii) The K axiom 2(�!  ) ! (2�! 2 ) and the Necessitation rule �/2�;

(iv) Modal interaction principles:

¬2�$ 3¬�,
¬3�$ 2¬�,
⇠2�$ 3⇠�,
2�$ ⇠3⇠�,

⇠3�$ 2⇠�,
3�$ ⇠2⇠�.

Proof. See [16]. 2

The logic BK enjoys the deduction theorem in the sense that � |=  i↵
|= � !  . 2 An interesting feature of BK is that the set of valid formulas is

2 Proof: 6|= � !  i↵, for some x, x 6|=+ � !  i↵, for some x, x |=+ � and x 6|=+  i↵
� 6|=  .
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not closed under the Replacement rule � $  /�(�) $ �( ). 3 However, it is
closed under the Positive replacement rule � $  /�(�) $ �( ) for ⇠-free �
and the Weak replacement rule (�$  )^ (⇠�$ ⇠ )/�(�) $ �( ). (See [16]
for details.) Schemas (� ^ ⇠�) ! ? and � _ ⇠� are not valid (but, of course,
(� ^ ¬�) ! ? and � _ ¬� both are).

Languages interpreted over bilattices often contain two additional binary
connectives ‘⌦’ and ‘�’. Their meaning can be outlined by the following
example using the reading of the four Belnapian truth values as subsets of
the set of ‘classical’ values {true, false}. If � is only true and  is only false
(the value of � is {true} and the value of  is {false}), then � ⌦  is nei-
ther true nor false ({true} \ {false} = ;) whereas ��  is both true and false
({true}[{false} = {true, false}). 4 Odintsov and Wansing [16] do not use these
connectives in the modal setting and, for the sake of simplicity, we omit them
as well. We note, however, that there is no technical obstacle in introducing
them to the framework and, speaking in terms of informal interpretation, they
fit in nicely also to our combination of BK with PDL.

Let us now return to the informal interpretation of BK. If states in the
model are seen as database-like bodies of information, then the accessibility
relation can be construed as any binary relation between such bodies of infor-
mation. Interpretations related to transformations of such bodies (adding or
removing information, for example) are a natural choice. For instance, with
a set of available transformations in mind, we may read Rxy as ‘y is the re-
sult of transforming x in some available way’. 3� then means that there is
an available transformation of the present body of information that leads to
� being supported and 2� means that all available transformations lead to �
being supported. Hence, BK can be seen as a general formalism for reasoning
about such transformations.

This reading of R invites us to generalise the framework to a multi-modal
setting. We may want to distinguish between di↵erent types of transformation
and so we may need Ri for each type i instead of a single relation R. The
corresponding formulas of a multi-modal extension of Lmod, 2i� (3i�), would
then express that � is supported after every (some) transformation of type i.
With a number of basic types at hand, the natural next step is to introduce
complex transformations consisting of transformations of the basic types. This
brings us to extending BK with program operators provided by PDL, i.e.,
choice, composition, iteration and test. Additional motivation for considering
a combination of PDL with BK is given by the following examples.

3 Note, for example, that ⇠(� !  ) $ (� ^ ⇠ ) is valid by the completeness theorem but
⇠⇠(�!  ) $ ⇠(� ^ ⇠ ) is not. The latter is provably equivalent to (�!  ) $ (⇠� _  ).
Now consider a model where x 6|=+ p, x 6|=� p and x 6|=+ q. Then x |=+ p ! q but
x 6|=+ ⇠p _ q. By the deduction theorem, (p ! q) ! (⇠p _ q) is not valid. It is easily shown
that the converse implication is not valid either.
4 Closer to the present setting, �⌦  is taken to be verified (falsified) i↵ both � and  are
verified (falsified); and �� is verified (falsified) i↵ at least one of �, is verified (falsified).
(Hence, for example, extending BK with these connectives would result in (�⌦ ) $ (�^ )
and (⇠�⌦⇠ ) $ (⇠� ^ ⇠ ) being both valid, and similarly for � and _.)
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Example 2.3 If Belnap–Dunn states are seen as bodies of information, then
state transitions (programs) may be seen as general inference rules. Formulas
of the combined language may express the nature and properties of these rules.
Introducing a Belnapian negation ⇠ into the language of PDL opens the pos-
sibility of expressing inferences beyond the scope of classical logic. Take, for
example, default rules of the form

 : �

�
(1)

read ‘If  is true and there is no information that � is false, then infer that �
is true’. Such a default rule may be expressed by

( ^ ¬⇠�) ! [↵]�, (2)

a formula that reads ‘If  is true and � is not false, then every terminating
execution of ↵ leads to a state where � true’. If (2) holds in a state, then
executing the program ↵ in the state is equivalent to using (1) in the state.
Hence, (1) and ↵ are ‘locally equivalent’ in the given state. Moreover, if

[�⇤] (( ^ ¬⇠�) ! [↵]�)

holds in a state, then (1) and ↵ are ‘�-equivalent’, or locally equivalent in every
state reachable by a finite iteration of �.

