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Abstract With the arrival of the 19th century, a process of change guided 
the treatment of three basic elements in the development of mathematics: 
rigour, the arithmetization and the clarification of the concept of function, 
categorised as the most important tool in the development of the mathematical 
analysis. In this paper we will show how several prominent mathematicians 
contributed greatly to the development of these basic elements that allowed the 
solid underpinning of mathematics and the consideration of mathematics as an 
axiomatic way of thinking in which anyone can deduce valid conclusions from 
certain types of premises. This 19th century stage shares, possibly with the 
Heroic Age of Ancient Greece, the most revolutionary period in all history of 
mathematics. 
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1 Introduction 
 
The Pythagorean school, founded by Pythagoras in the 5th Century B.C, 
focussed on studying natural and their relationships, as the existence of 
mathematical connections in many phenomena of Nature (such as Astronomy 
or Music) was a confirmable fact.  This study led to the development of an 
important part of arithmetic.  
 
Much later, starting in the 13th Century, an intellectual renaissance took place 
in the West as a result of the Catholic Church’s acceptance of Greek culture 
and Aristotelian thought, whilst from the 14th Century on, there was a real 
demand for more accurate methods for: the search for new materials, the 
development of technology, the accurate calculation of positions at sea 
(following geographical exploration that covered great distances in open sea), 
the improvement of mechanisms of calculus (stimulated by the development of 
trade) or the solving of problems of a military nature brought about by the 
introduction of gunpowder (such as the movement and trajectory of shells).   
 
At the same time, the discovery of other civilisations had liberalising 
consequences for European culture and the printing press encouraged the wide 
dissemination of knowledge. All these reasons led to the fact that, in modern 
European civilisation, priority was given to the search for knowledge and 
scientific development, for the purpose of explaining the phenomena of Nature.  
This was the spirit that was made evident in Leopoldo Varela’s quote “The 
absence of doubt leads Man to an absence of curiosity and then there would be 
no inquisitiveness. Therefore no mathematics” (Ortega 2002).  
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During the Renaissance, mathematicians expressed more interest in producing 

new methods and results than in the rigour of the demonstrations. This, 

together with the emergence of a new adapted symbolic script, made it much 

easier to develop new formal calculus techniques and infinitesimal methods. 

This course of action was reflected years later in the surprising quote from 

Bonaventura Cavalieri: “Rigour is the concern of philosophers, rather than of 

mathematicians”, included in the work of Fernando Bombal (Bombal 2010). 

So, generally, in the ordinary mathematical works prior to the 18th Century, the 

only steps that appeared were those that entailed the introduction of some new 

aspect or original idea.  Nevertheless, the time came when the more clear-

sighted spirits began to question the consistency of their constructions. In fact, 

the necessity arose of formally demonstrating all the results that were 

incorporated, even though it is true that the idea of formal and rigorous 

demonstration would change depending on the context and the cultural 

environment. During the 18th Century mathematical interests centred on putting 

forward predictions with high doses of certainty, backed up by verifying the 

result in a series of specific cases and supported by numeric examples that 

provided reliability for what had been stated.  This gave rise to different 

controversies between the mathematicians of the period, who questioned the 

acceptance of the new results. George Berkeley’s publication in 1734 of The 

Analyst, should be mentioned as an example that constitutes a criticism of the 

fundamentals of science, a very influential work in the development of 

mathematics (Berkeley 1734). 

All of this, at the beginning of the 19th Century, resulted in a profound review of 
Calculus. Also, during the rigorization process that continued during the whole 
of the 19th Century, the very notion of rigour was changing, as the consensus 
on what is a trivial step within a test depends as well on the historical and 
cultural context (Struik 1986). 
 
Carl Friedrich Gauss’s work Disquisitiones Arithmeticae (Gauss 1863) is 
considered as one of the first works to represent mathematic rigour. It is written 
completely in the style of theorem-demonstration–corollary and at no point does 
it reveal the causes that motivated him to follow specific lines of development of 
the demonstrations. 
 
In this work we will set out some of the steps taken along this path towards the 
rigorization of mathematics. Initially we will put special emphasis on the 
triggering of this process and on the representative concept of function, which 
was one of the issues that had to be reviewed due to the emergence of a large 
number and variety of functions in the activity of the mathematicians of the 
period. We will conclude with the arithmetization of analysis and we will express 
some reflections on the problem unleashed by the great number of 
mathematical results produced, which makes it impossible for the specialists to 
have knowledge and command over all these advances.  
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2 Beginning of the process 
 
The search for consistency in the mathematical constructs became a necessity 
for admitting the new results that were coming to light.  This sensation of a lack 
of consistency and rigour led to a constant source of paradoxes and 
contradictions, giving rise to many controversies and a great sensation of 
uncertainty.  With this the process of rigorization began, which contributed 
enormously to the fact that, in Europe, the 18th and 19th Centuries were 
considered as the Golden Age of Analysis and, more specifically, the 19th 
Century was considered by many mathematics historians, such as Carl Boyer 
(Boyer 1986), as the Golden Age of Mathematics. 
 
