JOHN SELDEN AND ANNIE SELDEN

UNPACKING THE LOGIC OF MATHEMATICAL STATEMENTS!

ABSTRACT. This study focuses on undergraduate students’ ability to unpack informally
written mathematical statements into the language of predicate calculus. Data were collected
between 1989 and 1993 from 61 students in six small sections of a “bridge” course designed
to introduce proofs and mathematical reasoning. We discuss this data from a perspective
that extends the notion of concept image to that of statement image and introduces the
notion of proof framework to indicate that part of a theorem’s image which corresponds to
the top-level logical structure of a proof. For simplified informal calculus statements, just
8.5% of unpacking attempts were successful; for actual statements from calculus texts, this
dropped to 5%. We infer that these students would be unable to reliably relate informally
stated theorems with the top-level logical structure of their proofs and hence could not be
expected to construct proofs or validate them, i.e., determine their correctness.

1. INTRODUCTION

1.1. Related Research

Many students arrive at university confused as to the distinction between
proof and evidence. Some accept proofs as valid while feeling their con-
viction would be strengthened by additional empirical evidence (Fischbein
and Kedem, 1982). Others simultaneously accept both inductive and cor-
rect deductive arguments as valid (Martin and Harel, 1989).

Much of the research on proofs has concentrated on increasing students’
understandings of teacher and textbook proofs, rather than on enhancing
students’ ability to construct their own proofs and validate them, i.e.,
determine their correctness. Some authors have suggested that it is the
explanatory power of proofs that makes them meaningful to students and
have urged teachers to select “proofs that explain” over “proofs that merely
prove” (Movshovitz-Hadar, 1988; Hanna, 1990; Hersh, 1993). Others have
observed that “generic proofs” which work at the example level, but are also
generalizable, are more understandable to students (Tall, 1979). In addition,
it has been suggested that teachers might first present global overviews of
proofs, followed by structured top-down approaches introducing concepts
as needed, to avoid the appearance of “pulling a rabbit out of a hat” (Leron,
1983, 1985).

In contrast to the above studies which concentrate on proofs given to
students, the “method of scientific debate” encourages first-year university
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students to produce and evaluate their own proofs and “teaches them that
proof is really a tool which may be used to improve ideas and separate
false intuition, however natural it may appear, from true mathematical
statements” (Alibert and Thomas, 1991, p. 227).

1.2. The Current Study

This paper takes the latter perspective, examining just a few of the many
abilities university students need when creating and validating proofs them-
selves. In particular, we examine their ability to clarify the logical structure
of mathematical statements and their ability to use such structures in the
construction and validation of proofs. Deficiencies in these abilities may go
unnoticed, perhaps even when employing the method of scientific debate,
as the process of debate itself may clarify the logical structure of mathe-
matical statements.

Our subjects were primarily U.S. undergraduate students who intended
to continue their study of mathematics to a level requiring them to make,
and determine the correctness of, proofs. They expected to be employed
eventually in ways that use mathematics — some in teaching secondary
school or beyond, some in industry, and some as professional mathemati-
cians. Our data show that these students could not reliably determine the
logical structure of commonly occurring mathematical statements such as
calculus theorems similar to the one in Appendix 1. Indeed, their ability to
discern such logical structures was much less than we expected and proba-
bly less than the expectations of most university mathematics teachers.

We also explain why students, such as our subjects, who cannot reli-
ably determine the logical structure of statements of theorems, cannot be
expected to determine the correctness of their proofs — information which
is hard to obtain directly.

A student’s ability to determine the correctness of proofs is difficult
to observe and is usually inferred indirectly. For example, not long ago,
a mid-level undergraduate student of ours in a bridge class “proved” that
f(z)g{x) was increasing, given that f(z), g(x), f'(z), and ¢'(x) were
negative, by assuming it sufficed to show f(x)g(z) was positive. We took
his submission of this incorrect proof as (partial) evidence that he could
not reliably determine the correctness of proofs. However, most mid-level
mathematics undergraduate students probably read more mathematics than
they write, and what they do write may receive little detailed critique;
thus, their teachers have little evidence on which to judge their ability
to determine the correctness of proofs. What can one make of a calculus
student who says he/she “understands” that a proof of the Fundamental
Theorem of Calculus does indeed prove this theorem? It is difficult to
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judge whether such a student has actually checked the proof in detail
by asking and answering appropriate questions, or even whether he/she
knows there are questions to be asked and answered. This paper will argue
that students with poor logical unpacking ability often can neither ask nor
adequately answer such questions.

