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Abstract Harold Kincaid in Individualism and the Unity of Science postulates a model of

unity-without-reduction in order to accurately describe the relation between individualism

and macroeconomics. I present this model and apply it to the description of the relation

between chemistry and quantum mechanics. I argue that, when it comes to the description

of molecular structure, chemistry and quantum mechanics are unified in Kincaid’s sense.

Specifically, the two disciplines contribute to the formation of a unified body of knowledge

with respect to molecular structure.

Keywords Unity � Supervenience � Quantum mechanics

Introduction

The relation between chemistry and quantum mechanics is extensively debated1 in the

philosophy of chemistry. This is reasonable, considering the still vibrant debate in the

philosophy of science about the relation between sciences in general [for example Curd

and Cover (1998), Kellert et al. (2006), Dizadji-Bahmani et al. (2010), Bokulich (2008)].

The different positions presented in the philosophy of chemistry literature on this topic,

could be understood as forming a range of proposals that reside within two extremes. At

one extreme, chemistry is taken to be reduced to quantum mechanics so much so that, at

least in principle, quantum mechanics could substitute chemistry in the description,
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explanation and prediction of chemical phenomena (for a view that is around these lines

see Hettema 2012). At the other extreme, looking for a connection between the two

disciplines is not meaningful or useful since the research groups that employ chemical or

quantum mechanical descriptions have different research goals, employ different methods,

and develop substantially different or incompatible conceptions (for example Schummer

2014).2

The paper presents a novel position about the relation of chemistry and quantum

mechanics, that resides within the two extremes. Specifically, it presents Kincaid’s model

of unity and examines whether it applies for the case of chemistry’s and quantum

mechanics’ descriptions of molecular structure. The resulting conclusion is that chemistry

and quantum mechanics form a ‘‘integrated and interleveled’’ (Kincaid 1997) body of

knowledge about molecular structure.3

Sketching the content of the two disciplines

Before presenting Kincaid’s model, some initial clarifications are made. Firstly, the paper

doesn’t use the term ‘theory’ when referring to chemistry and quantum mechanics. Instead,

it refers to them as ‘disciplines’. Let me explicate why. Chemistry and quantum mechanics

involve the development of theoretical postulations and conceptions in order to describe,

explain and predict a particular domain of phenomena. Often, they specify, support or

explain those postulations via the use of mathematical models, visual representations,

experimental or semi-empirical methods. This aspect should not be excluded from a dis-

cussion of their relation. Firstly, because neglecting this would provide a distorted image of

how chemistry’s and quantum mechanics’ descriptions are formulated, and explained.

Secondly, because it would exclude important aspects of Kincaid’s model of unification;

namely of a unification that depends on the confirmatory, explanatory and heuristic

interaction of the two disciplines. In my view, the term ‘discipline’ captures more accu-

rately the fact that models, representations etc. are taken into account when examining the

relation between chemistry and quantum mechanics.

Furthermore, the paper argues that if chemistry’s and quantum mechanics’ relation

complies to Kincaid’s model, then their respective descriptions of molecular structure can

be understood as forming a unified ‘body of knowledge’.4 ‘Body of knowledge’ refers not

only to the theoretical postulations and conceptions developed for the prediction and

explanation of a specific phenomenon. It also includes the mathematical models, visual

representations, approximations, semi-empirical methods and experimentations that are

involved in the description of that phenomenon.

Moreover, let me specify the main concepts postulated for the descriptions of molecular

structure, by reference to the two disciplines’ scales. ‘Scale’ refers to the particular time,

length or energy scale to which the objects of a discipline are relative. For example, at ‘‘the

2 There are also pluralist and emergentist understandings of chemistry that aren’t restricted to its
methodological or conceptual incompatibility with quantum mechanics. See for example Chang (2012),
Hendry (2006b), Lombardi and Labarca (2005).
3 Whether this sort of unification applies to descriptions of other chemical phenomena could possibly be
argued for, but isn’t pursued here.
4 Kincaid employs the term ‘theory’ when presenting his model of unity-without-reduction. Also, the term
‘body of knowledge’ is an added element that is proposed here. The paper slightly differentiates itself from
Kincaid’s original unificatory model, without however distorting its core thesis.
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quantum scale there are no cats; at scales appropriate for astrophysics there are no

mountains (..)’’ (p. 199, Ladyman and Ross 2007).