In particular, in the early 19th Century, the figure of Augustin Louis Cauchy 
stands out, who during the first twenty years of that century took the concepts of 
limit and continuity as the organising elements of his programme (Montesinos y 
Valdivia 2000). In his Cours d’Analyse (Cauchy 1821), Cauchy states and 
proves that the sum of a convergent sequence of continuous functions defines a 
continuous function. But in 1826 Niels Henrik Abel (Abel 1826, pp. 224-225) 
proposed a Fourier series as a counter-example to this assertion, which 
converges to a discontinuous function, furthermore indicating that “Cauchy’s 
theorem appears to admit some exceptions..” even though he does not show 
the error committed by the author in his demonstration. This type of situation 
was regularly repeated, provoking throughout the 19th Century a process for 
the search for a rigorous, formal substantiation of mathematics and, more 
specifically, of mathematical analysis. 

Bernhard Bolzano had already shown himself in his work of 1817 (Bolzano 

1817) to be clearly aware of the need for rigour in analysis, which led Felix Klein 

to consider him as the father of arithmetization. Nevertheless, at that time, 

Bolzano had little influence with the mathematics community as Cauchy’s 

analysis, strongly conditioned by geometric intuition, still persisted. In addition, 

around 1830, Bolzano had made an attempt to develop a theory of real 

numbers as limits of sequences of rational numbers, but this work went 

unnoticed and was not published until 1962. 

The sensation of uncertainty in the results, together with the appearance of new 
theories such as non-Euclidean Geometry, generated the need to clearly and 
accurately establish those properties of the objects under study.  They chose to 
return to the axiomatic method used by the Greeks in the development of 
Euclidean geometry.  In fact, there was a substantial change from a distinctly 
geometric conception to a more algebraic-analytic treatment. Other 
mathematicians who stand out by forming part of this change were Leonhard 
Euler and Joseph-Louis Lagrange. 
 
The impact of this new precision in the definition of concepts was huge. Only 
that which could be defined in terms of well-established earlier structures was 
acceptable. In reality, this growing enthusiasm for precision in the outcome in 
itself bore the seed of an increasingly retroactive nature. 
 
A process began of questioning all structures which were traditionally 
considered as valid and well established.  Nothing escaped rigorous analysis, 
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precise formulation, and stringent justification. Mathematics became 
synonymous with proof; without proof there was nothing.  They even looked in 
depth into the need to prove the existence of the mathematical entities used, 
which then ceased to be seen as unquestionable truths due to their heuristic 
nature and their original geometry basis.  In this way, taking into account the 
invalidation of many results that were incorrectly incorporated, all trace of 
subjectivity still existing in the demonstrations was removed. 
 
3 Concept of function 
 
In the 18th and 19th Centuries, when mathematical analysis definitively became 
a part of the scientific panorama, functions were considered as the objects par 
excellence of mathematics (Rey Pastor & Babini 1997). 
 
Function is undoubtedly the key word in analysis, and it was precisely in the 
clarification of this term that the tendency arose for the arithmetization of 
analysis, a term coined by Felix Klein in 1895 (Boyer 1986, p. 685). 
 
The Babylonian mathematicians already intuitively handled the concept of 
function, an aspect that was observed in the specific studies of Astronomy, 
when they turned to tables of data, interpolation and extrapolation in the search 
for patterns and proportions. The Greek mathematicians also made use of this 
concept through the proportions that enabled the comparison of variables in 
Nature itself.  In the 17th Century, René Descartes and Pierre de Fermat 
established connections between Geometry and Algebra, taking the first steps 
towards Analytic Geometry, in which the relationship of dependence between 
two variable quantities is explicitly stated and the concept of function is 
associated to a curve representing the path of moving points. 
 
The curious behaviour of a vibrating string generated great interest amongst 
mathematicians, leading to one of the most heated and productive disputes in 
the history of mathematics, which is discussed in detail in (Ferreirós 2003).  
Until the 18th Century, mathematics had not developed sufficiently to be able to 
tackle this problem such as it is discussed in (Boyer 1986). It was in 1715 when 
Brook Taylor affirmed that the movement of an arbitrary point on the string is 
the same as a simple pendulum and, therefore, the form of the curve adopted 
by the piece of string at any given moment should be sinusoidal. The 
fundamental sound corresponding to that pendulum vibration is not the only 
sound emitted by the vibrating string, as other, less intense sounds appear 
simultaneously. What is really curious is the fact that the string does not change 
alternately from one overtone to another, but it emits all the harmonic sounds 
concurrently. This fact caused great intrigue and discussion amongst the 
mathematicians of the period. Several great mathematicians like Jean le Rond 
d’Alembert, Leonhard Euler, Daniel Bernoulli or Joseph Fourier tried to explain 
this question. 
 