1.3. Underlying Questions

Our data are simple and do not require sophisticated statistical analysis, and
the argument we present (in Section 3.1) is straightforward. Yet, our results
suggest three underlying kinds of questions. First, what does the ability to
unpack the logical structure of theorems have to do with understanding or
learning mathematics, or with university mathematics education generally?
A second kind of question is concerned with the importance of being able
to determine the logical structure of mathematical statements. Will mid-
level undergraduate students’ inability to do so impede their progress?
Can mathematicians do so? For that matter, can mathematicians reliably
determine the correctness of proofs?

Our answers to such questions depend on explicitly stated views on
the nature of mathematics and its relation to mathematics education. We
believe these views are consistent with the practices of many mathemati-
cians. This suggests a third question of a different kind. How do we know
our views are consistent with the practices of mathematicians? How do we
know other points we will bring up concerning the practices of mathemati-
cians are accurate? In the sense of empirical studies, we don’t know. There
seems to be limited scientific information on the practices and beliefs of
mathematicians, so we have had to depend primarily on our own informal
observations as members of the mathematical community?.

1.4. Organization of the Paper

We begin by pointing out the sense in which we use the terms “proof” and
“validation”. We next introduce the notions of “formal” and “informal”
versions of mathematical statements, as well as of “unpacking” an informal
statement and of “proof frameworks”. Using these ideas, we argue that
those who cannot reliably determine the logical structure of theorems also
cannot determine the correctness of their proofs.

We next describe underlying positions on the nature of mathematics and
mathematics education. This will be done briefly, but in sufficient detail
to provide answers to the questions raised above. Our discussion of the
role of proof validation in learning will lead us to introduce the idea of
“statement image” in order to describe what is learned through validation.
Subsequently, we describe our subjects, the data collection, and the data
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itself. After an analysis of the data, there is a discussion which concludes
with some possible implications for teaching.

2. RELEVANT CONCEPTS

2.1. Proof and Validation

There are several kinds of mathematical proofs and various ways to view
them. For example, there are two-column U.S. secondary school geometry
proofs, proofs in the style of Russell and Whitehead’s Principia Mathe-
matica, proofs without words (Nelson, 1993), and proofs that explain as
contrasted with proofs that only prove (Hanna, 1989). In French, there
is even a distinction between “preuve” and “démonstration” (Balacheff,
1982). However, when we speak of proof in this paper we refer only to the
kind of proofs U.S. university students might find in typical undergraduate
texts on, for example, abstract algebra or advanced calculus, or proofs
which such students might be asked to construct. Examples of theorems
we have asked beginning abstract algebra students to prove include: (i) A
semigroup has at most one identity. (i) A semigroup in which the equations
ax = b and xa = b are solvable for x is a group. Appendix 1 also includes
an example of a simple calculus proof.

Such proofs can convey, and can require for their construction, vari-
ous kinds of mathematical understanding. However, despite their obvious
importance, it is not the purpose of this paper to discuss proof from the
perspective of students’ deep understandings of connections between math-
ematical concepts. Rather, we restrict our attention to a consideration of
the logical structure of proofs — we consider proofs only from the per-
spective of establishing the correctness of theorems and put aside all other
considerations.