In chemistry, the time and length scale within which the chemical objects are defined is

not particularly fine grained. Chemical phenomena are described with reference to objects

of substantially different time and length scales; atoms, molecules and electrons are rel-

ative to a different time and length scale compared to, say, grams of iron reacting with

oxygen gas. Since the paper is concerned with the description of molecular structure, it

only focuses on the former scale.

Specifically, chemistry tracks molecular structure by reference to molecules, atoms,

chemical bonds, electrons and nuclei. The structure of the molecule is described in terms of

the characterisation of the atoms that make it up, and in terms of the interactions that take

place between them (namely via the chemical bond). In quantum mechanics, the basic

entities employed are nuclei and electrons. The Schrödinger equation describes the

movement and energies of each of the participating nuclei and electrons and then, by

employing approximate models, one can calculate the behaviour of the aggregate that they

form.

Two points are worth specifying based on the above. First, chemistry and quantum

mechanics describe molecular structure in partially overlapping (thus distinct) scales.

Second, although certain entities belong to the scale of both disciplines (i.e. electrons and

nuclei), those entities have different epistemic significance in the two descriptions.

Chemistry refers to electrons and nuclei in order to explain molecular structure, but does

not provide a complete descriptive and explanatory account of those entities. On the other

hand, quantum mechanics is in the business of explaining and describing electrons and

nuclei. In fact, while electrons and nuclei are employed in chemical descriptions of

molecular structure, they are taken in the context of their characterisation in quantum

descriptions. Chemistry employs descriptions of atomic structure in order to describe and

explain molecular structure, and as such, those descriptions are taken as already established

postulations that have been supported in quantum mechanics.5

The next section presents the seven criteria that make up Kincaid’s model of unity, and

argues that they hold with respect to the two disciplines’ descriptions of molecular

structure.

The seven elements of Kincaid’s unity

Kincaid proposed a non-reductive model in order to argue for the unification of individ-

ualism and macroeconomics. Interestingly, a similar unificatory view was held by Pierre

Duhem for the relation of chemistry to physics (Needham 2010). Although Duhem did not

extensively develop the requirements of such a unification, Duhem’s unity is based on a

non-reductive, heuristic and explanatory interdependence between the two sciences (p. 166

Needham 2010); something that Kincaid explicitly requires in order for his model to hold.

The model is defined via seven elements6 which, if they hold with respect to the two

descriptions of molecular structure, establish unity and support the existence of a unified

5 Although the determination of chemical and quantum scales implies some sort of integration of quantum
mechanical postulates to chemical descriptions, I don’t elaborate on this point until Kincaid’s model is fully
presented.
6 The model also explicitly rejects reducibility and strong emergence. This aspect of the model isn’t
currently examined due to limited word length.
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body of knowledge about molecular structure. These elements define unification in Kin-

caid’s sense, but also act as criteria for this unification to hold. According to Kincaid, the

first three elements (namely (1), (2), (3) below) suffice for unity to hold. If it is possible to

support the other four criteria as well (namely (4), (5), (6), (7) below), then the position is

more strongly defended. Let us examine each element in detail.

(1) The higher-level entities, postulated by chemistry for the description of molecular

structure, are either composed of, or token identical to the entities postulated by the

quantum mechanical description of molecular structure. (p. 66, Kincaid 1997)

The paper’s interest lies in the relation of the two disciplines with respect to their

descriptions of molecular structure. In this context, it is warranted to restrict the

examination of the first criterion only to the higher level entities that are involved in the

chemical description of molecular structure; namely atoms, molecules and chemical

bonds.

Firstly, some clarifications about the main terms need to be stated. By the term ‘entity’

the paper doesn’t include properties7; namely attributes, characteristics, features or qual-

ities that can be postulated or attributed to things (Orilia and Swoyer 2016). Chemical

properties that are involved in the description of molecular structure such as bond energy,

bond length etc. do not fall under Kincaid’s first criterion but are addressed within the third

criterion (namely (3)).

Also, by ‘composed’ the paper refers to a part-whole relation8 between entities. This

relation is not merely an aggregative relation, in the sense of a thousand grains of sand

composing a heap. Rather, it also includes the possibility that the whole is partially

determined by the physical interactions9 between those parts. In other words, composition

is not restricted to a material, aggregative composition of the parts; it includes their

respective physical interactions as well.

