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Abstract The importance of mathematics in the context of the scientific and 
technological development of humanity is determined by the possibility of 
creating mathematical models of the objects studied under the different 
branches of Science and Technology. The arithmetisation process that took 
place during the 19th Century consisted of the quest to discover a new 
mathematical reality in which the validity of logic would stand as something 
essential and central. Nevertheless, in contrast to this process, the development 
of mathematical analysis within a framework that largely involves intuition and 
geometry is a fact that cannot go unnoticed amongst the mathematics 
community, as we shall show in this paper through the research made by 
Bernhard Riemann on complex variables. 
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1 Introduction 
 
The processes of the arithmetisation and rigorisation of mathematics during the 
19th Century were largely intended to eliminate any reference to geometry and 
intuition that had predominated until then, and to emphasise the role of 
arithmetic and logic in the construction of new mathematical knowledge and its 
validation.  As a result of those processes, more accurate fundamentals of logic 
and notion were obtained, erasing any trace of doubt on the consistency of the 
results obtained, and enhancing their rationale.  
 
Even though the subject had been dealt with, the problems in the fundamentals 
of logic did not occupy a very prominent place amongst mathematicians until 
the beginning of the 19th Century, when evidence of elements of mathematics 
appeared to break the norm of coincidence in mathematics and nature. Also, 
from a theoretical point of view, the appearance of the quaternions, described 
by the Irish mathematician William Rowan Hamilton in 1843 (Hamilton 1844, 
1853), and non-Euclidean geometry, on which several authors as János Bolyai  
and Nikolái Lobachevsky published treatises on hyperbolic geometry (Bonola 
1954; Montesinos 1992), and who, in an attempt to prove Euclid’s fifth postulate 
using a method of reduction to the absurd, demonstrated the existence of a new 
nature in mathematics as the established notions of intuition and construction 
could not explain those advances. Looking at the analysis, there was no 
rationale either in algebra or in the arithmetic used, and there were problems in 
geometry.  Non-commutative quaternions and non-Euclidean geometry were 
what the historian Morris Kline (Kline 1980) described as an authentic disaster, 
considering them as the first disaster that would have extraordinary 
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repercussions for the reflection on mathematics and for the evolution of the 
philosophy of mathematics. 
 
Recent mathematical results showed the importance of structure and the 
validity of logic in respect of intuition understood as being related to sensitivity. 
For some, the fundamentals of mathematical construction are found precisely in 
the dimensions of logic and form, and in a drastic split from the concepts arising 
from intuition, visual geometry or the appeal to the empirical world, which some 
authors of the period considered to be contaminators of the origins of 
mathematics.  
 
In this whole process there is an estrangement of these mechanisms of 
substantiation from the concepts and ideas that gave rise to calculus. However, 
it is not clear that mathematical construction can be limited to those dimensions 
of logic and that it can be unilaterally detached from intuition. 
 
In this respect, throughout history, mathematics has been used in very diverse 

activities directly related with immediate space and physical reality. It has even 

been a device used by the priests of Mesopotamia for making predictions, or by 

the Pythagoreans expressing the harmony between divinity and human 

perfection, as a tool in the discipline of thought during the Middle Ages and also 

very useful in the search for answers from the universe from the Renaissance 

onwards. It has unquestionably been a key element in philosophical thought, 

amongst contemporary rationalists and philosophers. Nor can we fail to 

highlight its use as an instrument for creating works of art of great beauty, and 

as an aspect of entertainment (Boyer 1986). 

In this paper we will defend that it has not been totally disassociated from 
intuition and geometrical perspective. In short, the development of analysis 
within a framework that is largely intuitive and geometrical is what is known as 
the discovery method, and through the work of Bernhard Riemann we will see 
how this method can be successful. 
 
2  Arithmetical perspective versus geometrical perspective 
 
The arithmetisation of the analysis and substantiation of calculus were 
immersed within a scenario that offered the specific evolution of new 
mathematics during the 19th Century. The emergence of non-Euclidean 
geometry or of abstract algebra (Keith 2012), and of a new nature to these 
disciplines, form part of this scenario in which a process of formalisation and 
axiomatisation of mathematics took place, with the participation of several 
important and distinguished mathematicians. 
 