We know of no prescriptive definition of proof of a kind that would
be useful here, or for that matter, for students. However, proofs can be
partially described as a form of argument which depends on deduction
as opposed to, for example, induction or analogy. In addition, we believe
only a particular style of deductive argument is normally accepted by most
mathematicians as a mathematical proof. For example, although redun-
dancy can play a useful role in nonmathematical arguments, such as in
legal or philosophical writings, it appears to be largely avoided in proofs
found in mathematical texts or journals. It would be interesting to ana-
lyze the stylistic characteristics that distinguish mathematical proofs from
other deductive arguments and the effect these characteristics have on
understanding, but again this is beyond the scope of the present paper’.
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We use the term validation to describe the process an individual carries
out to determine whether a proof is correct and actually proves the particu-
lar theorem it claims to prove. This process involves much more than just
passive reading — it is often quite complicated and includes making affirm-
ing assertions, asking and answering numerous questions of oneself, and
perhaps even constructing subproofs. Although it is procedural in nature, it
draws heavily on conceptual knowledge. This process can take only a few
moments or extend across hours, days, or even longer. Since, in validating
a proof an individual calls on domain knowledge, different persons will
validate the same (written) proof differently. Furthermore, despite its com-
plexity, this is often largely a mental process and, unlike the construction
of a proof, there is no final material product which can be analyzed. Thus,
the validation of proofs is exceedingly difficult to observe, even though it
plays a major role in mathematicians’ practice and is often — some would
say must be — integrated into the proof creation process. See Appendix 1
for a detailed example of validation.

2.2. Formal and Informal Statements

University undergraduate students who specialize in mathematics, whether
planning to teach, enter industry, or continue to graduate study, eventually
need to determine the logical structure of informal mathematical state-
ments, in particular, the statements of definitions and theorems. By an
informal statement we mean one which departs from a natural language
version of predicate calculus, i.e., departs from the use of “for all”, “there
is”, “and”, “or”, “not”, “if-then”, “if-and-only-if”’ in a significant way. We
ignore minor differences in wording such as those existing between “for
all”, “for each”, and “for every”, or between “there is” and “there exists”.
We also regard informality as a matter of degree, with some statements
more informal than others.

We consider the statement, “differentiable functions are continuous”,
to be informal because a universal quantifier is understood by convention,
but is not explicitly indicated. We also see “a function is continuous when-
ever it is differentiable” as informal because it departs from the familiar
“if-then” expression of the conditional. Such statements are commonplace
in everyday mathematical conversations, lectures, and books. They are not
generally considered ambiguous or ill-formed, apparently because widely
understood, but rarely articulated, conventions permit their precise inter-
pretation by mathematicians and, less reliably, by students.
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2.3. Unpacking Informal Statements

The notion of unpacking has been applied variously to symbols, graphs,
and diagrams. For example, when a group is denoted by G, realizing that
a more expansive notation is (G, +) and evoking the group axioms, is an
unpacking of the symbol G.

However, in this paper, by unpacking (the logical structure of) an infor-
mal statement we will mean associating with it a logically equivalent formal
statement including the logical features that are understood by convention,
rather than explicitly expressed, in the original statement. For example,
“a function is continuous whenever it is differentiable” can be unpacked
to “for every function f, if f is differentiable then f is continuous”. The
result of unpacking an informal statement is not unique since there can
be different, but logically equivalent, formal statements. An unpacking of
the above statement could just as well have resulted in “for every func-
tion f, f is not differentiable or it is continuous”. In this paper, unpacking
will always refer to associating an informal statement with a logically
equivalent formal one.

For another illustration of unpacking, consider the following informal
statement of a theorem which, although unfamiliar to many mathemati-
cians, would generally be regarded as expressed in an acceptable style:
(1) In a compact semigroup every group is contained in its own maximal
group which is closed.

Drawing on widely shared background and conventions, but not on the par-
ticular field of topological semigroups, a mathematician or an advanced
university mathematics student could unpack enough logical information
to see this theorem as expressible in a more formal style, perhaps as:

(2) For every semigroup S and every group G, if S is compact and G is a
subgroup of S, then there is a group H such that H is a subgroup of S, G is
a subgroup of H, and H is maximal and closed.