Consider then the atom. The atom is the most basic constitutive unit in chemistry. It is

understood as comprised of a nucleus (i.e. a number of protons and neutrons) and of a

number of negatively charged electrons that surround it. The entities that compose

chemistry’s atom (i.e. protons, neutrons and electrons), are the lower-level entities that are

postulated by quantum mechanics. The manner in which lower level entities make up the

atom according to quantum mechanics, is fully accepted by chemistry. For example,

chemistry accepts that electrons move in a wave-like manner around the nucleus and that,

due to the pull of the nucleus, electrons are confined to have particular energies (i.e. to be

quantised), and to move within certain boundaries around the nucleus.

The aforementioned image of the atom has direct consequence for chemistry’s

description of molecules. A molecule represents a group of atoms that are arranged in a

particular manner in space and are held together via chemical bonds. Therefore, based on

the image of the atom, the molecule is ultimately composed of quantum mechanical

entities as well; namely nuclei and electrons.

7 This is a plausible interpretation of Kincaid’s requirement about ‘entities’, since Kincaid presents a
separate criterion that pertains to ‘properties’ (i.e. the requirement of supervenience in ‘‘Chemical properties
supervene on quantum mechanical properties (p. 66, Kincaid 1997)’’ section).
8 The paper doesn’t examine the philosophical debates concerning the nature of part-whole relations.
9 Physical interactions are gravitational, electromagnetic, strong nuclear and weak nuclear interactions. In
the case of the quantum mechanical description of molecules, the interactions with the largest effect are
electromagnetic in nature, so the paper primarily refers to this type.
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Concerning the chemical bond, there has been extensive debate [for example Hendry

(2006a),Weisberg (2008)] about whether it refers to a material part of a molecule or to a state

of energetic stability of molecules. Specifically, the structural conception takes that chemical

bonds are material parts that signify the spatial relationship between a pair of atomic nuclei

within a molecule (p. 917, Hendry 2006a). The energetic conception takes chemical bonding

to signify ‘‘facts about energy changes betweenmolecular or supermolecular states.’’ (p. 919,

Hendry 2006a). The paper doesn’t defend a particular conception of the chemical bond; rather

it argues that under either of the two conceptions, Kincaid’s criteria are satisfied.

Specifically, the structural conception of the chemical bond understands it as a material part

of molecules and thus as a higher level entity. Therefore, for Kincaid’s model to be correct, the

(structural) chemical bond should be either composed of or token identical to lower-level

entities. Indeed this is the case. In chemistry it is represented asbeing thematerial partwithin the

molecule that links atomic centres through the interaction of each atom’s outer shell electrons.

Electrons are part of the structural chemical bond, in the sense that they contribute, via their

mutual interaction, to the stability that is achievedbetween the participating atomic centres, and

consequently, to the stability of the entire molecule. Quantum mechanics describes the struc-

tural chemical bond in terms of thewave function of the participating lower level entitieswhich

specifies their interaction and behaviour. In this context, the structural chemical bond is indeed

composed of the electrons and their interactions, both between each other and with the

respective nuclei (thatmake up the atomic centres in the chemical level). However, it should be

noted that, at the quantum level, the structural chemical bond in not composed of electrons in an

aggregative individualistic manner; rather they compose it in the sense that they are ‘‘occu-

pancies of non arbitrary partitions of the full electronic wave function that can be associated

with the bond’’ (p. 918, Hendry).

Concerning the energetic conception, even if the chemical bond refers to a set of

energetic properties of the entire molecule, Kincaid’s account is not challenged. This is

because, the energetic chemical bond (understood as a property) is supervenient on

quantum mechanical properties. This argument is elaborated in criterion (3).

(2) Chemistry and quantum mechanics are logically compatible (p. 66, Kincaid 1997)

Logical compatibility demands that chemistry and quantum mechanics do not make

contradictory claims. In order to support the logical compatibility of chemistry and

quantum mechanics, the paper makes a counterfactual claim and a socio-historical one.

The counterfactual claim states that, if chemistry assumed forces that are not postulated by

quantum mechanics, i.e. forces that are independent and different from the four main

forces postulated in the totality of physics, then indeed, this would suffice to claim that

chemistry is incompatible with quantum mechanics. Since however there are not such

chemical forces (on the contrary the forces postulated in the explanation of chemical

behaviour are all physical), then there is no such logical incompatibility.

This argument by itself does not suffice to support the logical compatibility of chemistry

and quantum mechanics. However, it acts as a positive indication in favour of the logical

compatibility of the two disciplines. Proceeding in a similar manner by examining all other

possible counterfactual claims will prove impractical and perhaps even untenable.

Therefore, I support the claim by invoking the following socio-historical argument.

