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Abstract The evolutionary circuit design is an approach allowing engineers to

realize computational devices. The evolved computational devices represent a dis-

tinctive class of devices that exhibits a specific combination of properties, not visible

and studied in the scope of all computational devices up till now. Devices that belong

to this class show the required behavior; however, in general, we do not understand

how and why they perform the required computation. The reason is that the evolution

can utilize, in addition to the ‘‘understandable composition of elementary compo-

nents’’, material-dependent constructions and properties of environment (such as

temperature, electromagnetic field etc.) and, furthermore, unknown physical behav-

iors to establish the required functionality. Therefore, nothing is known about the

mapping between an abstract computational model and its physical implementation.

The standard notion of computation and implementation developed in computer

science as well as in cognitive science has become very problematic with the exis-

tence of evolved computational devices. According to the common understanding, the

evolved devices cannot be classified as computing mechanisms.

Keywords Computing mechanism � Evolutionary design � Evolvable hardware �
Implementation problem

Introduction

Our brains are physical devices, products of nature. Their behavior is often interpreted

as computing (see a thorough review in Piccinini 2003). In comparison with the
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ordinary computers, they differ in many features. One of them, especially important

for this paper, is their origin. Our brains were evolved; their increasing complexity has

emerged as a consequence of selection pressure (Dawkins 1991). They are

constructed in the process of development, in the course of cellular divisions and

cellular differentiations, starting from the zygote. In contrast, the ordinary computers

are built according to abstract computational models introduced to satisfy the a priori

given specification. The conventional process of implementation is well-developed

and has achieved an amazing success. In the process of top-down approach, engineers

are able to construct a chip consisting of 109 transistors; every of them perfectly

controlled. However, it seems that the traditional top-down design methods do not

allow engineers to create systems above a certain level of complexity. Furthermore, it

is very difficult to achieve self-adaptation and self-recovery using conventional

techniques. This contrasts very strongly with the mechanisms which have produced

the extraordinary diversity and sophistication of living creatures.

Getting inspiration from nature, evolutionary algorithms have been utilized to

design hardware in the recent decade (Higuchi et al. 1993; Sekanina 2004; Zebulum

et al. 2002). Evolvable hardware is an emerging field that applies evolutionary

algorithms to automate design and adaptation of physical, reconfigurable and

morphable structures such as electronic systems, antennas, microelectromechanical

systems and robots. Figure 1 demonstrates the difference between the traditional

implementation scheme and the evolutionary design approach. In contrast to the

conventional implementation, the evolutionary approach is based on the gener-

ate&test approach that modifies properties of the target physical system in order to

obtain the required behavior. Candidate solutions are iteratively generated by the

evolutionary algorithm and evaluated using the fitness function which assigns

higher scores to the behaviors better satisfying the specification.

In particular, the most promising outcomes of the evolutionary approach are: (1)

the artificial evolution can produce intrinsic designs for electronic circuits which lie

specification

physical system

conventional design process:
- implement abstract model
- use components
- apply rules ...

specification

physical system

evolutionary design process:
generate&test configurations

(a) (b)

create abstract model

Fig. 1 Conventional design (a) vs evolutionary design (b)
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outside the scope of conventional methods (Thompson et al. 1999) and (2) the

challenge of conventional design is replaced by that of designing an evolutionary

process that automatically performs the design in our place. This may be harder than

doing the design directly, but makes autonomy possible (Stoica 2004).

The evolved computational devices represent a distinctive class of devices that

exhibits a specific combination of properties, not visible in the scope of all

computational devices up till now. The main properties of this class of devices are

as follows:

1. We can specify behavior of these devices beforehand.

2. We can usually obtain their implementations.

3. In general, we are not able to understand why and how their internal

implementation causes the computation.

Properties (1) and (2) mean that these devices are useful for practice. Property (3)

is sometimes problematic from a practical point of view. It basically means that we

are not able to see any relation between the internal physical processes and the

required behavior which could be formulated via an abstract model. These devices

are totally different from those devices and concepts studied in the context of

theoretical computer science (Gruska 1997), computationalism (Piccinini 2003) and

the so-called ‘‘implementation problem’’ (Copeland 1996; Piccinini 2003; Scheutz

1999). Similarly to other classes of computational devices (e.g., abstract computing

machines or processors), we should address fundamental questions such as what

computational power these devices possess, whether they can be universal and what

is limiting for their complexity. However, because of the specific nature of the

process utilized to create them, we have to ask a more basic question: Are the

evolved devices the computers (computing mechanisms) in sense we usually

understand the computers? The notions of ‘computations’ and ’implementation’ are

significant for both cognitive science and foundations of computing. We could ask:

Could the analysis of evolved computing devices help for cognitive science?

This paper should contribute to the explanation of what it means for a

computational system to be designed evolutionarily and what we can expect from

the evolutionary approach that works on the position of human designer. In

particular, we claim that the evolved computing devices are not necessarily

computing mechanisms, although they can perform useful computations. The

standard notion of computation and implementation developed in computer science

as well as in cognitive science has become very problematic with the existence of

evolved computational devices. The computational power of evolvable computing

systems was analyzed in (Sekanina 2004); this analysis is not a part of this paper.