In spite of this, it cannot be said that a direct relationship existed between the 
creation of non-Euclidean geometry or the new algebras and the arithmetisation 
that took place during that century.  In fact, some historians of mathematics 
analyse the role played by intuition in the development of non-Euclidean 
geometry, as it can be seen for example in (Gray 1979) and (Abardia, Reventós 
& Rodríguez 2012). 
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The new procedure based on an arithmetic perspective enjoyed great success 
which made any unhurried reflection on the soundness of its reasoning appear 
as secondary. It was a relevant point for the consolidation of logical deduction 
and rigour, as fundamental tools of mathematics or validation criteria perfectly 
assumed in those scientific communities. 
 
The emphasis on algebraic and arithmetic demonstrations was a response to 
both the conceptual needs inherent to mathematics and to the needs of the 
mathematics community. Nevertheless, mathematics that were done during the 
17th Century and earlier were based on intuition and the physical meaning, 
which is what, guided them. The reliability of its work did not lie in consistency 
or in formal rules, and therefore logic did not guide these discoveries. More so, 
the logic that was developed often left room for intuition and a sensible 
perspective of the outside world. 
 
In the period prior to the arithmetisation process, the centre of mathematical 
analysis was calculus and, in spite of the enormous ignorance of logic and of 
the licentious use of numbers, this underwent a huge development. Irrational 
numbers were admitted at the beginning of the 19th Century, but not negative 
or complex numbers. This had great significance as was made evident in 
Kline’s quote (Kline 1980 p. 167): "A subtle change in 
the nature of mathematics had been unconsciously made by the masters. Up to 
about 1500, the concepts of mathematics were immediate idealizations of or 
abstractions from experience (...) when irrational, negative, complex numbers, 
operations with letters, and the concepts of the derivate and integral entered 
mathematics, the subject became dominated by concepts derived from the 
recesses of human minds."  
 
3 An example of the method of discovery in the complex variable 
 
The modern theory of functions of a complex variable had several founders. 
Augustin-Louis Cauchy (1789-1857) and Carl Friedrich Gauss (1777-1855) 
were very important, but this section will specially focus on Karl Weierstrass 
(1815-1897) and Bernhard Riemann (1826-1866). 
 
Weierstrass based his early work on the theory of series and the research done 
on elliptic and Abelian functions, established on solid foundations, in order to 
study the local representation of an analytic complex function as a series of 
powers on its convergence circle, as well as its corresponding analytic 
continuation. In fact, said local representation made him realise that an analytic 
function had many properties similar to those of a polynomial, which allowed 
him to consider the order of a zero and, through its development in series, 
prove the theorem on analytical solutions of a system of differential equations. 
He also introduced the notion of uniform convergence. In a nutshell, 
Weierstrass was characterised by the rigorous presentation of his theory and 
the careful development of his mathematical building, regardless of any 
reference to the geometric intuition. 
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In contrast to Weierstrass' working method, we find Bernhard Riemann, a very 
versatile mathematician with a prolific mind, who took great interest in almost 
every aspect of mathematics. He made significant contributions to analysis and 
differential geometry, some of which paved the way for the later development of 
general relativity. His first publication was his doctoral dissertation "Grundlagen 
für eine allgemeine Theorie der Funktionen einer veränderlichen complexen 
Grösse" (Foundations for a general theory of functions of a complex variable) 
(Monastyrsky 2008, p.11). Particularly, he reached deep theorems that related 
the number theory to the classical analysis. 
 
The distribution of prime numbers is, even today, a genuine unresolved 
mystery. Let   denote the amount of prime numbers less than or equal to . 

We know that the number of primes is infinite, hence  when  A 

more precise result was established by Leonhard Euler in 1737 (Ash & 

Novinger 2007, p.149), when he proved that . Later, in 

1749, he found that 

 
where  includes all prime numbers and  all natural numbers. He even 

calculated the exact value for , given by  

 
This formula did not go unnoticed to Riemann, and it would mark the beginning 
of his research on the so-called Riemann zeta function, defined by  

 
where  is a complex number. The series that defines  converges 

absolutely on the half plane  and converges uniformly on 

compact subsets of  for each  Moreover, Euler's 

product formula is generalized as follows: 

 
On the other hand,  has an analytic extension to  

and the above formula implies that  has no zeros in the half plane 

, but Riemann was intrigued about the zeros of the extension 

of  in . Thus, after establishing the correspondence 

between the representation of the product and the function , and after 

studying some of the properties of  Riemann stated in his seminal 1859 

paper that he considered it “very likely” that all the zeros of   in the above 

strip, , called the critical strip, lie on the line . This 

assertion is now known as the Riemann hypothesis, and remains as yet 
unresolved (Ash & Novinger 2007, p.149). 
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The above is an example in which the geometric and intuitive reference was 
predominant in order to establish the connection of prime numbers to the known 
Riemann zeta function and to originate a subject that continues to capture the 
attention of eminent mathematicians. To Riemann, Euler's formula was really 
admirable, and it must be said that for the 100 years that passed between the 
discovery of the formula by Euler and Riemann's interest for it, the majority of 
mathematicians only considered it as a mere curiosity. 
 