The development of quantum chemistry10 does imply that the two disciplines must be

logically compatible, for if they weren’t, firstly, such a sub-discipline would not exist, and

10 Quantum chemistry is the sub discipline of chemistry that applies quantum models for the description,
prediction and explanation of chemical phenomena.
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secondly, this would necessarily lead to the amendment or rejection of one of the two

theories, or at least to the recognition of an anomaly in one of them.11 This is supported by

the fact that in cases where the chemical description was incomplete or implicitly pro-

moting an incompatible image with respect to quantum mechanics, chemistry has revised

its postulations and incorporated quantum mechanics’ main theses.12

The most striking example of the above is how chemistry’s image of the atom signif-

icantly changed with the incorporation of quantum mechanics’ postulations about the

wave-like manner of entities, the quantisation of energy levels, and spin. I briefly present

this example by focusing on three particular events.

Firstly, quantum mechanics’ postulations of the wave-like manner of entities affected

and influenced chemistry’s image of the atom. The proposition that entities do not only

behave as particles but also as waves had a direct effect on the way atoms were perceived

and on how their inner structure could be described. In this context, Schrödinger formu-

lated the second-order differential equation that would describe the behaviour of a particle

in terms of its wave-like characteristics. Specifically, electron behaviour was described in

terms of the Schrödinger equation which is the mathematical representation of the tra-

jectory of electrons. Added to this is the de Broglie relation which calculates the wave

length of the electrons and relates it to their momentum via Planck’s constant, h.

Secondly, Planck’s proposal that the amount of energy emitted from a blackbody in

thermal equilibrium is discrete and not continuous, had a significant effect on the model of

the atom as well. Specifically, Bohr incorporated Planck’s conclusion (p. 262–269, Pull-

man 1998) in his model of the atom, by postulating stable electron orbits around the

nucleus and by suggesting that, when an electron occupying a specific orbit ‘jumps’ onto

another orbit, it either releases or absorbs a discrete amount of energy.

Thirdly, the Schrödinger equation brought in a natural way Bohr’s image of the atom

since it generated and specified Bohr’s three quantum numbers (p. 277, Pullman 1998).

Bohr’s quantum numbers that were ‘‘associated with the size, shape, and spatial orienta-

tion’’ (p. 268, Pullman 1998) of the orbits, were now inferred by quantum mechanics

instead of merely being postulated.

In conclusion, the aforementioned events illustrate that developments in quantum

mechanics were not only accepted by chemistry but were incorporated in chemical

descriptions and explanations of atomic and molecular behaviour. This reveals the success

and continuous effort to preserve the logical compatibility of the two theories.

(3) Chemical properties supervene on quantum mechanical properties (p. 66, Kincaid

1997)

Kincaid understands supervenience in the sense that fixing a set of lower level properties

fixes any higher level property (p. 72, Kincaid 1997). What Kincaid means by ‘fix’ is not

entirely clear, so the paper assumes an understanding of supervenience that is compatible

with Kincaid’s model. The paper presents the basic points derived from Kincaid’s

understanding of supervenience and then provides a definition of the term that is com-

patible with Kincaid’s understanding of supervenience.

11 Logical compatibility should not be confused with other sorts of compatibilities, like conceptual or
methodological compatibility. These incompatibilities could be argued for, however, they do not challenge
the fact that the two disciplines are logically compatible. (For more on conceptual compatibility see
Schummer 2014).
12 See Gavroglu and Simoes (2012) for an account of how the development of quantum mechanics affected
chemistry and resulted to the formation of quantum chemistry.
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The basic points that constitute Kincaid’s understanding of supervenience are the

following;

I. Supervenience does not ensure the existence of bridge laws, identity relations or

definitions that connect lower level with higher level properties. Specifically, it is

not required that one is able to describe the specific relationship between chemical

and quantum properties. Supervenience does not provide any systematic way of

describing such relations, it merely postulates that some sort of relation between

the quantum and chemical ontology exists.

II. It is possible for a lower level property to fix or determine more than one higher

level property. In fact, it might be the case that the way higher and lower level

properties cut up the world is very different, making it possible for a property of a

higher level theory never to be equivalent to one or more properties of the lower

level theory. Therefore, it is not required that a specific chemical property is related

to a specific quantum property.

III. Supervenience is not refuted if the lower level predicates that describe lower level

properties are derived through the use of ad hoc information from higher level

predicates of the respective higher level description of that system. It is irrelevant

whether the description of lower level entities and properties is facilitated by

information provided from the description of the respective higher level entities

and properties that are composed or supervenient upon them.