Evolutionary Design and Evolvable Hardware

Evolutionary Algorithms

Evolutionary algorithms (EAs) are stochastic search algorithms inspired by

Darwin’s theory of evolution. The search space is a space that contains all possible
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considered solutions to the problem, and a point in that space defines a solution.

Instead of working with one solution at a time (as random search, hill climbing and

other search techniques do (Michalewicz and Fogel 2000)), these algorithms operate

with the population of candidate solutions (individuals). Every new population is

formed using genetically inspired operators (like crossover and mutation) and

through a selection pressure, which guides the evolution towards better areas of the

search space. The evolutionary algorithms receive this guidance by evaluating every

candidate solution to define its fitness value. The fitness value, calculated by the

fitness function, indicates how well the solution fulfills the problem objective

(specification). A higher fitness value implies a greater chance that an individual

will live for a longer while and generate offspring, which inherit parental genetic

information. This leads to the production of novel genetic information and so to

novel solutions to the problem. The fundamental structure of an evolutionary

algorithm is captured in the following pseudocode:

Algorithm 1: Fundamental structure of an evolutionary algorithm

set time t ¼ 0

create initial population PðtÞ
evaluate PðtÞ
WHILE ðnot termination conditionÞ DO
t ¼ t þ 1

PðtÞ ¼ create new population using Pðt� 1Þ
evaluate PðtÞ

END WHILE

Because the objects in the search space can be arbitrary structures (e.g., real-

valued vectors, circuits, buildings, artefacts etc.), it is often helpful to distinguish

between the search space (i.e., solution or phenotype space) and the representation
space (i.e., chromosome or genotype space). The encoded solutions (genotypes)

must be mapped onto actual solutions (phenotypes).

The fitness function is applied to evaluate phenotypes. While the fitness function

operates with phenotypes, genetic operators are defined over genotypes. This

concept of genotype–phenotype mapping has not been considered as crucial in the

history of this field. It is probably due to the use of evolutionary algorithms as tools

for optimization. However, recent studies (especially in the field of evolutionary

design) assume this concept.

In order to show how EA can be used we can utilize Bentley’s classification

(Bentley 1999), which defines four main categories of applications of evolutionary

algorithms: evolutionary design optimization, creative evolutionary design, evolu-

tionary art and evolutionary artificial life forms.

Evolutionary design optimization. In general, an optimization problem requires

finding a set of free parameters of the system under consideration such that a certain

quality criterion (fitness function here) is maximized (or minimized). Designers

usually begin the process with an existing design, and parameterize those parts of

the design that they feel need improvement. The parameters are then encoded into

chromosomes and an evolutionary algorithm tries to find the global or a sufficient
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local optimum. The evolutionary optimization places great emphasis upon finding a

solution as close to the global optimum as possible. The genotype–phenotype

mapping is not practically important. Optimization of the coefficient values of a

digital filter or component placement on the chip are typical examples from the

electrical engineering industry.

Creative evolutionary design. Bentley specifies what ‘‘creativity’’ means in the

computer context (Bentley 1999): ‘‘... the main feature that all creative evolutionary

design systems have in common is the ability to generate entirely new designs

starting from little or nothing and be guided purely by functional performance

criteria. ... The emphasis is on the generation of novelty and originality, and not the

production of globally optimal solutions. ... A computer is designing creatively

when it explores the set of possible design state spaces in addition to exploring

parameters within individual design spaces. Typically such systems are free to

evolve any form capable of being represented.’’ In terms of evolutionary algorithms,

creative design is able to introduce new variables in the chromosome and so to

define new search spaces. Among others, evolvable hardware falls into this

category.

Evolutionary art. Evolutionary art is focused on creating new forms of images

and art. The output from evolutionary art systems is usually attractive, but non-

functional. A human evaluator determines the fitness, which is normally based on

aesthetic appeal.

Evolutionary Artificial Life forms. This means the usage of evolutionary

algorithms in the domain of Artificial Life.

Evolvable Hardware

The idea of evolutionary hardware design was introduced at the beginning of

nineties in papers of Higuchi and de Garis (Higuchi et al. 1993; de Garis 1993).

Evolvable hardware is usually defined as an approach in which the evolutionary

algorithm is utilized to search for a suitable configuration of a reconfigurable device

in order to achieve the behavior required by specification.

Reconfigurable Devices

The reconfigurable devices operate according to a configuration bitstream that is

stored in the configuration memory. The cells of the configuration memory control a

set of transistor switches. The switches define the way in which the programmable

elements available on the device operate and the way in which are interconnected.

By writing to this configuration memory, the user can physically create new

electronic circuits. The advantage of the approach is that new hardware function-

ality is obtained through a simple reprogramming of the chip, similarly to

reprogramming of the universal computer. These configuration bitstreams are

generated by a conventional design tool in a way similar to software design using a

compiler and builder. In evolvable hardware, these tools are replaced by

evolutionary algorithm.