Formulas of the form (2) may even be seen as defining ↵ to be a counterpart
of a specific default rule. On this view, it is natural to focus only on models
where (2) holds in every state (is valid). This motivates a notion of global
consequence to be introduced below.

Example 2.4 A special case of (1) is the closed-world assumption rule

> : ¬�
⇠� , (3)

inferring that � is false from the assumption that � is not known to be true.
Applications of (3) correspond to executions of ↵ in states where it is the case
that

¬�! [↵]⇠�
Example 2.5 More generally, state transitions (programs) on Belnap–Dunn
states may be seen as arbitrary modifications of states. Program ↵1 is locally
equivalent to ‘marking � as true’ and ↵2 to ‘marking  as false’ if

[↵1]� ^ [↵2]⇠ 

holds in the given state and similarly for �-equivalence. More interestingly, the
formula

(� ^ ⇠�) ^ h↵⇤i¬(� ^ ⇠�)
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says that there is inconsistent information about � in the present state, but the
inconsistency is removed after some finite number of executions of ↵. In other
words, ↵ is a �-inconsistency-removing modification.

Again, we may see the above formulas as defining the respective programs
to be counterparts of specific modifications of states.

3 BPDL
The language Ldyn is a variant of the language of PDL, containing two kinds
of expressions, namely, programs P and formulas F :

P ↵ ::= a | ↵;↵ | ↵ [ ↵ | ↵⇤ | �?
F � ::= p | ? | ⇠� | � ^ � | � _ � | �! � | [↵]� | h↵i�

(a 2 AP , a countable set of atomic programs, and p 2 AF ) ¬�, > and � $  
are defined as in Lmod.

Definition 3.1 A standard dynamic Odintsov–Wansing model is a tuple M =
hS,R, V +, V �i, where S, V + and V � are as in Odintsov–Wansing models. |=+

M
and |=�

M are defined as before for {AF,?,⇠,^,_,!}. R is a function from
P to binary relations on S such that R(↵;�) (R(↵ [ �)) is the composition
(union) of R(↵) and R(�); R(↵⇤) is the reflexive transitive closure R(↵)⇤ of
R(↵); and R(�?) is the identity relation on |�|+. Moreover (R↵ is short for
R(↵)):

(i) x |=+ [↵]� i↵ for all y, if R↵xy, then y |=+ �

(ii) x |=� [↵]� i↵ there is y such that R↵xy and y |=� �

(iii) x |=+ h↵i� i↵ there is y such that R↵xy and y |=+ �

(iv) x |=� h↵i� i↵ for all y, if R↵xy, then y |=� �

Entailment in BPDL is defined as |=+-preservation in every state of every
standard dynamic Odintsov–Wansing model. Validity in M and (logical) va-
lidity |= � are defined as usual. (M |= � i↵ x |=+

M � for all states x 2 S of
M; |= � i↵M |= � for every standard dynamic Odintsov–Wansing model M.)
In addition to ‘local’ entailment, we define the global consequence relation as
follows: X |=g � i↵, for all M, if every  2 X is valid in M, then so is �.

A non-standard dynamic Odintsov–Wansing model is defined exactly as a
standard model, with one exception: R(↵⇤) is required to be a superset of
R(↵)⇤ (the converse inclusion is not assumed) such that

|[↵⇤]�|+ = |� ^ [↵][↵⇤]�|+ (4)

|[↵⇤]�|+ ◆ |� ^ [↵⇤](�! [↵]�)|+ (5)

and

|h↵⇤i�|+ = |� _ h↵ih↵⇤i�|+ (6)

|h↵⇤i�|+ ✓ |� _ h↵⇤i(¬� ^ h↵i�)|+ (7)
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In dynamic Odintsov–Wansing models, �? tests whether � is true. Hence,
test �? executes successfully in two cases: if � is only true and if � is both true
and false. However, if a more precise assessment of � is needed, one can use
(� ^ ¬⇠�)? and (� ^ ⇠�)?.
Lemma 3.2 All the H(BK) axiom schemata of Theorem 2.2, with all 2 re-
placed by [↵] and all 3 replaced by h↵i, are valid in BPDL. Moreover, the
set of formulas valid in any (standard or non-standard) model is closed under
Modus ponens and the Necessitation rule �/[↵]�.