IV. It allows multiple realisability; namely it is possible for two systems to differ with

respect to their lower level properties, while not differing with respect to their

higher level properties. In terms of our discussion, this amounts to allowing the

possibility of two entities differing with respect to some set of their quantum

properties, while not differing with respect to their chemical properties.13

V. Supervenience is not taken to be a necessitation relation between higher and lower

level properties; it is not the case that a change in the chemical properties of an

entity necessitates a specific change in the quantum properties of that entity. It

merely postulates that there is a change in quantum properties, when there is a

change in chemical properties. Whether this is necessitation relation between

higher and lower level properties, or a relation of a different modal force is not

examined and our account of supervenience allows for different interpretations of

that relation.

Supervenience then is an ontological position with regard to the relation between

chemical and quantum mechanical properties. It postulates the existence of a relation

between chemical and quantum mechanical properties, such that when any chemical

property of a molecule (say its structure) changes, then it is always the case than one or

more of the quantum mechanical properties of its composing (or token identical) lower

level elements have changed as well. However, this does not entail, neither that this is a

one-to-one relation, nor that such a relation be epistemically describable by the chemical or

quantum formulation (see point I). More importantly, it doesn’t have to be the case, for

supervenience to hold, that one is able to pin point which specific set of properties as

described in the quantum mechanical formalism correspond or (at least) change when a

chemical property changes.

13 Whether this is the case between chemical and quantum properties does not challenge our understanding
of supervenience, so the paper doesn’t examine whether multiple realisability holds.
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A sufficient, though not necessary, argument for supervenience would be to show that

when the complete chemical description of a molecule changes, then its relevant complete

quantum mechanical description changes as well. Notice that this sort of epistemic support

of supervenience rests on the assumption that both descriptions are complete in their

characterisation of a molecule. That is, it is not the case that either the chemical or the

quantum mechanical description miss out in describing some chemical or quantum

mechanical property, process or interaction that takes place within the system; the system

is fully described within the context of the chemical and quantum mechanical

formulations.

Although this is a possible strategy to follow in order to defend supervenience, it will

not be elaborated here, mainly due to restrictions in the length of the paper. Instead, it is

argued that rejecting supervenience would lead to conclusions that are not supported by the

our best current chemistry and quantum mechanics.

Let us suppose then that supervenience does not hold. It follows that there is at least one

higher level property of a system that, when it changes, there is no lower level property of

the system that changes; the system remains invariant on the lower level. In this case, this

would amount to claiming that when a chemical property of a system changes, none of its

quantum mechanical properties change. Epistemically this would be reflected by the fact

that the (complete) quantum mechanical description of the system remains the same as

before the change in the chemical description.

Although supervenience is not here defined in terms of determination or realisation,

from its rejection it follows that there are at least some aspects of the higher level beha-

viour of a system (i.e. property, interaction, process) that is not determined or realised by

its lower level entities and their respective interactions; they are in principle inexplicable

by any sort of description of its lower level entities and properties. For chemical properties

this can be stated as followed: there is at least one chemical property of the system that is

not determined by the existence, interactions and properties of its composing quantum

parts (i.e. electrons and nuclei). It is not only that the change in a chemical property has not

been detected in the quantum description; most importantly, such a change is ontologically

undetermined by any lower level set of properties of its parts.

Do our best current physical and chemical formulations of molecular structure allow for

the possibility of such a view of molecules? Although we do not take supervenience as

self-evidently true, nor do we deny that it is questionable whether and to what extent it can

be maintained when considering for example the mind–body relation (p. 96, Dupré 1993),

within the context of chemistry and quantum mechanics it is safe to argue that the rejection

of supervenience would lead to the acceptance of a thesis that is scientifically dubious.

Firstly, there is no positive scientific evidence that molecules behave in a manner that is

totally independent from the perspective of quantum mechanics; rather the contrary. The

only evidence that has been presented is negative [for example Hendry (2006b) and

Hendry (2010)] in the sense of presenting specific and unique cases of chemical properties

whose changes have not (supposedly) been epistemically recovered in the quantum

mechanical description. Even if, for example, we accept that isomers cannot be differen-

tiated quantum mechanically with respect to some of their structural properties, changes to

the majority of chemical properties (whether structural or not) are in fact reflected in

changes in the wave function of the respective system. The fact that only some structural

changes may not be described quantum mechanically should be regarded as evidence in

favour of supervenience rather than as evidence against it, especially if one considers the

array of alternative epistemic justifications that have been provided in order to explain such

‘failures’ of the quantum formalism [see for example Scerri (2012)].
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The fourth criterion of Kincaid’s model is focused on exactly this point (i.e. (4)). It

requires that there is sufficient scientific evidence that could inductively support that higher

level properties supervene upon lower level ones.