Evolved Computing Devices and the Implementation Problem

123



The idea of reconfigurable hardware, initially introduced in programmable

digital devices such as Programmable Array Logic (PAL) and Field Programmable

Gate Array (FPGA), has attracted attention in various other domains in the recent

years. The first FPGAs were commercially introduced in middle eighties by Xilinx,

Inc. Contemporary FPGAs contain thousands of programmable elements. Further-

more, various additional circuits are integrated on the FPGAs, including RAMs,

efficient multipliers and interfaces. Nowadays, there are many different types of

reconfigurable devices, including field programmable analog arrays (FPAA), field

programmable transistor arrays (FPTA), reconfigurable antennas, reconfigurable

nanodevices (e.g., NanoCell, Tour 2003), reconfigurable liquid crystals (Harding

et al. 2005), reconfigurable microelectromechanical systems and reconfigurable

optics (see survey in Sekanina 2004). We can see that the granularity of

reconfigurable elements ranges from molecules to microprocessors.

Evolvable Hardware = Reconfigurable Device + Evolutionary Algorithm

The principle of evolvable hardware is shown in Fig. 2. The chromosome represents

either the configuration bitsream directly or a prescription determining how to create

the configuration bitstream. A particular variant of evolutionary algorithm and

genetic operators are chosen according to the problem to be solved. The quality of

the algorithm is evaluated experimentally. Candidate circuits are evaluated in the

following way: First, a configuration bitstream is extracted from the chromosome.

Then, the bitstream is uploaded into a reconfigurable device and the circuit created

is evaluated using fitness function. In the case of digital circuits, some training

vectors are applied at the primary inputs, corresponding output responses are

collected and compared against the desired vectors. The fitness value is usually

determined as the number of bits calculated correctly by the candidate circuit. In the

case of analog circuits, training signals are applied at primary inputs for a given time

period and circuit responses are compared with the desired signals. The objective

here is to minimize the difference between the output signals and desired signals.

Other approaches are possible, for example, the frequency characteristic is

measured. The evolutionary algorithm (genetic operators etc.) is usually executed

in a personal computer because its time requirements are negligible in comparison

with the evaluation time of a candidate circuit. However, its implementation as an

application-specific integrated circuit or in an FPGA is also possible, especially in

case that the complete system should be realized on a single chip.

Intrinsic Evolvable Hardware

Extrinsic evolution means that candidate circuits are evaluated using a circuit

simulator, i.e., in software. Intrinsic evolution means that every candidate circuit

(i.e., circuit configuration) in every population is evaluated in a physical

reconfigurable circuit. It has very important consequences.
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Let us suppose that we have evolved a circuit configuration C1 intrinsically that

shows a perfect fitness value x1 in the reconfigurable circuit RC1. Then the

configuration C1 is uploaded into RC2 (which is exactly of the same type as RC1),

but contrary to our presumption (that we must obtain fitness value x1 because it is

the same chip) we get a different fitness value x2, although the process of the fitness

calculation remains formally unchanged! And finally, the same circuit (created

according to configuration C1) is evaluated using the software circuit simulator, and

after this evaluation another fitness value x3 is detected. How is it possible? Adrian

Thompson has given the answer (Thompson 1998; Thompson et al. 1999). The

evolved circuit (with configuration C1) requires some special properties that are

provided only by RC1 and/or by some type of environment (e.g., by the environment

with constant temperature) to operate perfectly (i.e., with fitness x1). This approach,

sometimes called unconstrained evolution, refers to such a situation in which the

evolution can also exploit the physical properties of a chip and other environmental

evolutionary
  algorithm

chromosome

configuration bits

stimuli responses

transform

programmable
function unit

programmable
switch

programmable
switch

configuration register

configuration memory

reconfigurable element

to
interconnetion
network

from
interconnetion
network

Compare the output values 
against the required values.
Calculate the fitness value.

fitness value

Fig. 2 Evolvable hardware: Candidate configurations are generated by the evolutionary algorithm,
uploaded to a reconfigurable device and evaluated using fitness function
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characteristics (such as temperature, electromagnetic field etc.). The evolved

circuits operate differently in different environments.

Recently, Miller has used the more general term, evolvable matter, to address the

usage of evolutionary algorithms for the design on any physical reconfigurable

platform (e.g., chemical or biological) in a real environment. The idea behind the

concept is that applied voltages may induce physical changes that interact in

unexpected ways with other distant voltage-inducted configurations in a rich

physical substrate. In other words, it should theoretically be possible to perform the

evolution directly in materio if the platform is configurable in some way. Miller and

Downing reviewed this promising technology in Miller et al. (2002) and showed

that liquid crystals can be used as a platform to evolve various circuits including

primitive logic functions, robot controllers etc. (Harding and Miller 2005). Tour’s

group has presented another example—the nanocell (Tour 2003). The nanocell is a

2D network of self-assembled metallic particles connected by molecular switches.

