Skip to main content
Log in

Superluminal Signals and the Resolution of the Causal Paradox

  • Published:
Foundations of Physics Aims and scope Submit manuscript

The experimental evidence for electromagnetic signals propagating with superluminal group velocity is recalled. Transformations of space and time depending on a synchronization parameter, e1, indicate the existence of a privileged inertial system. The Lorentz transformations are obtained for a particular e1≠0. No standard experiment on relativity depends on e1, but if accelerations are considered only e1=0 remains possible. The causal paradox generated by superluminal signals (SLS) in the theory of relativity does not exist in the theory with e1=0. The irrelevance of SLS for the Einstein, Podolsky and Rosen paradox is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barut A.O.,Maccarrone G.D.,and Recami E. (1982). Nuovo Cim. A 71:509

    Article  ADS  Google Scholar 

  2. Zensus J.A., and Pearson T.J. (eds). (1987). Superluminal Radio Sources. Cambridge University Press, Cambridge

    Google Scholar 

  3. Arp H.C., Burbidge G., Hoyle F., Narlikar J.V., Wickramasinghe N.C. (1990). Nature 346:807

    Article  ADS  Google Scholar 

  4. Mirabel I.F., Rodriguez L.F.Nature 371, 46 (1994); Tingay S.J., et al. Nature 374, 141 (1995).

  5. Enders A., and Nimtz G. (1993). Phys. Rev. E 48:632

    Article  ADS  Google Scholar 

  6. Stenberg A.M., Kwiat P.G., Chiao R.Y. (1993). Phys. Rev. Lett 71:708

    Article  PubMed  ADS  Google Scholar 

  7. Ranfagni A., and Mugnai D. (1996). Phys. Rev. E 54:5692

    Article  ADS  Google Scholar 

  8. Saari P., and Reivelt K. (1997). Phys. Rev. Lett 79:4135

    Article  ADS  Google Scholar 

  9. Mugnai D., Ranfagni A., Ruggeri R. (2000). Phys. Rev. Lett 84:4830

    Article  PubMed  ADS  Google Scholar 

  10. A discussion of superluminal signals is contained in a recent book: Tiwari S.C.,Superluminal Phenomena in Modern Perspective, (Rinton Press, New York, 2003).

  11. Nimtz G., Haibel A. (2002). Ann. Phys (Leipzig) 11:163

    Article  Google Scholar 

  12. Garrison J.C., Mitchell M.W., Chiao R.Y., Bolda E.L. (2000). Phys. Lett. A 245:19

    Article  ADS  Google Scholar 

  13. Recami E., Fontana F., Garavaglia R. (2000). Int. J. Mod. Phys. A 15:2793

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Selleri F. (2002). Bull de la Société des Sciences et des Lettres de Lodz LII:63

    MathSciNet  Google Scholar 

  15. Poincaré H. (1898). Rev. Metaphys Morale 6:1

    Google Scholar 

  16. Reichenbach H. (1958). The Philosophy of Space and Time. Dover, New York

    MATH  Google Scholar 

  17. Jammer M. (1979). “Some fundamental problems in the special theory of relativity”. In: Toraldo di Francia G (eds). Problems in The Foundations of Physics. Società Italiana di Fisica Bologna and North Holland, Amsterdam, pp. 202–236

    Google Scholar 

  18. Mansouri R., and Sexl R. General Relat Gravit. 8, 497, 515, 809 (1977).

  19. Selleri F., Found. Physics 26, 641 (1996); Found. Phys. Lett. 9, 43 (1996).

    Google Scholar 

  20. Presently the two way velocity of light in vacuum is known with an error of 20 cm/s. See: Woods P.T.,Sholton K.C.,W. Rowley R.C.,Appl.Opt. 17, 1048 (1978); Jennings D.A.,Drullinger R.E.,Evenson K.M.,Pollock C.R.,J. S Wells, J. Res. Natl. Bur. Stand. 92, 11 (1987).