(4) It is possible to inductively support supervenience by citing examples of quantum

mechanical mechanisms that fix or realise higher level properties (p. 66, Kincaid

1997)

The support of supervenience can be strengthened by citing examples of mechanisms that

illustrate how the chemical properties are fixed or determined by the properties of lower-

level entities. Kincaid does not require that there is a complete set of mechanisms in the

quantum description that realise or bring about the complete set of higher-level properties;

he merely wishes to support supervenience by pointing out that there exist examples of

mechanisms that illustrate his point. The most striking perhaps quantum mechanism is the

one used to define the orbital structure of atoms in chemistry.

This mechanism is based on Schrödinger’s specification of the three quantum numbers

and on Pauli’s exclusion principle that specifies the fourth quantum number. It outlines the

building rules with which chemists are able to specify the electron configuration of atoms,

and consequently it provides the basis for specifying what kind of bonds different types of

atoms can form, and with what type of atoms that could be.

The electron configuration of an atom is a ‘‘list of all its occupied orbitals, with the

number of electrons that each one contains’’ (p. 33, Atkins and Jones 2010). This list is

completed by following certain building rules that are based on Schrödinger’s solution of

the wave function for the hydrogen atom, and on Pauli’s Principle. Specifically, atomic

orbitals refer to one-electron orbital eigenfunctions which are ‘‘based on the attraction of

the nucleus for the electron we are considering plus the average repulsion of all the other

electrons’’ (p. 13, Mulliken 1967). The shape and size of the area that the electron is most

probably occupying around the nucleus is designated by the four quantum numbers.

The first quantum number is the principle quantum number,14 which represents the

energy and size of the atomic shell. This classification of orbitals into atomic shells is

further sub-divided because an electron can occupy an atomic shell by orbiting around in

various forms. These different forms are captured by the notion of subshell, and each

subshell is represented by the angular momentum quantum number, l. In chemistry, one

writes down the shell and subshell that an electron occupies, in terms of the value of the

principle quantum number (n) and the letters s,p,d,f that correspond to the values of the

angular momentum quantum number (l). So, for example 1 s represents a subshell of the

s-form that occupies the lowest atomic shell, 2p represents the p subshell in the second

atomic shell etc.

Moreover, from the quantum calculation of the probability density of finding an electron

at a particular subshell, it turns out that not all atomic shells allow all forms of subshells (p.

33, Atkins and Jones 2010). This is because for example, the wave function of a p-electron

vanishes at its nucleus. That is why, in shell-1 an electron will be found to occupy only an

s-subshell, and not a p- or f-subshell. Keeping this in mind, quantum mechanics has posited

a ranking of orbitals of the following form:

1s\ 2s\ 2p\ 3s\ 3p\ 3d\ � � �

14 I follow the technical notation of Atkins and Friedman (2005) and Atkins and Jones (2010).
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The third feature required to specify the orbital of an electron is the magnetic quantum

number, ml. The value of ml specifies the individual orbitals within a subshell and rep-

resents the different direction of each orbital within that subshell.

The last element for a complete description of the electrons’ orbitals, is derived from

Pauli’s Principle. Pauli introduced a rule according to which a maximum of two electrons

can occupy one orbital; namely an orbital with a specific set of (n,l, ml) numbers. These

two electrons are viewed as if moving on opposite directions on the orbital and they are

represented uniquely in chemistry by one more quantum number, namely spin (which takes

two possible values; ?1/2, -1/2).

In sum, the possible values of the three quantum numbers, together with their subshell

ranking and the Pauli Principle, act as building rules that chemists use in order to write the

electron configuration of an atom. By following those rules, it is possible to represent the

orbitals that the electrons of a particular atom will occupy in terms of them having

particular size, shape and orientation. So, for example, the hydrogen atom has one electron.

It must be the case that the lowest energy shells are occupied first; so hydrogen’s electron

occupies shell-1. Also, we know that in shell-1 the electron moves necessarily in an

s-subshell, namely spherically around the nucleus. So, the electron of a hydrogen atom

occupies orbital 1 s. For the carbon atom, which has six electrons, two electrons will

occupy shell-1 on an s-subshell with opposite spin (due to Pauli’s Principle), two more will

occupy shell-2 on an s-subshell, and the other two will occupy shell-2 on a p-subshell.