The nanocell is surrounded by a small number of lithographically defined access

leads. The nanocell is not constructed as a specific logic gate—the logic is created in

the nanocell by training it postfabrication by changing the states of the molecular

switches. The training algorithm does not know the connections within the nanocell

or the locations of the switches. However, the configuration can be changed by

voltage pulses applied to the I/O pins. A genetic algorithm was utilized to generate

these pulses in order to form the required logic gates.

Applications

It is important to distinguish between two approaches: evolutionary circuit design

and evolvable hardware.

In case of the evolutionary circuit design, the objective is to evolve (i.e., to

design) a single circuit. The circuit is usually designed in a design lab. The aim is

typically to find an innovative implementation of a required behavior and, for

instance, to reduce the number of utilized gates or to ensure testability of a circuit.

The technique was successfully applied to design a number of unique digital as well

as analog circuits. The evolved circuits exhibit properties that we have never

reached by means of traditional engineering methods. It was demonstrated on small-

scale-circuits that creative circuit designers can effectively be replaced by machines

(Miller et al. 2000; Sekanina 2004; Zebulum et al. 2002).

In case of evolvable hardware, the evolutionary algorithm is responsible for

continual adaptation. Evolvable hardware was applied to high-performance and

adaptive systems in which the problem specification is unknown beforehand and can

vary in time (Higuchi et al. 1999; Stoica 2004; Sekanina 2004). Its main objective is

the development of a new generation of hardware, self-configurable and evolvable,

environment-aware, which can adaptively reconfigure to achieve optimal signal

processing, survive and recover from faults and degradation, and improve its

performance over lifetime of operation. Evolutionary algorithm is an integral part of

the target system. The use of evolvable hardware to achieve adaptation was mainly

demonstrated by Higuchi’s group which developed a number of ASIC-based
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evolvable systems. Examples include: a prosthetic hand controller chip, image

compression chip for electrographic printers, self-reconfigurable neural network

chip, analog EHW chip for cellular phones and post-fabrication adjustment

technology to maximize the system performance (Higuchi et al. 1999).

Due to the existence of redundancy in reconfigurable devices, the evolvable

hardware is inherently fault tolerant. It means that in case that a circuit element is

damaged, the evolutionary algorithm is usually able to recover the functionality

using the remaining elements. If a critical number of elements is damaged, the

functionality cannot be recovered and the chip ‘‘dies’’. Hence, evolvable hardware is

a method for automatic designing of adaptive as well as fault-tolerant (e.g., self-

repairing) systems (Thompson et al. 1999). The use of evolvable hardware to

achieve functional recovery was mainly demonstrated by Stoica’s group which

developed an FPTA and performed evolutionary functional recovery of analog

circuits in extreme environments, such as extreme temperatures and radiation

(Keymeulen et al. 2000; Stoica et al. 2004; Stoica et al. 2004).

Computing and its Implementation

From Abstract Computing to Physical Computing

The classical computational theory has its roots in Turing’s work on the

Entscheidungsproblem (Turing 1937) (the decision problem for first order logic).

Turing introduced a novel abstract computational device, called automatic machine
(a-machine). We now know a-machines as Turing machines. Turing, Church and

others were interested in effective ways of computing functions, where ‘‘effective-

ness’’ was a mathematical notion synonymous with ‘‘mechanical’’ and lacking

formal definition. Initially informal notion of algorithm was formalized using

Turing machines. Later, it was shown that the computational power of Turing

machines, recursive functions and k-definable functions is equivalent. This result

was taken as confirmation that the notion of effective function computation had

finally been formally captured and the Church–Turing thesis was formulated as:

A function is effectively calculable if and only if it is Turing-computable.

Turing has offered his model for the study of the computations whose steps can

be carried out by ‘‘a human being working mechanically with pencil and paper,

unaided by machinery, and idealized to the extent of having available unlimited

amounts of time, internal memory, and so forth’’ (Copeland and Sylvan 1999;

Turing 1937). Similarly to other models, its fundamental property is being

independent from the physical. However, the Turing machine was not (only) a

mathematical representation of a computing human, but literally an idealized

mechanical device. Furthermore, according to Piccinini, Turing thought his machine

could compute any function computable by machines (Piccinini 2003).

The first who incorporated physically motivated mathematical constraints into a

formal model of computation was Gandy (Gandy 1978) who attempted to capture in

a precise mathematical framework the notion of computation by a discrete
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deterministic mechanism. Gandy has shown that the machine-computable functions,

even in this broader sense, are simply the Turing-computable functions, thus adding

a striking bit of evidence for the adequacy and stability of Turing’s analysis. Other

researchers have analyzed the Church–Turing thesis with respect to the physical

implementation and in terms of computing mechanism. A computing mechanism is

a mechanism whose proper function is to obtain certain output strings of tokens

from certain input strings (and internal states), according to a general rule that

applies to all inputs and outputs. For purposes of this paper, we will mention two

other variants of the Church–Turing thesis, Modest Physical and Bold Physical

Church–Turing thesis, reflecting two different opinions on computational properties

of physical computing systems. According to Piccinini (Piccinini 2003), Modest

Physical Church–Turing thesis states that

A function is computable by a mechanism if and only if it is Turing-

computable.