Our experience suggests that for teaching purposes, informal statements
such as (1) are often seen as more comprehensible, i.e., more easily under-
stood, remembered, applied, and used in reasoning, than more formal ones
such as (2). It would be interesting to know who holds this view and for
whom, and to what degree, it is accurate. The very commonness of infor-
mal statements suggests they may be useful, perhaps in connection with
“chunking” and the efficient use of memory*. In addition, mathematics
has both its intuitive/conceptual and rigorous/logical (i.e., synthetic and
analytic) sides (Tall, 1991, pp. 13-14; Hadamard, 1945). We suspect infor-
mal statements may more nearly reflect an intuitive grasp of relationships
between concepts while their more formal equivalent versions may capture
the precision needed for validating proofs. In this paper we will not further
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examine or speculate on the importance and uses of informal statements.
Instead we will concentrate on the ability to unpack them into equivalent
formal statements, as these are closely related to proof frameworks and
thus play an important role in the construction and validation of proofs.
We will also not discuss the interesting question of how unpacking might
be accomplished>.

2.4, Proof Frameworks

By a proof framework we mean a representation of the “top-level” logical
structure of a proof, which does not depend on detailed knowledge of
the relevant mathematical concepts, but which is rich enough to allow
the reconstruction of the statement being proved or one equivalent to it®,
A written representation of a proof framework might be a sequence of
statements, interspersed with blank spaces, with the potential for being
expanded into a proof by additional argument.

To see more precisely what we mean by a proof framework, consider
how one might prove that £1m3 z? = 9, or more formally, for every € > 0,

there is a § > 0, so that for each x,if 0 < |x — 3 | < §then |52 ~ 9| < e,
Here is a sample written representation of a proof framework, where blank
spaces have been left for the remaining mathematical argument needed to
complete a proof.

Proof : Lete be anumber > 0. Let § = SO
6>0. Letxbeanumber Suppose 0 < | x — 3 | <é.
Therefore | x> — 9| < e. O

This example illustrates the close relationship between a statement, espe-
cially a formal statement, and a corresponding proof framework. Because
the statement starts “For every ¢ ... ”, the proof framework begins by intro-
ducing ¢ in the first sentence. Some mathematicians might consider this
step unnecessary in an actual proof and just start using € because it appears
in the formal version of what is to be proved. Because of the order of the
quantifiers in the statement, ¢ would be understood to be independent of
6, and 6 would be understood to depend on ¢ but not on x, determining
their order in the proof framework. In addition, the “if-then” pattern in the
statement leads to the “suppose-therefore” in the proof framework. There
is no need to understand the meaning of absolute value to obtain the above
proof framework. We mention this last point only because we are using
independence from mathematical concepts as a way of indicating which
portion of a proof we are calling the framework, not because such igno-
rance is useful. A proof framework and a corresponding formal statement



130 JOHN SELDEN AND ANNIE SELDEN

can be thought of as containing the same logical information in different
linguistic forms, with each obtainable from the other,

Another example of a proof framework can be obtained from statement
(2) concerning compact semigroups.

Proof Let S be a semigroup and let G be a group. Suppose S is compact

and Gisasubgroupof S. ______________ . LetHbe___________.Then
H is a subgroup of S because ______________ . Also G is a subgroup
of H because _________. H is closed because _____________ and H is
maximalbecause _____________ . O

That the relationship between (2) and this proof framework is independent
of knowledge of the relevant mathematical concepts can be seen by replac-
ing “semigroup” with “set of real numbers”, “group” with “interval”, “a
subgroup of ” with “a subinterval of”, and retaining the usual meaning of
the other terms. This proof framework can then be expanded into a valid
argument which proves an altered version of (2) — a true, but unremarkable,
theorem.

Just as a theorem can have several proofs, it can have several proof
frameworks, which we regard as an essential ingredient in the construc-
tion and validation of proofs — a part of Hadamard’s “precising” phase
(1945, p. 56). For an example illustrating the ideas discussed thus far, see

Appendix 1.

3. UNDERLYING ISSUES

3.1. The Relationship between Unpacking and Validation

In this section we link validation, which can be long, complex, and entire-
ly mental, and hence very difficult to observe, with the ability to unpack
logical structure, which is more easily studied. We will argue that students
who cannot reliably unpack the logical structure of informally stated the-
orems, also cannot reliably validate their proofs. Here “reliably” is meant
to indicate that a student can almost always do this, except for occasional
inadvertent errors, due to such things as inattention or distraction. We are
assuming that such students’ normal mathematical environment includes
many informally stated theorems — this can be verified, at least for U.S.
university students, by examining their textbooks.