Which orbital must be filled first is indicated by the aforementioned ranking of orbitals

(1 s\ 2 s\ 2p\ 3 s\ 3p\ 3d\ ���).
This mechanism illustrates how certain chemical properties of atoms and molecules

supervene on quantum properties of electrons and nuclei. The number of electrons that fill

the last atomic orbital and the particular quantum characteristics of the atomic orbital (in

terms of the quantum numbers that specify it), realise the overall structure of the atom, and

subsequently its chemical behaviour. This is particularly important for the chemical

description of atoms and molecules since, specifying the structure of each atom that

participates in the formation of a molecule, defines and explains the particular bonds that

are formed with other atoms within the molecule as well as those bonds’ properties, and

thus contribute to the explanation and prediction of the structure and reactivity of the

molecule.

(5) Both chemistry and quantum mechanics heuristically depend on each other (p. 66,

Kincaid 1997)

For the two theories to be considered as ‘heuristically dependent’ upon each other, the

paper takes that it should be the case that both quantum mechanics and chemistry;

i. have enriched or influenced the research questions that concern the other discipline

ii. have developed tools, methods or models that have accommodated the research

questions of the other discipline.

Indeed, the relation of chemistry and quantum mechanics has illustrated such a heuristic

interdependence and has enriched the research questions of both theories. Quantum

mechanics led chemists to further investigate the structure of atoms and to incorporate in

the chemical description quantum mechanical postulations about the structure of atoms.

Conceptual issues such as the nature of the chemical bond still maintain a lively debate

among chemists and physicists, since quantum mechanics revealed the existence of factors

that affect the conceptual understanding of basic chemical concepts. On the other hand,

chemistry also raised questions that enriched quantum mechanical research; different
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quantum models are continuously being developed in order to expand the quantum

mechanical description to various kinds of entities (i.e. atoms, diatomic molecules, poly-

atomic molecules, metals etc.).

Moreover, the history of quantum chemistry reveals a continuous exchange of tools,

methods and models in the effort to satisfy explanatory and predictive needs of both sides.

Chemists have gained a substantial amount of quantitative and qualitative information

concerning molecular structure by quantum models that solve, via approximations and

idealisations, the Schrödinger equation for different types of atoms or molecules. Certain

techniques manage to give us accurate descriptions of small molecules, whereas others are

more successful in describing larger (polyatomic) molecules, or types of matter such as

metals (see Hoffman 1990). Moreover, through the development of the Molecular Orbital

approach, quantum chemists developed novel visual representations of molecular orbitals

that enriched chemistry’s understanding of molecular structure in organic chemistry.

All in all, exploring the history of the development of chemistry, quantum mechanics

and computation illustrates how those disciplines of scientific investigation have utilised

each others’ models in order to expand their research and to accommodate their

explanatory, heuristic and predictive needs (see Gavroglu and Simoes 2012). Currently,

this interdependence between chemistry and quantum mechanics has been extended in a

wide range of sub-disciplines, where quantum mechanical models are used in material

science, drug design etc. (p. 245, Matta 2013). Although those needs may be different for

each discipline, this does not mean that the models they use are not provided by other sub-

disciplines. In this sense, Kincaid’s criterion is fulfilled.

(6) Chemistry and quantum mechanics confirmationally depend on each other (p. 66,

Kincaid 1997)

Chemistry and quantum mechanics are confirmationally dependent in two ways. Firstly,

the results of chemical experimentation have played a vital role both in the development

and in the evaluation of quantum models. The quantitative results of quantum models are

compared with experimental results so as to see how accurate the model is and to what

direction changes need to be made within the model so as to minimise error. Those

experimental results are provided through the work of experimental chemists who, with the

use of spectroscopical and other techniques, calculate chemical properties. This aspect of

confirmational interdependence is illusttrated in (Weisberg 2008), who evaluates the

predictive success of different quantum models by comparing the calculation of the dis-

sociation energy and the equilibrium distance of atomic nuclei in quantum models, with the

respective results of chemists’ experimental calculation of the dissociation energy and

bond length.

Secondly, novel predictions of chemical phenomena have been made with the help of

quantum mechanics. For example, the specification of atomic structure by quantum

mechanics helped chemists understand spectroscopic results and thus predict novel ele-

ments, in accordance to the periodic table (p. 213, Needham 2004). Moreover, quantum

models have made novel predictions about, among others, pericyclic reactions (p. 1057,

Hendry 2004), large molecules, and metals, enriching thus chemical knowledge and cor-

roborating chemistry’s theoretical postulations.