The name of Riemann is also linked to Riemann surfaces, which are 
generalizations of the complex plane to surfaces with several sheets in a way 
that a multi-valued function of a complex variable has only one value for each 
point on those surfaces. Riemann surfaces are one way of 

representing multiple-valued functions. Once the surface has been constructed 

for a given function, said function is single-valued on it and the single-valued 
functions theory can be applied. This way, the complications that arise due to 
the multi-valued nature of the function are avoided with a clever geometric 
resource. In this manner, the domain of analytic functions on the complex plane 
can be extended. 
 
As per the above, the most striking aspect of Riemann's work can again be 
seen:  the development of the analysis within a highly intuitive and geometric 
framework. In his report, and thanks to the role played by the geometric image 
in Bernhard Riemann's mathematical production, there were also several 
extension theorems for harmonic functions, the maximum modulus principle and 
the principle of analytic continuation. For Riemann, complex numbers were 
points of a plane and a complex function was a law by which surfaces can be 
transformed, so his aim was to represent and analyse these transformations. 
 

In spite of this, Riemann himself admitted that his demonstrations were often 
incomplete, and that any potential gaps originated in their development could 
only be filled with the construction of new theories and mathematical entities. 
 
4 Conclusions  

The purpose to create mathematical models for the objects and the process 
studied in different branches of Technique and Science is very important in the 
value assigned to mathematics for the scientific and technological development 
of the humanity. In order to create a mathematical model, it is needed to have a 
deep and organized knowledge of real characteristics of the object to be 
studied. Therefore, improvements in a discipline are determined by the 
historical and cultural framework and this produces the boost of the progress of 
a branch in respect of the others. In this manner, for many years, the 
mathematical models were only used in Mechanics, Optical field, Astronomy 
and other branches of Physics, which were disciplines considered of special 
interest. 
 
Most of current mathematical methods were appearing throughout history, 
motivated by requests received from other sciences in charge of investigating 
inorganic nature and, in particular, as was already mentioned on the previous 
paragraph, those dedicated to study the astronomic, mechanics and physic-
chemicals phenomenon, within the framework of the intuition. Later, it took 
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place a generalization who has allowed the application of those mathematic 
methods to biological processes and, partially, to social ones, although 
application on social process has been more difficult. During the last decades of 
20th century, investigations addressed to elaborate a mathematical method 
adequate for biological and social sciences have been increased. 
 
One of the major problems that appears when we try to establish mathematical 
methods applicable to social sciences is the lack of exactness and precision of 
human thought and conducts. The blossom of a large variety of new branches 
of Mathematics, such as mathematical programming, mathematical systems 
theory, the mathematical theory of optimal control, stochastic processes theory, 
queuing theory, inventory theory, stochastic control theory, chaos or fractals 
theory, provides mathematical tools in order to define models for the problems, 
even more complex, emerged from the real need of its modelling and inspired in 
a strong intuitive framework. These branches reaffirm the need of the method of 
discovery as a key element in the mathematical production. 
 
It follows from the above that mathematization of the science represents a 
double process of growth and development of concrete sciences and 
Mathematics itself. In other words, from necessity to ameliorate in other 
disciplines, Mathematics are forced to progress and, conversely, the progress of 
Mathematics with the introduction of new theories allows the possibility of 
applicability to other disciplines of the science. It can be observed that, sooner 
or later, all sciences start to use mathematical methods to a greater or lesser 
extent. The introduction of mathematics in all the fields of scientific knowledge is 
not a fortuitous episode in the development of Science and Technology and this 
process will be even wider and deeper in the future, with an eminently intuitive 
and geometrical framework.  
 
In this regard we can find a quote from Morris Kline (Kline 1980): “The newly 
founded rigorous structure presumably guaranteed the soundness of 
mathematics but the guarantee was almost gratuitous. Not a theorem of 
arithmetic, algebra or Euclidean geometry was changed as a consequence, and 
the theorems of analysis had only to be more carefully formulated […]. Indeed, 
the axioms had to yield the existing theorems rather than different ones 
because the theorems were on the whole correct. All of which means that 
mathematics rests not on logic but on sound intuition.” 
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