We start our argument by considering the validation of proofs. This
can be viewed as consisting of two parts, one (usually harder) is the
determination that each portion of the argument follows from one’s domain
knowledge and preceding portions, and another (usually easier) is the
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judgment that the argument establishes the theorem, rather than some
other theorem. The part of the argument which is used in making the latter
judgment is what we are calling a proof framework. Being able to link
a theorem with an appropriate proof framework is part of the validation
process, so a student who can reliably validate the proofs of theorems must
also be able to reliably recognize which proof frameworks are appropriate
for which theorems. This is essentially equivalent to the ability to construct
proof frameworks, since proof frameworks are relatively short and the
construction process is amenable to trial and error. Thus those who can
reliably validate poofs can also reliably construct proof frameworks.

We recall that a proof framework, by definition, contains adequate
information to reconstruct the statement to be proved or one equivalent
to it. Also, the process of finding a proof framework for a formally stated
theorem is reversible, e.g., the “if-then” pattern in the statement of a theo-
rem corresponds to the “suppose-therefore” pattern in a proof framework.
Furthermore, in actual mathematical practice, the validation of a proof
includes the judgment that the statement of the theorem could have been
derived from the (perhaps partly implicit) proof framework associated with
the argument. Thus those who can reliably construct proof frameworks can
also build formal theorem statements from those frameworks.

Joining this conclusion with the assertion at the end of the second
paragraph above, yields: students who can reliably validate proofs also
can reliably unpack the logical structure of informally stated theorems.
The contrapositive of this is our original claim.

We will illustrate the above argument using (1) of Section 2.3. Surely
a student able to reliably validate proofs, in considering how (1) might be
proved, could produce a proof framework similar to that of Section 2.4,
Such a student might well view this as simply listing what is to be shown
and adding a little notation. In considering what this proof framework
proves, this same competent student could produce (2), which we are
calling an unpacking of (1). The point is not that one would necessarily
go through such a cumbersome two-step unpacking process, but that the
ability to reliably validate proofs is sufficiently powerful to imply the
ability to unpack logical structure. Thus, those whose unpacking abilities
are deficient will also be unable to validate proofs reliably.

We note that the converse is probably not generally true. That is, a
student who can reliably unpack informally stated theorems might still not
be able to validate their proofs.
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3.2. The Importance of Unpacking and Validation

Is it important for university mathematics majors to be able to reliably
unpack the logic of mathematical statements or validate proofs? Would
the continuing inability to do so impede their progress? Since the subjects
of this study are, in varying degrees, in the process of becoming mathe-
maticians, these questions raise a more fundamental issue. Is the ability to
validate proofs important in the practice of mathematics?

We take the position that theorems and proofs are an essential part of
mathematics and that mathematicians can construct and validate proofs.
This is not an empirical claim about what mathematicians can do, but
takes these abilities as part of the meaning of mathematician. We sharpen
this general position by emphasizing that proving theorems and validating
proofs provides a high degree of certainty and, although socially learned,
can be carried out individually’. This does not mean that all mathematicians
can prove all theorems or validate all proofs. We are simply saying that
mathematicians have a cognitive ability which they can sometimes apply,
and that they can normally tell when they have applied it properly.

Since we see the ability to validate proofs as central to the practice of
mathematics, we also see it as important to students such as our subjects.
Furthermore, applying the result of the previous section gives us that
unpacking is also important,

3.3. Understanding and Learning

What do unpacking informal statements, constructing proof frameworks,
and more generally, validating proofs have to do with understanding and
learning — two fundamental concerns of mathematics education?

Understanding and learning of advanced mathematics are often viewed
in terms of an individual’s mental construction of concepts such as function
or limit. By contrast, unpacking, constructing proof frameworks, and vali-
dation, which have a certain procedural flavor, can perhaps best be viewed
as mental skills. On the one hand, they are not really part of conceptual
understanding or learning per se. On the other hand, they are essential to
the practice of advanced mathematics. Just as an artist must gain mas-
tery of various techniques, so a mathematician must master these skills.
One might regard the learning of them as contributing to an individual’s
procedural knowledge.