The attempts to provide a solution to this problem gave rise to differences of 

opinion on how to represent functions. The problem implied the generalisation 

of the concept of function in order to establish a one-to-one correspondence 

between functions and curves. D’Alembert and Euler used a pair of arbitrary 
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functions, not necessarily periodic, whilst Bernoulli gave the solution in terms of 

a finite series of trigonometric functions.  The mathematics community seems to 

have considered Bernoulli’s answer as being less general than that put forward 

by d’Alembert and Euler, until Fourier entered the scene in 1824 with a double 

contribution. On the one hand by demonstrating that Bernoulli was right, and on 

the other, by making one of the most important contributions to mathematics. To 

be specific, Fourier demonstrated that any        function can be 

represented by a series, which in his honour was known as a Fourier series, of 

the form 

     
  

 
                        

 

   

 

 
In comparison with the Taylor series, functions represented using the Fourier 

series allow for a much higher degree of generalisation.  Even in the event that 

the function has many points where there is no derivative or in which the 

function is not continuous, it can also be developed under the Fourier series. 

Therefore, functions no longer needed to be as well behaved in their form as 

those that mathematicians had been working with up until then.  For example, 

for Euler, discontinuous functions in general could not be expressed analytically 

and consequently the definition that had initially been used was too restrictive to 

provide a solution to this problem of the vibrating string. 

So, the concept of function was not clarified up until that moment. For Carl 

Friedrich Gauss a function was a closed finite analytical expression, even 

though he referred to hypergeometric series as functions, but without the total 

conviction that they could be regarded as functions. Similarly, Sylvestre 

François Lacroix stated that “Every quantity whose value depends on one or 

several others is called a function of the latter, whether one knows or does not 

know by what operations it is necessary to go from the latter to the first quantity” 

(Lacroix 1797, p. 1). 

For his part, Lejeune Dirichlet put forward in 1837, in his work Über  die 
Darstellung ganz willkürlicher Functionen durch Sinus und Cosinus-reihen 
(Mannheim 1964, p. 52), a definition of function that was fairly broad and 
general: «If a variable y is associated with another variable x in such a way that 
x is always attributed a numerical value, there is a rule by which a unique value 
of y is determined, and then it can be said that y is a function of the independent 
variable x». As we can see, this definition comes much closer to the modern 
idea of a general correspondence between two sets of real numbers. 
 
In this respect, we should also highlight the emphasis given by Euler to the 
concept of function as a key piece in analysis, saying that “A function of a 
variable quantity is an analytic expression formed, in any manner whatever, of 
the variable quantity and of numbers or constant quantities” (Euler 1748), which 
is again a clear example of this new approach. The definition and the different 
notions of function in Euler’s work were the key to establishing Mathematical 
Analysis as a branch of present-day mathematics, as Carmen Martínez 
analysed in great detail in her article in 2008 (Martínez 2008). 
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In particular, the definition given by Euler of trigonometric functions as power 
series is drawn up in a way completely unrelated to geometry; as a result of this 
posture, we arrive at the acceptance of complex numbers as a highly powerful 
instrument in the intrinsic analysis of the functions theory. 
 
While stating ideas of this kind, we can also quote Lagrange who, in his 
influential work Theory on Analytic Functions (Lagrange 1797), had used series 
of potentials as functions, also defining that arising at a point simply as the 
coefficient of the first potential in Taylor’s development of the function at that 
point. 
 
4 Culmination of work carried out. 
 
After the analysis made by Fourier, there was a period of 50 years under a 
context of some concerns regarding the foundations of the analysis, motivated 
for two main causes. The first was the lack of trust in operations made with 
infinite series, because it was even not clear if a series of functions converged 
always or not to the function from which it was obtained. The second cause was 
the lack of precise definition of the concept of real number that represents the 
fundamental nucleus for any arithmetization program. 
 
In 1867 Hermann Hankel pointed out that “condition to create a universal 
arithmetic is that of mathematics purely intellectual, separated from any type of 
sensitive perception”.  The total and correct arithmetization of the analysis was 
only possible when mathematicians understood, as Hankel had already 
foreseen, that it was needed to consider to real numbers as intellectual 
structures and not as magnitudes provided intuitively, inherited from Euclidian 
geometry.  
 
It was in 1872 when many important publications which contributed 
considerably to the arithmetization of the analysis took place. They culminated 
half a century of investigations around the idea of function and real number, 
studies which started in 1822 with the Fourier theory and with an attempt to 
reduce all the analysis to the arithmetic.  
 