Lemma 3.3 The following schemata are valid in every (standard or non-
standard) model:

(i) [↵ [ �]�$ ([↵]� ^ [�]�) and h↵ [ �i�$ (h↵i� _ h�i�)
(ii) [↵;�]�$ [↵][�]� and h↵;�i�$ h↵ih�i�
(iii) [ ?]�$ ( ! �) and h ?i�$ ( ^ �)
(iv) [↵⇤]�$ (� ^ [↵][↵⇤]�) and h↵⇤i�$ (� _ h↵ih↵⇤i�)
(v) (� ^ [↵⇤](�! [↵]�)) ! [↵⇤]� and h↵⇤i�! (� _ h↵⇤i(¬� ^ h↵i�))
Proof. The proofs are virtually identical to arguments used in the context of
standard PDL [15]. As an example, we show that [↵⇤]� ! (� ^ [↵][↵⇤]�) is
valid. The validity of [↵⇤]� ! � follows from the fact that R(↵⇤) is reflexive.
Now if x 6|=+ [↵][↵⇤]�, then there are y, z such that R(↵)xy, R(↵⇤)yz and
z 6|=+ �. But obviously R(↵⇤)xz, so x 6|=+ [↵⇤]�. 2

It is plain that compactness fails for BPDL for the same reason as for PDL
[15, 181]. Every finite subset of

M = {h↵⇤i�} [ {¬�} [ {¬h↵ni� | n 2 !}

is satisfiable, but M itself is not (↵n = ↵; . . . ;↵
| {z }

n times

).

Examples 2.3 – 2.5 suggest that some Ldyn-formulas can be seen as defini-
tions of specific features of programs (↵ represents a default rule, ↵ removes
inconsistency in the information about a specific formula, etc.). Global conse-
quence is a natural notion here. If X is a set of such definitions, then X |=g �
i↵ � is valid in every model that respects the definitions ‘globally’. In other
words, � is a consequence of the assumption that the definitions in X are sat-
isfied in every possible state. Similarly as in the case of PDL (see [15, 209],
global consequence for finite X corresponds to validity of specific formulas.

Proposition 3.4 Let {a1, . . . , an} be the set of all atomic programs appearing
in some formula in (finite) X or in �. Then

X |=g � () |= [(a1 [ . . . [ an)
⇤]
^

X ! �

Proof. The right-to-left implication is trivial. The converse implication is
established as follows. If [(a1[. . .[an)⇤]

V

X ! � is not valid (the antecedent of
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this implication is abbreviated asX⇤), then there is a state x of a modelM such
that x |=+ X⇤^¬�. DefineMx by setting Sx = {y | hx, yi 2 R((a1[. . .[an)⇤)}
and taking Rx, V +

x and V �
x to be restrictions of the original R, V +, V � to Sx.

It is plain that
V

X is valid in Mx, but � is not (the key fact, easily established
by induction on the complexity of ↵, is that if every atomic program appearing
in ↵ is in {a1 [ . . . [ an}, then R(↵)zz0 only if Rx(↵)zz0, for all z, z0 2 Sx).
Hence, X 6|=g �. 2

4 Decidability
In this section we establish decidability of the satisfiability problem of Ldyn

formulas in (standard and non-standard) dynamic Odintsov–Wansing models.
We modify the standard technique using filtration trough the Fischer–Ladner
closure of a formula. Our definition of the Fisher–Ladner closure is a simplified
version of the definition used in [15].

Definition 4.1 The Fisher-Ladner closure of �, FL(�), is the smallest set of
formulas such that

• � 2 FL(�) and FL(�) is closed under subformulas;

• if [ ?]� 2 FL(�), then  2 FL(�);

• if [↵ [ �]� 2 FL(�), then [↵]� 2 FL(�) and [�]� 2 FL(�);

• if [↵;�]� 2 FL(�), then [↵][�]� 2 FL(�);

• if [↵⇤]� 2 FL(�), then [↵][↵⇤]� 2 FL(�);

• variants of the above conditions with all ‘[·]’ replaced by ‘h·i’.
Lemma 4.2 For all �, FL(�) is finite.