In addition, there is a situation in which the validation of proofs appears
to actually enhance conceptual learning and understanding. Although proof
validation is a way of determining whether a mathematical statement is
true, it also appears to be applied by mathematicians in situations where
a theorem and its proof are already believed. While we have not made
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a detailed study of this practice, judging from our own experience, we
believe it to be very common. Both individual mathematicians and groups
of mathematicians in seminars often select a particular journal article or
book and validate its proofs. For some mathematicians this may be their
principal way of learning new mathematics, apart from that which they
create themselves.

What is it that is leamed when one validates the proof of a theorem
one already believes? We suggest a partial answer — the process of val-
idation greatly enhances what we will call one’s “statement image” of a
theorem.

3.4. Statement Images

Most mathematics, whatever its origins, is eventually recorded and com-
municated using statements, including definitions, theorems, and conjec-
tures. Here we are considering only statements having lasting significance
to an individual and excluding statements such as “n represents an inte-
ger”. Theorems, in particular, are often remembered because they state how
mathematical concepts are related. To statements of lasting significance, a
person may attach rich mental structures, which we call statement images.
These are meant to include all of the alternative statements, examples,
nonexamples, visualizations, properties, concepts, consequences, etc., that
are associated with a statement. Such associations can arise from noticing
relationships, such as seeing an example which illustrates a theorem; from
repetition, such as using a theorem many times on one type of problem;
or from affect, such as discovering a proof technique after many attempts.
We view statement images as a unifying extension® of the idea of concept
images which we regard as statement images corresponding to definitions
(Vinner and Hershkowitz, 1980; Tall and Vinner, 1981; Vinner, 1991).
When one validates a proof of a theorem, one’s knowledge base is
altered by making or strengthening associations between mental represen-
tations of the theorem and various other features of one’s knowledge base.
That is, one is constructing or enhancing one’s statement image of the
theorem. Consider, for example, the calculus theorem whose validation
is described in Appendix 1. It seems very likely that the validator would
link mental representations of this theorem, its unpacking, its proof, and
its proof framework. In addition, the triangle inequality might become
associated with the theorem. Taken together, these associations become
part of the validator’s statement image of the theorem. In this way, we
see the enhancement of statement images as one result of proof validation.
Appendix 2 illustrates another way to build up statement images.
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As students progress toward becoming mathematicians their inclina-
tion and ability to validate proofs should increase. Since proof validation
includes the production or recognition of proof frameworks, it is reason-
able to expect statement images of theorems for more advanced students
to contain proof frameworks or the associated formal statements.

Considerable emphasis has been placed on understanding the mental
development and representation of mathematical concepts and one could
view a person’s knowledge base as consisting principally of concepts or
concept images, with the relationships between them playing a secondary
role. However, mathematical relationships can be quite complex and are
precisely expressed in theorems. In addition, theorems appear to play
a central role in mathematics — papers published in journals sometimes
announce new theorems without introducing new concepts, whereas the
reverse is rarely so. We find it hard to see either mathematics itself, or one’s
knowledge of it, as just a giant concept map with its relatively simple links
(Novak and Gowin, 1984). Hence, we believe it will be useful to have a
unit of analysis, such as statement image, that can correspond not only
to concepts, but also to theorems, as carriers of the complex relationships
between concepts.

3.5. Summary

We have now provided a setting, against which our data can be viewed,
consisting of the ideas of informal statement, unpacking, formal statement,
and proof framework. This setting, however, does not explain why the
data are worth studying. To do so, we included the ideas of validation
and statement image. We maintain that proofs, and hence, validations,
are an important part of doing mathematics and that proof frameworks
are an essential part of validations. Validations are used both to establish
the correctness of theorems and for learning. Much of what is learned
from validations consists of the construction or enhancement of statement
images which, when they arise from validation, are likely to contain proof
frameworks or their associated formal statements.