On the other hand the Bold Physical Church–Turing thesis states:

Any function whose values are generated by a physical system is Turing-

computable.

Modest Physical Church–Turing thesis does not apply to all physical systems, but

only to mechanisms that perform computations. It says that if a physical system

computes, then it computes a Turing-computable function. Bold physical Church–

Turing thesis applies to all physical systems. It is out of scope of this work to review

all the views on the Church–Turing thesis and its variants; for a detailed analysis,

see (Piccinini 2003).

There are many computational models provably more powerful than a standard

Turing machine, for example, real-number computation, coupled Turing machines,

accelerating Turing machines, various neural networks and site machine (Copeland

1998; Copeland and Sylvan 1999; van Leeuwen and Wiedermann 2001; Stannett

2003; Wegner and Goldin 2003). The research field dealing with computational

models and systems more powerful than Turing machine is called hypercomputation
or super-Turing computation. Eberbach et al. have summarized three principles that

allow us to derive computational models more expressive than Turing machines:

interaction with the world, infinity of resources or evolution of system (Eberbach

et al. 2004).

It is easy to extend an abstract computational device to obtain a super-Turing

computational device. However, the question is whether physical computational

devices can exhibit super-Turing computational power. A well known machine of

this type should be Hogarth machine that exploits the properties of a special kind of

spacetime, called Malament–Hogarth spacetime, which is physically possible in the

sense of constituting a solution to Einstein’s field equations for General Relativity.

From a computation point of view, the idea is to use the infinity of certain discrete

processes in finite physical time (Wiedermann and van Leeuwen 2002). However,

the validity of the model has not been experimentally verified.

There is another group of computational devices that is often counted among

super-Turing computers. Those machines do not aspirate to calculate a priory
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defined non-computable functions; rather, they perform computations that do not

follow the computational scenario of Turing machines. Hence, Turing machines

cannot simulate them. Typically, non-uniform, interactive and infinite computations

play a crucial role in these machines. Examples include Internet (van Leeuwen and

Wiedermann 2001), interactive agents (Eberbach et al. 2004) and evolvable

computational systems (Sekanina 2004).

Van Leeuwen and Wiedermann have shown that such computations may be

realized by an interactive Turing machines with advice. They have proposed the

following extension of the Church–Turing thesis (van Leeuwen and Wiedrmann

2001):

Any (non-uniform interactive) computation can be described in terms of

interactive Turing machines with advice.

Interactive Turing machine with advice is a classical Turing machine endowed

with three important features: the advice function (which is a form of oracle),

interaction and infinity of operation. The advice function is to change the machine’s

control unit when it is necessary. Van Leeuwen and Wiedermann discuss their thesis

in (van Leeuwen and Wiedrmann 2001), in particular, they ask whether: ‘‘... we are

able to solve some concrete, a priori given undecidable problems with them? The

answer is negative. What we have shown is that some computational evolutionary

processes, which by their very definition are of an interactive and unpredictable

nature, can be modeled a posteriori by interactive Turing machines with advice. Yet

none of these systems is seen as violating the Church–Turing thesis. This is because

none of them fits the concept of a finitely describable algorithm that can be

mechanically applied to data of arbitrary and potentially unbounded size.’’

The standard classical computation theory (including complexity and comput-

ability analysis) is philosophically and terminologically closely bounded to the

theory of Turing machines. The recent development in the areas of artificial

intelligence, molecular biology, computer engineering and some others together

with considering concepts such us interaction, evolution over time, infinite

computation and embodiment has led to a different understanding and explanation

of computation (Maclennan 2003).

The Implementation Problem

The Church–Turing thesis explains what it means to compute from a formal-

mathematical point of view. We can ask: What exactly is the relationship between

the formal structure and the physical system? What is for a physical system to be a

computing mechanism? The process of building a physical computational device

according to a formal model is called implementation. This section deals with the
implementation problem. This problem is closely related to another fundamental

issue: What is a computing mechanism and, more generally, computation?

Copeland (1996), Scheutz (1999), Piccinini (2003), Johnson (2004) and others

have surveyed previous works in this area and provided different answers. In

particular, they usually begin with Putnam’s view in which a system is a computing
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mechanism if and only if there is a mapping between a computational description

and a physical description of the system.

The approach developed by Scheutz (1999) differs significantly from the

Putnam’s ‘‘state-to-state correspondence view’’: it does not require a notion of

physical state, but determines directly the function which is realized by a physical

system. It does not have to assume a particular computational formalism (to which

the physical system exhibits a state-to-state correspondence), but can be related to

computations described by any computational formalism via the function that these

computations give rise.