Proof. Standard argument, see [14]. 2

Definition 4.3 Let T be a set of formulas andM a (standard or non-standard)
model with x, y 2 S. Let x ⌘T y i↵, for all � 2 T ,

x |=+
M � () y |=+

M �

x |=�
M � () y |=�

M �.

Let [x]T = {y | x ⌘T y}. The filtration of M trough T is MT =
hST , RT , V

+
T , V �

T i, where
(i) ST = {[x]T | x 2 S};
(ii) RT (a) = {h[x]T , [y]T i | Raxy} for all a 2 AP ;

(iii) V +
T (p) = {[x]T | x 2 V +(p)};

(iv) V �
T (p) = {[x]T | x 2 V �(p)}.

Relations |=+
MT

, |=�
MT

and RT (↵) for complex ↵ are defined as in standard
models.

It is plain that MT is a standard model. We write [x] instead of [x]T if T is
clear from the context.
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Lemma 4.4 For all MT , |ST |  4|T |.

Proof. There are four possible truth values of each member of T . 2

Lemma 4.5 (Filtration Lemma) Let M be a (standard or non-standard)
model and � a formula.

(i) If [↵] 2 FL(�) or h↵i 2 FL(�), then R(↵)xy only if RFL(�)(↵)[x][y];

(ii) If [↵] 2 FL(�), then RFL(�)(↵)[x][y] and x |=+ [↵] only if y |=+  ;

(iii) If h↵i 2 FL(�), then RFL(�)(↵)[x][y] and y |=+  only if x |=+ h↵i ;
(iv) If h↵i 2 FL(�), then RFL(�)(↵)[x][y] and x |=� h↵i only if y |=�  ;

(v) If [↵] 2 FL(�), then RFL(�)(↵)[x][y] and y |=�  only if x |=� [↵] ;

(vi) If  2 FL(�), then x |=+  i↵ [x] |=+  ;

(vii) If  2 FL(�), then x |=�  i↵ [x] |=�  .

Proof. A simple but tedious variation of the standard proof using simultaneous
induction on the subexpression relation [14,15]. Details of some of the steps
are given in Appendix A. 2

Theorem 4.6 The satisfiability problem for BPDL is decidable.

Proof. Standard argument. If � is satisfiable in some M, then, by Lemmas
4.4 and 4.5(vi), � is satisfiable in a standard model of size at most 4k where
k = |FL(�)|. There is a finite number of such models, so a naive satisfiability
algorithm is to determine k = |FL(�)| and check all models of size 4k. 2

5 Completeness
The axiom system H(BPDL) results from H(BK) by replacing all ‘2’ by ‘[↵]’
and all ‘3’ by ‘h↵i’ and adding the schemata explicitly stated in Lemma 3.3.
(See Appendix B.) The notion of a maximal H(BPDL)-consistent set (m.c.
set) of formulas is defined as usual (X is consistent i↵ ¬

V

X 0 is not provable
for all finite X 0 ✓ X; X is m.c. i↵ X is consistent all X 0 � X are inconsistent).
Hence, m.c. sets have all the usual properties.

Definition 5.1 The canonical model Mc = hSc, Rc, V +
c , V �

c i is a quadruple
such that

(i) Sc is the set of all m.c. sets;

(ii) Rc(↵)XY i↵ for all [↵]� 2 X, � 2 Y (i↵ for all � 2 Y , h↵i� 2 X);

(iii) V +
c (p) = {X | p 2 X};

(iv) V �
c (p) = {X | ⇠p 2 X};

|�|+c = {X | � 2 X} and |�|�c = {X | ⇠� 2 X}.
Lemma 5.2 |�|+c and |�|�c behave like |�|+ and |�|� (in standard and non-
standard models), respectively:

• X 2 |p|+c i↵ X 2 V +
c (p); X 2 |p|�c i↵ X 2 V �

c (p);

• |?|+c = ;; |?|�c = Sc;
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• |⇠�|+c = |�|�c ; |⇠�|�c = |�|+c ;
• |� ^  |+c = |�|+c \ | |+c ; |� ^  |�c = |�|�c [ | |�c ;
• |� _  |+c = |�|+c [ | |+c ; |� ^  |�c = |�|�c \ | |�c ;
• |�!  |+c = (Sc � |�|+c ) [ | |+c ; |�!  |�c = |�|+c \ | |�c ;
• |[↵]�|+c = {X | (8Y )(if Rc(↵)XY, then Y 2 |�|+c )};
|[↵]�|�c = {X | (9Y )(Rc(↵)XY and Y 2 |�|�c )};

• |h↵i�|+c = {X | (9Y )(Rc(↵)XY and Y 2 |�|+c )};
|h↵i�|�c = {X | (8Y )(if Rc(↵)XY, then Y 2 |�|�c )}.