4. THE DATA

4.1. The Question

Can mid-level mathematics undergraduates reliably validate the proofs
of theorems? Can they generate proof frameworks for informally stated
theorems? Such students often have an inadequate conception of proof and
may have difficulty comprehending and answering questions about proofs.
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For example, given a familiar theorem, they might have trouble answering
questions such as, “If you were to prove this theorem, what sort of notation
would you introduce and how would you go about it?”” Thus we used an
indirect approach, studying undergraduates familiar with the language of
predicate calculus and asking them to unpack informally written statements
into that language. The results of this unpacking correspond to formal
versions of the original informal statements. That is, “Vz Jy x < y” is
not very different from “for every x there is a y such that x < y”. If a
student cannot reliably unpack the logical structure of informal statements,
then, as we have argued above, he/she will lack adequate information for
constructing proof frameworks or validating proofs. Our data suggest this
is often the case.

4.2. The Students and the Course

This study was conducted at Tennessee Technological University, a com-
prehensive U.S. state university, with an engineering emphasis, then enroll-
ing about 7300 students. During the 1989-1993 period of data collection,
the average ACT composite score of entering freshman was about 21, well
above average for the state.

Data were collected from 61 university students taking a “bridge” course
designed to ease the transition from lower division, more computational,
mathematics courses to upper division, more abstract, mathematics courses
such as modern algebra and advanced calculus. As the intended clientele
for this course are second-year students, the only prerequisite is one-
variable university level calculus. However, the majority of students in our
study (78.1%) were in their third- or fourth-year and had taken additional
courses, such as multi-variable calculus, differential equations, and matrix
algebra. A few had also taken discrete structures, probability, statistics, or
complex variables. In addition, three students (4.7%) were secondary edu-
cation masters students. The students were primarily mathematics (42.1%)
and secondary education mathematics majors (43.8%), with an occasional
engineering, accounting, computer science, or physics major. Their final
grades were 23.4% A’s, 23.4% B’s, 31.3% C’s, 4.7% D’s, 9.4% F’s, 7.8%
W’s or Is.

Data were collected from three tests and five final examinations, while
teaching the course six times (three times each for two instructors) from
Fall Semester 1989 to Spring Semester 1993. The course was taught in a
variety of ways including: whole group discussion with students presenting
problem solutions and proofs at the board, lecture combined with students
presenting problem solutions and proofs at the board, lecture combined
with cooperative group work, and lecture combined with both cooperative



136 JOHN SELDEN AND ANNIE SELDEN

group work and students presenting problem solutions and proofs at the
board. A variety of textual materials were used: one instructor’s own
notes, Fletcher and Patty’s Foundations of Higher Mathematics (1988),
and Kurtz’s Foundations of Abstract Mathematics (1992), all of which
were supplemented, as needed, with appropriate handouts and commentary.
Classes were small and the 61 students represent the entire enrollment.

4.3. Data on the Unpacking of Informal Statements

We collected 94 responses on these students” ability to unpack four informal
calculus statements (n = 31, n = 19, n = 24, n = 20). Just three of the 61
students repeated the course; only one responded twice (incorrectly) to
the same statement. At the time the data were collected, the students had
completed their coursework on propositional and predicate calculus and
had done homework on similar unpacking problems.

We judged the unpacking of actual statements from calculus texts to be
too difficult for these students. We also thought they might consider such
problems “unfair” on tests and final exams. We thus wrote four simplified
informal statements regarding calculus topics — two true, two false, but
all four syntactically correct and meaningful. When we subsequently gave
some of our students actual statements photocopied from calculus texts
on homework and on an unlimited-time, open-book, take-home test, these
proved very difficult for them to unpack.

Directions for unpacking the simplified informal calculus statements
varied slightly from year-to-year according to the way problems had been
discussed in class. Parentheses were sometimes used, and sometimes omit-
ted, around V a or x < y. Students were initially asked to “analyze and write
the following in our notation”, but were not asked to provide sets, often
called “universes” in textbooks, from which instances of quantified vari-
ables were to be taken. For example, x could be used without specifying
its universe, which might be, say, the real numbers. In later years, students
were asked to “translate into an equivalent statement” making sure all vari-
ables were quantified and had universes. They were also given contextual
information, namely, that they should assume the statements had come
from a calculus student or teacher.