(7) Chemistry and quantum mechanics contribute in the explanatory endeavours of each

other (p. 66, Kincaid 1997)

Kincaid does not specify in detail what he means by ‘explanation’ nor does he explicitly

support a particular philosophical model of explanation (i.e. deductive nomological, SR
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model, causal mechanical etc.). The paper retains this neutral position and understands

explanation in a naive, qualitative and scientistic sense. Specifically, it takes as explanatory

any narrative developed within the scientific literature and pedagogy, and employed by

working scientists in order to understand the phenomena which they examine.

In the context of such an understanding of ‘explanation’, the paper takes that Kincaid’s

seventh criterion holds with respect to chemistry and quantum mechanics. Specifically,

advances in quantum mechanics have enriched chemical explanations of molecular

structure and at times even led to their revision. This can be argued from an opposite

perspective as well; chemical explanations of molecular structure have been used in the

development of quantum models and have guided quantum chemists towards a more

accurate interpretation of the mathematical description of atoms and molecules (as this

manifests via the Schrödinger equation). In fact, genuine explanatory differences both

between different quantum models, and between quantum models and chemistry have

raised heated discussions in order to consolidate or review the explanatory account of one

or both of the sides.

There are several examples that illustrate this interdependence, among which are the

following;

• The use of the quantum mechanical account of atomic structure in the explanation of

the periodic table. As already illustrated, quantum mechanics provide chemists a

mechanism to specify and explain atomic structure in terms of electron configuration.

This proved particularly helpful in the explanation of the periodic table and of its

success in classifying chemical elements according to similar chemical and physical

properties (Scerri 2006). Despite the fact that the periodic table was constructed long

before the advent of quantum mechanics, quantum mechanics provides the explanation

of why the chemical elements belonging in specific vertical and horizontal columns

exhibit particular similarities.

• Quantum mechanics has enriched the understanding of molecular structure through the

explanatory conclusions derived by different quantum models that attempt to describe

molecular structure. For example, the development of the molecular orbital (MO)

approach in quantum mechanics has revealed the effect of electron delocalisation on

the overall stability of a molecule. Modern versions of the MO approach, like the

Hartree–Fock methods and the Configuration Interaction approach (CI), take into

account the repulsion of electrons, the ionic character of chemical bonds and the

mixing of higher energy states, revealing additional factors that enrich chemistry’s

understanding of basic chemical concepts pertained to molecular structure (Weisberg

2008).

• Quantum mechanical models have been developed with the help of theoretical

chemistry in the sense that the models are calibrated or corrected through the use of

chemical postulations or assumptions from chemistry (p. 183, Hendry 2010).

Concluding this section, there is sufficient evidence that supports the heuristic, con-

firmatory and explanatory interdependence of quantum mechanics and chemistry. This

epistemic interdependence, together with the satisfaction of supervenience and the logical

compatibility of the two theories, define the specific model of unification and, conse-

quently, strongly support that quantum mechanics and chemistry are indeed unified in such

a way.
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Concluding remarks: the virtues of Kincaid’s unificatory model

Kincaid’s unificatory model is primarily an epistemic position regarding how different

disciplines formulate a unified body of knowledge that is continuously influenced and

developed through each discipline’s explanatory, confirmatory and heuristic advances.

Molecular structure is described, explained and predicted through the theoretical postu-

lations and conceptions, but also the experimental and representational tools of both

quantum mechanics and chemistry, resulting in the formation of a unified body of

knowledge.

This understanding of unification is compatible with various epistemic and ontological

positions about chemistry and quantum mechanics. Although an enumeration of all the

alternatives is not currently possible, let me provide some examples. On the one hand, it is

possible to maintain the autonomy of the two disciplines, if one understands the term as

merely signifying the existence of distinct research groups with distinct research goals, that

employ independent methods, tools, models, or even conceptions. On the other hand, the

model is also compatible with the existence of local reductions between the two

descriptions; namely Kincaid’s unity is not refuted if, for example, certain properties of the

higher level description are connected via bridge laws to sets of lower level properties.

Concerning metaphysical issues, the supervenience thesis does not necessarily entail that

the higher level entities and properties are eliminable from reality (though this is also a

compatible position). One could still maintain that molecules exist and that their structure

is real, without contradicting Kincaid. These points however will be discussed on another

occasion.
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