Proof. Standard inductive argument, we state only three cases explicitly.
Firstly, |⇠�|�c = {X | ⇠⇠� 2 X} and, as � $ ⇠⇠� is an axiom, this set
is identical to {X | � 2 X}, i.e., to |�|+c .

Secondly, |[↵]�|+ = {X | [↵]� 2 X}. We have to show that [↵]� 2 X i↵
for all Y , Rc(↵)XY only if Y 2 |�|+. The left-to-right implication is trivial.
The right-to-left implication is established by the following standard argument.
Assume that ¬[↵]� 2 X. We want to show that there is Y such that Rc(↵)XY
and ¬� 2 Y . We claim that the set

M = {¬�} [ { | [↵] 2 X} (8)

is consistent. (We denote { | [↵] 2 X} as X�↵.) To see this, take an
arbitrary finite  = { 1, . . . , m} ✓ X�↵. It is plain that h↵i¬�^ [↵] 1^ . . .^
[↵] m 2 X. Hence, by the K-style properties of [↵] and h↵i, h↵i(¬�^ 1^ . . .^
 m) 2 X. By the Necessitation rule, ¬(¬� ^  1 ^ . . . ^  m) is not provable, so
{¬�, 1, . . . , m} is consistent. But  was chosen as an arbitrary finite subset
of X�↵. Consequently, {¬�} [  0 for every finite  0 ✓ X�↵ can be shown to
be consistent in this way. Hence, M itself is consistent. By the Lindenbaum
Lemma, M can be extended to a m.c. Y and it is plain that Rc(↵)XY and
¬� 2 Y .

Thirdly, |[↵]�|�c = {X | ⇠[↵]� 2 X}, a set identical to {X | h↵i⇠� 2
X} as ⇠[↵]� $ h↵i⇠� is an axiom. A straightforward adaptation of the
argument given by [15, p. 206] shows that this set is identical to {X |
(9Y )(Rc(↵)XY and Y 2 |�|�c )}. 2

Lemma 5.3 Mc is a non-standard model.

Proof. We need to be establish that R satisfies the conditions required by the
definition of a non-standard model. The argument for [, ;, ? and the iteration
equations (4) – (7) is virtually identical to that given by [15, p.206–8]. To show
that Rc(↵)⇤ ✓ Rc(↵⇤), assume that hX,Y i 2 Rc(↵)⇤ but hX,Y i 62 Rc(↵⇤).
Hence, there is � such that [↵⇤]� 2 X but � 62 Y . However, hX,Y i 2 Rc(↵)⇤

implies that either X = Y or else there are Z0, . . . , Zm such that Z0 = X,
Zm = Y and hZk, Zk+1i 2 Rc(↵) for 1  k < m. In the former case, � 2 Y by
the axiom [↵⇤]� $ (� ^ [↵][↵⇤]�), a contradiction. In the latter case, [↵⇤]� 2
Zk entails [↵][↵⇤]� 2 Zk+1 by the same axiom for all 1  k < n and, hence,
[↵⇤]� 2 Y . Hence, � 2 Y , a contradiction. 2
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Since BPDL is not compact, it cannot enjoy a strongly complete axioma-
tisation (as BK does). However, weak completeness is another story.

Theorem 5.4 � is provable in H(BPDL) i↵ � is valid in BPDL.

Proof. Soundness follows from Lemmas 3.2 and 3.3. Completeness follows
from Lemmas 4.5 and 5.3. If � is not provable, then X 2 |¬�|+c for some m.c.
set X. By the Filtration Lemma, (Mc)FL(¬�) is a standard model such that
[X] 2 |¬�|+FL(¬�). 2

6 Conclusion
This article introduced BPDL, a combination of propositional dynamic logic
PDL with the four-valued Belnapian modal logic BK. The logic is expected to
be useful in formalising reasoning about the properties of algorithmic transfor-
mations of possibly incomplete and inconsistent database-like bodies of infor-
mation. We modified the standard proofs based on filtration and the canonical-
model technique and, as the main technical results of the article, established
decidability of BPDL and provided it with a sound and weakly complete ax-
iomatisation. The main message here is that the standard techniques are easily
adapted to the four-valued setting.