    Google Scholar 

  21. Rossi B., Hall D.B. (1941). Phys. Rev 59:223

    Article  ADS  Google Scholar 

  22. Bailey J., Borer K., Combley F., Drumm H., Krienen F., Lange F., Picasso E., von Ruden W., Farley F.J.M., Field J.H., Flegel W., Hettersley P.M. (1977). Nature 268:301

    Article  ADS  Google Scholar 

  23. Hafele J.C., Keating R.E. (1972). Science 177:166

    Article  ADS  Google Scholar 

  24. Van Flandern T. (1998). “What the global positioning system tells us about relativity”. In: Selleri F. (eds). Open Questions in Relativistic Physics. Apeiron, Montreal, pp. 81–90

    Google Scholar 

  25. Manaresi R., Selleri F. (2004). Found. Phys. Letters 17:65

    Article  MathSciNet  MATH  Google Scholar 

  26. Selleri F. (2002). “Bell’s spaceships and special relativity”. In: Bertlmann R.A., Zeilinger A. (eds). Quantum [Un]Speakables, from Bell to Quantum Information. Springer, Berlin, pp. 413–428

    Google Scholar 

  27. Selleri F. (2003). Found Phys. Letters 16:71

    Article  Google Scholar 

  28. Selleri F. (1995). Chin. J. Syst. Eng. Electronics 6:25

    Google Scholar 

  29. Selleri F. (1997). Found Phys. Lett 10:73

    Article  MathSciNet  Google Scholar 

  30. Selleri F. (2004). “Sagnac effect: end of the mystery”. In: Rizzi G., Ruggiero M.L. (eds). Relativity in Rotating Frames. Kluwer, Dordrecht, pp. 57–77

    Google Scholar 

  31. Langevin P., Compt. Rend. 173, 831 (1921); 205, 304 (1937).

  32. Post E.J. (1967). Rev. Mod. Phys 39: 475

    Article  ADS  Google Scholar 

  33. Landau L.D., and Lifshitz E.M. The Classical Theory of Fields. (Butterworth-Heinemann, Oxford, 1996), §§ 82–87.

  34. Anandan J. (1981). Phys Rev D 24:338

    ADS  Google Scholar 

  35. Hasselbach F., Nicklaus M. (1993). Phys. Rev. A 48:143

    Article  PubMed  ADS  Google Scholar 

  36. Puccini G.D., and Selleri F. (2002). Nuovo Cim 117 B:283

    ADS  Google Scholar 

  37. Møller C. (1952). The Theory of Relativity. Oxford Press, Oxford, p. 25

    Google Scholar 

  38. Ives H.E. (1950). J. Opt. Soc. Am 40:185

    Article  ADS  Google Scholar 

  39. Eisner E. (1967). Am. J. Phys 35:817

    Article  ADS  Google Scholar 

  40. Hayden H.C. (1993). Galilean Electrodyn. 4:89

    Google Scholar 

  41. Einstein A., “Zur elektrodynamik bewegter Körper,” Ann. der Phys. 17, 891–921 (1905). English translation: “On the electrodynamics of moving bodies,” in The Principle of Relativity, Einstein A., Lorentz H.A.,et al., (Dover, New York, 1952), pp. 37–65.

  42. Einstein A. (1918). Die Naturwissensch 6:697

    Article  ADS  Google Scholar 

  43. Iorio L. (2005). Found Phys. Lett 18:1

    Article  MathSciNet  MATH  Google Scholar 

  44. Selleri F., “Space and time physics with the Lorentz ether: the clock paradox,” in Proceedings of the Sixth International Symposium Frontiers of Fundamental Physics, September 26–28, 2004 (Udine, Italy, 2005).

  45. Einstein A., Podolsky B., and Rosen N. (1935). Phys. Rev 47:777

    Article  ADS  MATH  Google Scholar 

  46. Bell J.S. (1965). Physics 1:195

    Google Scholar 

  47. Clauser J.F., Horne M.A., Shimony A., Holt R.A. (1969). Phys. Rev. Lett 23:880

    Article  ADS  Google Scholar 

  48. Freedman S.J., Clauser J.F. (1972). Phys. Rev. Lett 28:938

    Article  ADS  Google Scholar 

  49. Lepore V.L., Selleri F. (1990). Found Phys. Lett 3:203

    Article  MathSciNet  Google Scholar 

  50. Santos E., Phys. Rev. Lett. 66, 1388 (1991); Phys. Lett. A 212, 10 (1996).

  51. Santos E. (2004). Found Phys 34:1643

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Afriat A., Selleri F. (1999). The Paradox of Einstein, Podolsky, and Rosen in Atomic, Nuclear, and Particle Physics. Plenum, New York/London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Selleri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selleri, F. Superluminal Signals and the Resolution of the Causal Paradox. Found Phys 36, 443–463 (2006). https://doi.org/10.1007/s10701-005-9028-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-9028-6

Keywords

Navigation