Piccicini claims that an optimal account of computing mechanisms should satisfy

the six desiderata proposed in (Piccinini 2003) ((1) Paradigmatic computing

mechanisms compute. (2) Paradigmatic non-computing systems don’t compute. (3)

Computation is observer-independent. (4) Computations can go wrong. (5) Some

computing mechanisms are not computers. (6) Program execution is explanatory.)

and that his account of computing mechanisms ‘‘... allows us to formulate the

question of whether a mechanism computes as an empirical hypothesis, to be

decided by looking at the functional organization of the mechanism. It allows us to

formulate a clear and useful taxonomy of computing mechanisms and compare their

computing power’’.

For Copeland, to compute is to execute an algorithm (Copeland 1996). More

precisely, to say that a device or organ computes is to say that there exists a

modeling relationship of a certain kind between it and a formal specification of an

algorithm and supporting architecture. Then (physical) entity e is computing

function f if and only if there exist a labeling scheme L and a formal specification

SPEC (of an architecture and an algorithm specific to the architecture that takes

arguments of f as inputs and delivers values of f as outputs) such that he, Li is an

‘‘honest’’ model of SPEC. To describe a physical entity as a computing machine of a

certain kind is to envisage being able to predict aspects of its physical behavior on

the basis of its architecture-algorithmic specification and its labeling scheme. He

suggested two necessary conditions for honesty: (1) the labeling scheme must not be

ex post facto (from a thing done afterward) and (2) the interpretation associated with

the model must secure the truth of appropriate counterfactuals concerning the

machine’s behaviors.

According to Johnson’s view, formulated from the position of natural computing,

an important characteristic of computing is ‘‘... that symbols within the system have

a consistent interpretation throughout the computation, or at least if they do not

there is a component of the system which explains how the interpretation of the

symbols changes as the computation progresses. That is, any external system which

observes and/or initiates a computation must declare in advance how it is going to

interpret those symbols. This seems to be a key characteristic of computing which

can be applied to natural systems. If there is not a consistent allocation of symbols

then transformations are meaningless. In particular, if we are completely free to

assign any symbol to any meaning at any point in the computation then we can say

that any transformation is doing any computing’’ (Johnson 2004).

Searle (1990) recalls that on the standard textbook definition, computation is

defined syntactically in terms of symbol manipulation. He argues that ‘‘... syntax
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and symbols are not defined in terms of physics. Syntax, in short, is not intrinsic to

physics. This has the consequence that computation is not discovered in the physics,

it is assigned to it. Certain physical phenomena are assigned or used or programmed

or interpreted syntactically. Syntax and symbols are observer relative.’’ On the

question ‘‘Is the brain a digital computer?’’ he answers that this question is ill

defined and does not have a clear sense because ‘‘... you could not discover that the

brain or anything else was intrinsically a digital computer, although you could

assign a computational interpretation to it as you could to anything else.’’ In case of

ordinary computers it is reasonable to interpret the physics in both syntactical and

semantic terms.

We have learned from the previous, surprisingly, that such the fundamental terms

as computing and implementation of computing do not have a uniform

interpretation.

Evolved Computing Devices

Basic Characteristics

The traditional process of implementation of a computing device, which is supposed

to work according to a given specification, can be understood as a process of

manipulating/fabricating a suitable physical system whose behavior can easily be

interpreted in the required way. In this implementation process, the specification is

transformed onto implementation in well-defined steps using well-defined methods,

tools and components. The engineer usually knows the abstract model of the target

system at any desired level. The engineer is primarily guided by knowledge of

methodology established for solving the given type of problem. For that process, it

is crucial that the engineer understands the principles that the resulting system is

based on. The design process is completely under engineer’s control. There exists a

well-established consensus (e.g., voltage levels for logic ’0’ and ’1’) allowing us to

interpret the input/output behavior of the system. Furthermore, it is usually required

to have a sufficient interpretation of internal physical processes of that system in

terms of computation (‘‘two pn-junctions form a transistor and two transistors make

up an inverter’’).

Similarly to the conventional design process, we have to declare our required

interpretation of input/output behavior in advance when the evolutionary design

method is used to find a physical implementation of a computational process. This

interpretation is used to define the fitness function. When not constrained, the

evolution can utilize all the resources available, including normally unused

characteristics of the reconfigurable platform and environment. Similarly to

biological evolution, artificial evolution promotes those candidates (‘‘organisms’’)

that are better adapted to the given environment. Although the evolution is often

able to find an implementation perfectly satisfying the specification, we have

problems to understand how and why the solution works. In other words, we are not

able to interpret the internal behavior as a computational process which produces

the required responses.
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We can assemble Table 1 that compares ordinary computers, evolved compu-

tational systems and the brain (the brain represents here all biological systems that

are often studied as computational devices). This table shows that the evolved

computational devices represent a distinctive class of devices that exhibits a specific

combination of properties, not visible in the scope of all computational devices up

till now.