The number one topic for future research is the complexity of the satis-
fiability problem for BPDL. The problem is EXPTIME -complete for PDL
and it will be interesting to see whether the situation gets worse in the case
of BPDL. Our strategy of tackling the problem will be, as for the results
already achieved, to try to adapt the proof technique used in the case of PDL
to the four-valued setting. We shall also investigate Belnapian versions of some
extensions of PDL. The obvious choice is the first-order dynamic logic DL,
but also concurrent PDL modelling parallel execution of programs. Last but
not least, a more thorough examination of possible applications of BPDL will
be an interesting enterprise.

A Proof of the Filtration Lemma
The proof is a variation of the standard proof using simultaneous induction on
the subexpression (subformula or subprogram) relation [14,15]. In proving the
claim of any item (i)–(vii) for any special case of ↵ or  , we assume that all
the items hold for all subexpressions of ↵ and  . Only some steps of the proof
are explicitly stated here (and, perhaps, in more detail than an expert reader
needs).

A.1 M is a standard model

(i), ↵ = �⇤. If R(�⇤)xy, then, since R(�⇤) is the reflexive transitive closure of
R(�), there are z0, . . . , zn such that z0 = x, zn = y and either n = 0 or else
R(�)zizi+1 for 0  i < n. If n = 0, then RFL(�)(�

⇤)[z0][zn] by the definition
of RFL(�)(�

⇤). Assume n > 0. If [�⇤] (h�⇤i) is in FL(�), then so is [�][�⇤] 
(h�ih�⇤i ). � is a subexpression of �⇤, so, in both cases, we may apply the
induction hypothesis (IH): R(�)zizi+1 implies RFL(�)(�)[zi][zi+1] for 0  i < n.
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Hence, RFL(�)(�
⇤)[z0][zn] by the definition of RFL(�).

(i), ↵ = �?. If R(�?)xy, then x = y and x |=+ �. If [�?] (h�?i ) is in
FL(�), then so is �. � is a subexpression of [�?] (h�?i ) and a formula, so
we may apply the IH of (vi): x |=+ � entails [x] |=+ �. But [x] = [y] and,
hence, RFL(�)(�?)[x][y] by the definition of RFL(�).

(ii), ↵ = �⇤. If RFL(�)(�
⇤)[x][y], then there are z0, . . . , zn such that [z0] =

[x], [zn] = [y] and either n = 0 or else RFL(�)(�)[zi][zi+1] for 0  i < n. If
n = 0, then x |=+ [�⇤] entails y |=+  by the assumption [�⇤] 2 FL(�) and
Lemma 3.3(iv). Assume n > 0. We prove that

x |=+ [�⇤] =) zk |=+ [�⇤] (0  k  n) (A.1)

by induction on k. If k = 0, then the claim follows from the assumption
[�⇤] 2 FL(�). Assume that the claim holds for k = l. We prove that
it holds for k = l + 1 as well. The assumption is that x |=+ [�⇤] entails
zl |=+ [�⇤] . By Lemma 3.3(iv), zl |= [�][�⇤] . � is a subexpression of �⇤

and [�][�⇤] 2 FL(�), so we may use IH of item (ii) of the Filtration Lemma:
RFL(�)(�)[zk][zl+1] entails zl+1 |=+ [�⇤] . This proves (A.1). Now x |=+ [�⇤] 
entails zn |= [�⇤] by (A.1) and zn |= [�⇤] entails zn |=+  by Lemma 3.3(iv).
But [zn] = [y] and  2 FL(�), so y |=+  .

