Skip to main content

Advertisement

Log in

Mathematical Analysis of the Effects of HIV-Malaria Co-infection on Workplace Productivity

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

In this paper, a nonlinear dynamical system is proposed and qualitatively analyzed to study the dynamics and effects of HIV-malaria co-infection in the workplace. Basic reproduction numbers of sub-models are derived and are shown to have LAS disease-free equilibria when their respective basic reproduction numbers are less than unity. Conditions for existence of endemic equilibria of sub-models are also derived. Unlike the HIV-only model, the malaria-only model is shown to exhibit a backward bifurcation under certain conditions. Conditions for optimal control of the co-infection are derived using the Pontryagin’s maximum principle. Numerical experimentation on the resulting optimality system is performed. Using the incremental cost-effectiveness ratio, it is observed that combining preventative measures for both diseases is the best strategy for optimal control of HIV-malaria co-infection at the workplace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams BM, Banks HT, Kwon H, Tran HT (2004) Dynamic multidrug therapies for HIV: optimal sti control strategties. Math Biosci Eng 1(2):223–241

    Article  Google Scholar 

  • Agarwala BD (2002) On two ode models for HIV/AIDS development in canada and a logistic seir model. Far East J Appl Math 6(1):25–70

    Google Scholar 

  • Agraj T, Naresh R, Dillep S (2007) Modeling the effects of screening of unaware infectives on the spread of HIV infection. Appl Math Comput 184:1053–1068

    Article  Google Scholar 

  • Anderson RM, Medly GF, May RM, Johnson AM (1986) A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. IMA J Math Appl Med Biol 3:229–263

    Article  Google Scholar 

  • Baba S, Makinde OD (2014) Optimal control of HIV/AIDS in the workplace in the presence of careless individuals. In: Computational and mathematical methods in medicine 2014. doi:10.1155/2014/831506

  • Baryarama F, Joseph YTM, Luboobi LS (2005) An HIV/AIDS model with variable force of infection and its application to the epidemic in Uganda. Am J Appl Sci 2:1274–1278

    Article  Google Scholar 

  • Bertrand JT, O’Reilly K, Denison J, Anhang R, Sweat M (2006) Systematic review of the effectiveness of mass communication programs to change HIV/AIDS-related behaviors in developing countries. Health Educ Res 21(4):567–597

    Article  Google Scholar 

  • Blayneh K, Cao Y, Kwon HD (2009) Optimal control of vector-borne diseases: treatment and prevention. Discret Contin Dyn Syst B 11(3):587–611

    Article  Google Scholar 

  • Castillo-Chavez C, Blower S, Driessche P, Kirschner D, Yakubu AA (2002) Mathematical approaches for emerging and reemerging infectious diseases: models, methods, and theory. Springer, New York

    Google Scholar 

  • Castillo-Chavez C, Song B (2004) Dynamical models of tuberculosis and their applications. Math Biosci Eng 1(2):361–404

    Article  Google Scholar 

  • Chin J (1990) Current and future dimensions of the HIV/AIDS pandemic in women and children. Lancet 336(8709):221–224

    Article  Google Scholar 

  • Chitnis N, Cushing JM, Hyman JM (2006) Bifurcation analysis of a mathematical model for malaria transmission. SIAM J Appl Math 67:24–45

    Article  Google Scholar 

  • Coffee M, Lurie MN, Garnett GP (2007) Modeling the impact of migration on the HIC epidemic in south africa. AIDS 21(3):343–350

    Article  Google Scholar 

  • Daabo MI, Baba S (2012) Modelling the effect of irresponsible infective immigrants on the transmission dynamics of HIV/AIDS. Adv Appl Math Biosci 3:31–40

    Google Scholar 

  • Daabo MI, Makinde OD, Baba S (2012) Modelling the spread of HIV/AIDS epidemic in the presence of irresponsible infectives. Afr J Biotechnol 11(51):11287–11295

    Google Scholar 

  • Essunger P, Perelson AS (1994) Modeling HIV infection of \(\text{ CD }_{4} +\text{ T }\)-cell subpopulations. J Theoret Biol 170(4):367–391

    Article  Google Scholar 

  • Fleming WH, Rishel RW (1975) Deterministic and stochastic optimal control, vol 1. Springer, New York

    Book  Google Scholar 

  • Gumel A, Shivakumar PN, Sahai BM (2001) A mathematical model for the dynamics of HIV-1 during the typical course of infection. Nonlinear Anal Theory Methods Appl 47(3):1773–1783

    Article  Google Scholar 

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653

    Article  Google Scholar 

  • Jung E, Iwami S, Takeuchi Y, Jo TC (2009) Optimal control strategy for prevention of avian influenza pandemic. J Theoret Biol 260(2):220–229

    Article  Google Scholar 

  • Lenhart SM, Workman JT (2007) Optimal control applied to biological models, vol 15. CRC Press, Boca Raton

    Google Scholar 

  • Makinde OD, Okosun KO (2011) Impact of chemo-therapy on optimal control of malaria disease with infected immigrants. BioSystems 104:32–41

    Article  Google Scholar 

  • Moghadas SM, Gumel Abba B, McLeod Robert G, Gordon Richard (2003) Could condoms stop the AIDS epidemic? J Theoret Med 5:171–181

    Article  Google Scholar 

  • Mukandavire Z, Garira W (2007) Sex-structured hiv/aids model to analyse the effects of condom use with application to Zimbabwe. J Math Biol 54(5):669–699

    Article  Google Scholar 

  • Nikolaos IS, Klaus D, Dieter S (1997) Analysis of a model for the pathogenesis of AIDS. Math Biosci 145(1):27–46

    Article  Google Scholar 

  • Okosun KO, Makinde OD (2013) Analysis of recruitment and industrial human resources management for optimal productivity in the presence of HIV/AIDS epidemic. J Biol Phys 39:99–121

    Article  Google Scholar 

  • Okosun KO, Makinde OD, Abiodun GJ (2011) Transmission dynamics of HIV/AIDS with optimal control in the presence of carefree suscptibles and treatment, chap. A chapter in BIOMAT book series. World Scientific Publishing Co., Pte. LTd., pp 131–152

  • Okosun KO, Makinde OD, Takaidza I (2013) Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives. Appl Math Model 37:3802–3820

    Article  Google Scholar 

  • Pontryagin LS (1962) The mathematical theory of optimal processes, vol 4. CRC Press, Boca Raton

    Google Scholar 

  • Sharomi O, Podder C, Gumel A, Song B (2008) Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Math Biosci Eng 5(1):145

    Article  Google Scholar 

  • Tchuenche J, Garira W, Gumel A, Mukandavire Z (2009) Mathematical analysis of a model for hiv-malaria co-infection. MBE 6(2):333–362. doi:10.3934/mbe.2009.6.333

    Article  Google Scholar 

  • UNAIDS (2012) Global report: UNAIDS report on the global AIDS epidemic. In: Technical report

  • Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  Google Scholar 

  • WHO (2013) World malaria report. In: Technical report, Geneva 27, Switzerland

  • Yang HM (2000) malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector). Revista de Saúde Pública 34(3):223–231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baba Seidu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidu, B., Makinde, O.D. & Seini, I.Y. Mathematical Analysis of the Effects of HIV-Malaria Co-infection on Workplace Productivity. Acta Biotheor 63, 151–182 (2015). https://doi.org/10.1007/s10441-015-9255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-015-9255-y

Keywords

Navigation