The Embodiment Phenomenon

We have explained in Sect. ‘Intrinsic Evolvable Hardware’ that the evolutionary

approach is able to find a solution outside the space of conventional designs. Every

physical object which can be designed by means of the evolutionary algorithm is of

finite size. Assume that we have a reconfigurable digital circuit consisting of K
programmable elements whose function is defined by the configuration bitstream

stored in the B-bit configuration memory. There are 2B different configurations, i.e.,

up to 2B behaviors that can be realized in the reconfigurable device. However, the

number of distinguishable behaviors is usually much smaller. Although every two

different configurations determine two physically different electronic circuits, the

two configurations can produce the same (digital) behavior because of inherent

redundancy of reconfigurable circuits (Fig. 3a).

It was shown that under some conditions, some configurations can exhibit useful
digital behavior that none of the 2B configurations can do under normal conditions

(see Thompson’s experiment (Thompson et al. 1999)). Note that the fitness function

has remained formally unchanged. The evolutionary analog circuit design or

Table 1 Comparison of different types of computational devices

Property Processor The brain Evolved device

I/O behavior can be interpreted as computing Yes Yes Yes

Device is a computing mechanism Yes Unsure Unsure

An abstract model exists before implementation Yes No No

The required behavior is specified beforehand Yes No Yes

Engineers can design&build Yes No Yes

(a)

C                 M               R

g                     f

(b)

C M R

g                      f

(c)

C M R

g                      f

Fig. 3 Properties of g and f when implemented physically: (a) a physical implementation corresponds to
an abstract model, (b) the fitness function is influenced by environment, (c) the genotype-phenotype
mapping is influenced by environment
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evolutionary robotics show that it is impossible to build a simulator of a given

physical entity in order to completely avoid doing experiments with physical

devices. In many cases, simulators predict different values than physical devices

generate simply because computer models cannot cover everything about the

reality. The physical embodiment is a crucial feature of these systems (see also

Brooks 2001).

We can explain this ‘‘embodiment phenomenon’’ by means of mappings g and f
shown in Fig. 3. Mapping g represents the transformation from the genotype space

C to phenotypes M (i.e., from configuration bitstreams to physical circuits, i.e.,

computational machines). Mapping f is the fitness function assigning fitness values

(e.g., real numbers, R) to phenotypes. We are offering two explanations of the

‘‘embodiment phenomenon’’:

In the first viewpoint, f is important. In fact, f assigns two different fitness values

to a single circuit (machine) m [M (see Fig. 3b). Note again that the fitness function

has remained formally unchanged. In reality, m is represented by an electronic

circuit (configuration) whose behavior depends on something missing in the fitness

calculation. In this case, f can not be seen as a function, rather f is a relation.

In the second viewpoint, g is important. Fitness function has never assigned

different fitness values to a single machine (assuming invariable fitness function).

All phenotypes are seen as different (but they can obtain the same fitness value).

However, a single genotype can generate two or more different phenotypes

(circuits), because it is assumed that environment influences the genotype-

phenotype mapping. The situation is known from nature where phenotypes depend

on the environment where they are constructed (developed). For instance, the

development depends on gradient concentrations nearby a dividing cell (Alberts

et al. 1998).

Evolution is able to effectively exploit physical properties of a given materio in

order to build a target system, as demonstrated by Thompson (Thompson et al.

1999), Harding (Harding and Miller 2005), Tour (Tour 2003) and others. Probably

the best example is the brain evolved by nature. However, there are physical limits

that define what can ultimately be done by an arbitrary physical system when it is

considered as a computational device, independently of the method utilized to build

that system (Lloyd 2000). As the conventional implementation approach is

constrained by practical limits that are determined by contemporary technological

development, there are, in principle, no limits of this kind in case of the evolutionary

approach. The main problem of the current (artificial) evolutionary design approach

is that it is not able to produce complex and simultaneously innovative designs

because the fitness calculation is not usually scalable.

The Implementation Problem and Evolutionary Design

Various versions of the Church–Turing thesis are often used to analyze compu-

tational capabilities of physical and biological systems (such as the brain). The

Church–Turing thesis does entail that if the brain follows an effective procedure,

then that procedure is Turing–computable. The Modest Physical Church–Turing
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thesis does entail that if the brain performs computations then those computations

are Turing-computable. But neither the Church–Turing thesis nor Modest Physical

Church–Turing thesis do say whether the brain follows effective procedure or

performs computations (Piccinini 2003). In the brains we can observe elementary

cells and higher-level units composed of many cells; however, we are not able to

exactly determine which properties are responsible for the behavior that we can

interpret as computation. Also in the case of artificially evolved computational

devices we can observe elementary components but, in general, we do not know

which properties of these components the evolution has used to ensure the behavior

which can be interpreted as computation. As the brains and computational devices

are very similar in this point neither the Church–Turing thesis nor Modest Physical

Church–Turing thesis does say whether the evolved computational devices follow

effective procedure, i.e., whether they perform computations.