(iv), ↵ = �⇤. If RFL(�)(�
⇤)[x][y], then there are z0, . . . , zn such that [z0] =

[x], [zn] = [y] and either n = 0 or else RFL(�)(�)[zi][zi+1] for 0  i < n. If
n = 0, then x |=� h�⇤i entails y |=� h�⇤i by the assumption h�⇤i 2 FL(�).
Hence, y |=+ [�⇤]⇠ by Lemma 3.2. By Lemma 3.3(iv), y |=+ ⇠ . Hence,
y |=�  . Next, assume that n > 0. We prove that

x |=� h�⇤i =) zk |=� h�⇤i (0  k  n) (A.2)

by induction on k. If k = 0, then the claim follows from the assumption
h�⇤i 2 FL(�). Assume that the claim holds for k = l. We prove that it holds
for k = l+1 as well. The assumption is that x |=� h�⇤i entails zl |=� h�⇤i .
By Lemmas 3.2 and 3.3(iv), zl |=� h�ih�⇤i . � is a subexpression of �⇤, so
we may use the IH to infer zl+1 |=� h�⇤i . This proves (A.2). Assume that
x |=� h�⇤i . By (A.2), zn |=� �⇤i . By the assumption that h�⇤i 2 FL(�),
y |=� �⇤i . By Lemmas 3.2 and 3.3(iv), y |=�  .

(v), ↵ = �⇤. If RFL(�)(�
⇤)[x][y], then there are z0, . . . , zn such that [z0] =

[x], [zn] = [y] and either n = 0 or else RFL(�)(�)[zi][zi+1] for 0  i < n. If
n = 0, then the reasoning is similar as in the above cases. Hence, assume that
n > 0. We prove that

zn |=�  =) zn�k |=� [�⇤] (0  k  n) (A.3)

by induction on k. The case k = 0is trivial. Assume that the claim holds
for k = l. We prove that it holds for k = l + 1 as well. The assumption is
that zn |=�  entails zn�l |=� [�⇤] . There are two possibilities. Either (a)
zn�l |=�  or (b) zn�l |=� [�][�⇤] . If (a), then zn�(l+1) |=� [�] by IH and
zn�(l+1) |=� [�⇤] by R� ✓ (R�)⇤. If (b), then IH entails that zn�(l+1) |=�
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[�][�][�⇤] . By R� ✓ (R�)⇤, zn�(l+1) |=� [�⇤] . This proves (A.3). Now
y |=�  only if zn |=�  ( 2 FL(�)) only if z0 |=� [�⇤] (A.3) only if
x |=� [�⇤] ([�⇤] 2 FL(�)).

(vi),  = ⇠�. x |=+ ⇠� i↵ x |=� �. � is a subexpression of ⇠�, so we may
use IH of (vii): and infer x |=� � i↵ [x] |=� � i↵ [x] |=+ ⇠� (by the definition of
|=+

MFL(�)
. In fact, this case requires to introduce item (vii) into the Filtration

Lemma.
(vi),  = [↵]�. Assume [↵]� 2 FL(�). Then � 2 FL(�). To prove the

left-to-right implication, assume that x |=+ [↵]� and RFL(�)(↵)[x][y]. ↵ is
a subexpression of [↵]�, so we may use IH of (ii) to infer y |=+ �. By IH,
[y] |=+ �. To prove the right-to-left implication, assume that [x] |=+ [↵]� and
R↵xy. IH of (i) implies that RFL(�)(↵)[x][y]. Consequently, [y] |=+ � and, by
IH, y |=+ �.

(vi),  = h↵i�. We prove only the right-to-left implication. If [x] |=+ h↵i�,
then there is y such that RFL(�)(↵)[x][y] and [y] |=+ �. By IH, y |=+ �. By
IH of (iii), x |=+ h↵i�. This was the reason we had to include item (iii) of the
Lemma.

(vii),  = p. Let p 2 FL(�). The left-to-right implication is trivial. To
prove the converse, assume that [x] |=� p. This means that there is x0 ⌘ x
such that x0 |=� p. By the definition of filtration, x |=� p as well. Note that
to prove this implication it was necessary to define ⌘ in terms of both |=+ and
|=�.

(vii),  = [↵]�. We prove only the right-to-left implication. If [x] |=� [↵]�,
then there is y such thatRFL(�)(↵)[x][y] and [y] |=� �. By IH of (v), y |=� [↵]�.
This case required to introduce item (v).

(vii),  = h↵i�. We prove only the left-to-right implication. Assume
x |=� h↵i� and RFL(�)(↵)[x][y]. By IH of (iv), y |=� �. By IH, [y] |=� �.
Hence, [x] |=� h↵i�. This case required to introduce item (iv) of the Lemma.