Hugues Charles Méray was one of the mathematicians who publish fast his 
ideas, considering that he published in 1869 an article (Méray 1869) where 
underlined a serious reasoning lapse that mathematicians had not realized 
since the period of Cauchy. The main problem was to define the limit of a 
succession as a real number and, later, to define in turn a real number as a limit 
of a succession of rational numbers.  
 
Like Méray, Karl Weierstrass also tried to separate the analysis from the 
geometry and to base it uniquely on the concept of number. So, Weierstrass 
presented a refined definition of the concept of limit. The definition of Cauchy 
made use of expressions like “successive values”, “approach indefinitely” or “as 
small as you want” and, although these expressions are very suggestive, they 
lack of precision and rigor that nowadays characterize mathematics. His disciple 
Eduard Heine, based on lessons from Weierstrass, published in 1872 (Heine 
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1872) the definition of limit of a function      at    that, unless notation, is those 

which usually appears in texts: «Given any  , if there exists a natural number    
such that for        the difference           in absolute value is less 
than  , then it is said that   is the limit of      at     ». We can estimate, 
therefore, a language and a precise and unequivocal symbolism. 
 
In 1871 Georg Cantor had also begun to carry out a arithmetization 
development similar to those of Meray and Weierstrass. Heine, who knew this 
work suggested certain simplifications that led to the development of so-called 
Heine -Cantor , published in 1872 (Heine 1872). The theory presented deals 
with the convergent successions that do not converge into rational numbers as 
successions  that define irrational numbers.  
 
A completely different approach to the same problem, and one of the most  
known today , was the one that Richard Dedekind gave that year. It needed to 
formally construct the real numbers from what is known as Dedekind Cuts 
(Dedekind 1872). This way, the fundamental theorems on limits could be proved 
rigorously without using geometric intuition . 
 
5. The significance of the process  
 
With arithmetization analysis it was not simply a matter of desgeometrizaring 
calculation and pointing towards better logical conditions in its foundations: it 
was, rather, a reduction of different conceptual notions (referring to different 
objects) to the arithmetical notions. This significantly important process, could 
only be made from a new abstraction and implicit or explicit introduction of 
theoretical assumptions about the existence and nature of mathematical 
entities, as we discussed in the previous section. 
 
It was, moreover, a reductionist intent of the different components with the clear 
objective of finding a theoretical unity in diversity, whose exposition was 
demanding a readequacy in the conscience of the nature of the mathematics 
and even of the own knowledge. So arithmetization analysis can not be 
considered a mere mechanical and simple process of rigorization of diverse 
mathematical results, but it must be integrated into a new self-consciousness in 
the evolution of mathematics. 
 
Consequently, this led to the nineteenth century which was a period in which 
the advances in mathematics overcame, both in quality and in quantity, the 
combined production of all earlier times. Furthermore, some prominent schools 
were created, like the London Mathematical Society (1865), the Société 
Mathématique de France (1872) and the American Mathematical Society 
(1888), among others, which led to the implicit social legitimacy of the 
mathematical  job. 
 
In this sense, mathematical rigorization has generated a large set of proof 
techniques that have enabled a great advance in the scientific production in its 
different areas. Clearly, in the origins of rigorization, for the mathematicians it 
was very feasible to know and understand almost all mathematical production, 
clearly distinguishing those fundamental problems in each area. However, today 
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this task becomes impossible since any researcher focuses on knowing and 
mastering the latest publications of at most two or three areas of mathematical 
research. 
 
This makes the detection of those most relevant lines of research difficult. 
Undoubtedly, specialists could agree to point out some important guidelines in 
their specialty, although the major problems that are studied by the leading 
researchers are often thought to stand out. 
 
To this difficulty, we add the fact that it is physically impossible for a 
mathematician, in their daily work to, verify each and every one of the previous 
results in which it supports his proof. Since the second half of the twentieth 
century, it is an assumed fact by all that a correct proof is obtained from 
collective results and, even more, a result is accepted as correct when it finds a 
consensus among the qualified. In case of any discrepancy between experts, a 
transcript of the proof based on first-order logic is not used it is resolved by 
communication and explanation. 
 
This last fact is evident in the appointment of P. Davis and R. Hersh on the 
process of verification of the different results that emerge daily in different 
scientific journals: "Mathematicians in every field rely on each other's work, 
quote each other; the mutual confidence which permits them to do this is based 
on confidence in the social system of which they are a part. They do not limit 
themselves tousing results which they themselves are able to prove from first 
principles. If a theorem has been published in a respected journal, if the name 
of the author is familiar, if the theorem has been quoted and used by other 
mathematicians, then it is considered established. Anyone who has use for it 
will feel free to do so" (Davis and Hersh, 1982). 
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