A given computing can be implemented in different ways in different physical

systems (this property is called multiple realizability). Searle pointed out that ‘‘the

multiple realizability of computationally equivalent processes in different physical

media is not just a sign that the processes are abstract, but that they are not intrinsic

to the system at all. They depend on an interpretation from outside ... computation is

not discovered in the physics, it is assigned to the physics’’ (Searle 1990). We asked

whether the evolved physical entities that perform some useful computations are

computers. The previous argument clearly shows that the question does not have a

clear sense. The computation is not discovered in the physics; however, we

(humans) are able to interpret this behavior as computation.

Assume that a simple sequential circuit has been evolved in an FPTA or liquid

crystals (see, for example Sekanina and Zebulum 2005). Moreover, assume that the

environment is stable (i.e., temperature, radiation and all the phenomena that could

influence its behavior are stable). The circuit has digital inputs and outputs. In

principle, we are able to interpret the signals at these ports as ‘‘zeroes’’ and ‘‘ones’’

because we had to declare our interpretation in the fitness evaluation process (i.e., in

advance, before the circuit was evolved). However, we don’t exactly understand

how the platform performs the computation. We have specified only the required

input/output relation in the fitness function, i.e., we have not introduced any abstract

model indicating that some internal states must exist in order to implement that

behavior (in general, the behavior is not combinational). It is the role of evolution to

invent, introduce and implement the internal states in some way. Therefore, we are

not able to say anything about the relation between the abstract model (because it

does not exist) and the resulting implementation created using the evolutionary

algorithm.

Most scientists cited in Sect. ‘The Implementation Problem’ would probably

agree that the evolved systems really perform computation because we can interpret

their input/output behavior as computation. However, there are problems with the

interpretation of their internal behavior. Copeland, Johnson and others would like to

see that symbols within the system have a consistent interpretation throughout the

computation and that interpretation is specified beforehand. It makes no sense to

establish the mapping between computational states and physical states before the

evolution is performed. The evolution can use totally different physical properties of
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the physical device to implement the required behavior. On the other hand,

establishing the mapping at the end of evolution could solve the problem because

(under some assumptions, such as that the environment does not influence the

physical device at all) it could be possible to identify physical states that correspond

to abstract computational states. Here, it is reasonable to follow Scheutz approach

(‘‘starting in physical’’, Scheutz 1999). Unfortunately, the discovery of computa-

tional states/functions within the physical system is not quite sure. Although we can

apply all the physical theories we currently know to analyze and explain the evolved

system, we could obtain no satisfactory answer. As Bartles et al. have shown

(Bartels et al. 2004), evolution is able to utilize those physical behaviors that are

physically impossible from the point of view of current physical theories.1

Finally, we have to consider again that no abstract model is available because our

specification is defined in terms of input/output relations. Hence we are able neither

to establish the relation between physical and abstract states nor to ‘‘distill a (matter-

independent) mathematical mapping—the function realized by evolved system S—

between inputs and outputs of S by abstracting over every physical dimension’’

(Scheutz 1999).

If we agree that (1) it does not matter how a system realizes a function as long as

the system is digital from the outside (a digital system can be treated as a ‘‘black

box’’ with digital inputs and outputs), (2) we are able to interpret its input/output

behavior as computation and (3) this interpretation is defined in advance then the
evolved systems are computational systems (computing mechanisms). On the other

hand, if the correspondence between the abstract states and physical states is crucial

to qualify a system as computational one then the evolved systems are not
computing mechanisms.

Conclusions

Similarly to nature, we can build physical systems whose behavior can be

interpreted as computing. Furthermore, we can specify this behavior in advance.

Evolutionary circuit design and evolvable hardware traditionally belong to the area

of electrical engineering. In this paper, we have interpreted the evolutionary design

of computational systems from the perspective of computer science. In this view,

the evolutionary circuit design is an approach allowing engineers to realize

computational devices. The evolved computational devices represent a distinctive

class of devices that exhibits a specific combination of properties, not visible and

studied in the scope of all computational devices up till now. Devices that belong to

1 Bartels used an evolutionary optimization algorithm to shape laser pulses to distort molecules in

specific ways to catalyze chemical reactions, with the ultimate goal of manipulating large molecules, for

example proteins and enzymes, in a biological cell. The method has also been used to create new quantum

behaviors at the atomic level. Human can probe quantum systems, but are not capable of exploring

different quantum behaviors in a fast automated fashion. The results are completely unexpected and

amazing from a physical point of view: behaviors are being evolved that were not known to be physically

possible. This includes anti-correlated attosecond harmonics in quantum systems. The ability to move

beyond the nanoscale to the attoscale is a major breakthrough, and the potential applications of

controlling the behavior of materials at atomic level are enormous (Bartels et al. 2004).
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this class show the required behavior; however, in general, we do not understand

how and why they perform the required computation. The reason is that the

evolution can utilize material-dependent constructions and properties of environ-

ment (such as temperature, electromagnetic field etc.) and, furthermore, unknown

physical behaviors to establish the required functionality. Therefore, nothing is

known about mapping between an abstract model and its physical implementation

and the evolved computing devices are not necessarily computing mechanisms.
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