Proofs of other cases are similar or standard. 2

A.2 M is a non-standard model

As in the standard proof for this case, the only claim where the assump-
tion R↵⇤ = (R↵)⇤ was used is (i), ↵ = �⇤. Hence, we have to prove that
if [�⇤] 2 FL(�) or h�⇤i 2 FL(�), then R(�⇤)xy only if RFL(�)(�

⇤)[x][y].
Our argument is very close to the one given in [15, sec. 6.3].

Assume that hx, yi 2 R(�⇤). We want to show that h[x], [y]i 2 RFL(�)(�
⇤),

or equivalently that y 2 E, where

E = {z | h[x], [z]i 2 RFL(�)(�
⇤)}

Recall that [·] is given by some specific finite setFL(�) of formulas. For any
[z]FL(�), define X[z] to be the smallest set of formulas such that, for all � 2
FL(�):

• If z |=+ �, then � 2 X[z];

• If z 6|=+ �, then ¬� 2 X[z].
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(Note that we are using ‘¬’ not ‘⇠’.) Obviously, X[z] is finite for all z. Define

 [z] =
^

X[z]

It is not hard to show that, for all w 2 S,

w |=+  [z] () w ⌘ z (A.4)

(For instance, assume that w 6⌘ z because there is ✓ 2 FL(�) such that w |=� ✓
and z 6|=� ✓. But then z 6|=+ ⇠✓ and, consequently, ¬⇠✓ 2 X[z]. But then
w 6|=+  [z] because w |=+ ⇠✓.) Now define

 E =
_

z2E

 [z]

It is not hard to show that  E defines E, i.e., for all w 2 S

w 2 E () w |=+  E (A.5)

(For instance, assume that w 2 E but w 6|=+  E . Then w 6|=+  [z] for all
z 2 E. In particular, w 6|=+  [w]. (A.4) entails that this is impossible.)

It is easy to show that E is closed under R� , i.e., for all z, z0,

z 2 E & R�zz
0 =) z0 2 E (A.6)

(� is a subexpression of �⇤, so R�zz0 entails RFL(�)(�)[z][z
0] by IH. By

the definition of E, z 2 E means that RFL(�)(�
⇤)[x][z]. Consequently,

RFL(�)(�
⇤)[x][z0]. In other words, z0 2 E.) (A.6) means that  E ! [�] E

is valid in M. By Lemma 3.2(Nec. rule), so is [�⇤] ( E ! [�] E). By Lemma
3.3(v), the induction axiom (� ^ [↵⇤](�! [↵]�)) ! [↵⇤]� is also valid in M.

It is also easy to show that x 2 E (R(�⇤) is a superset of the reflexive
transitive closure of R(�), so it contains the identity relation of SFL(�).) Hence,
x |=+  E ^ [�⇤] ( E ! [�] E). By the validity of the induction axiom in M,
x |=+ [�⇤] E . Hence, if R(�⇤)xy, then y |=+  E . By (A.5), y 2 E. 2

B The axiom system H(BPDL)
(i) Axioms of classical propositional logic in the language {AF,?,!,^,_}

and Modus ponens;

(ii) Strong negation axioms:

⇠⇠�$ �,

⇠(� ^  ) $ (⇠� _ ⇠ ),
⇠(� _  ) $ (⇠� ^ ⇠ ),
⇠(�!  ) $ (� ^ ⇠ ),

> $ ⇠?;



518 Propositional dynamic logic with Belnapian truth values

(iii) Modal axiom [↵](� !  ) ! ([↵]� ! [↵] ) and the Necessitation rule
�/[↵]�;

(iv) PDL axiom schemata

[↵ [ �]�$ ([↵]� ^ [�]�) and h↵ [ �i�$ (h↵i� _ h�i�) ,
[↵;�]�$ [↵][�]� and h↵;�i�$ h↵ih�i�,
[ ?]�$ ( ! �) and h ?i�$ ( ^ �) ,

[↵⇤]�$ (� ^ [↵][↵⇤]�) and h↵⇤i�$ (� _ h↵ih↵⇤i�) ,
(� ^ [↵⇤](�! [↵]�)) ! [↵⇤]� and h↵⇤i�! (� _ h↵⇤i(¬� ^ h↵i�)) ;

(v) Modal interaction principles:

¬[↵]�$ h↵i¬�,
¬h↵i�$ [↵]¬�,
⇠[↵]�$ h↵i⇠�,
[↵]�$ ⇠h↵i⇠�,

⇠h↵i�$ [↵]⇠�,
h↵i�$ ⇠[↵]⇠�.
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