Below, for each statement, we give a sample correct unpacking and a
sample incorrect student unpacking.

4.3.1. Statement 1 (n=31)

Data came from final exams in three courses taught by two instructors.
One of 31 students (3.2%) was able to correctly unpack this statement. It
was:
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Fora < b, there is a ¢ so that f{c) = y whenever fla) < yandy < f{(b).

If f were continuous, this statement would be the Intermediate Value
Theorem as stated in many calculus texts.
A sample correct unpacking would be:

VaVbVfV¥y3dclla<bAfla)<yAy<fib))— fic)=yl

One incorrect student unpacking was:
Va<bIdcVfVy[(la)<yANy<Ab)) — fic)=yl

This innocent-looking interchange of universal and existential guanti-
fiers radically alters the meaning of the original statement. It now asserts
the rather bizarre idea that in every interval (a, b) there is a peculiar num-
ber ¢, at which each nonconstant f takes on all values y between f{a) and

fb).

4.3.2. Statement2 (n=19)

Data came from one test and one final exam in two courses taught by two
instructors. Two of 19 students (10.5%) were able to correctly unpack this
statement. It was:

There is a function g such that g’ = f whenever f is continuous at each

A sample correct unpacking would be:
V fI(V x fis continuous at x) — (3 g g’ =]
One incorrect student unpacking was:

Y g V¥ f[(g exists) — [V x (fcont on x) — (g’ =H]].

4.3.3. Statement 3 (n = 24)

Data came from one test and one final exam in two courses taught by
one instructor. Five students (20.8%) were able to correctly unpack this
statement. It was:

Iffis defined at a, then lim fix) exists implies fis continuous at a.
T—ra

A sample correct unpacking would be:
(Vf€F) (Vae€R) {(fis defined at a) — [(g%ilrr%l fx) exists) — (f is
continuous at a)] }.

One incorrect student unpacking was:
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(V f (in some set of functions)) (3 a € R) (V x € R) (fis defined at a) —
(%1_12L f(x) exists — fis continuous at a).

4.3.4. Statement 4 (n = 20)

Data came from one test and one final exam in two courses taught by
one instructor. Not one of 20 students was able to correctly unpack this
statement. It was:

A function f is increasing on an interval I means that for any numbers
xrand xy in 1 if x1 < xp, then flxy) < flxz).

A sample correct unpacking would be:
VfeF) (VIeI)[(fincreasingon) = Vx; €D Vxp € ) {(x; <
x2) = (flx1) < fo )}

One incorrect student unpacking was:
AfeF) ((fisincreasing) — Vx; eV xp € ) ((x1 < xp) — flxy) <
f0x2)).

In evaluating student unpackings we counted all of the equivalent forms
of a statement as equally correct and very simple syntax errors, such as a
missing right parenthesis, were ignored. We also ignored distinctions such
as that between J fand 3 f € F. We counted as errors anything that would
significantly alter what one would expect to see in a proof. For example,
confusing “if” with “if-and-only-if ”, might in some contexts be seen as a
minor oversight, but we counted it as an error. Similarly, omitting part of
a hypothesis or a conclusion was counted as an error.

Student unpacking errors included: quantifying a variable twice, not
quantifying actual variables, quantifying bound variables, incorrectly em-
ploying an existential in place of a universal quantifier or vice versa, giving
the converse in place of the original statement, not replacing words like
“means” in Statement 4 with the correct logical connective, and quantifying
an additional variable such as x in Statement 4. Often students made more
than one of these errors while unpacking a single statement. Altogether,
only 8.5% of the unpacking attempts (8 of 94) were completely successful.
These came from 13.1% of the students (8 of 61).

4.3.5. Informal statements from calculus texts (n = 24)

Nine statements of definitions and theorems were photocopied directly
from a variety of U.S. calculus texts omitting the identifying words “def-
inition” and “theorem”. These were given to 24 of these students for
unpacking as a homework assignment or as an open-book, take-home test
in two of the later classes. Included were the ¢ — é definition of limit,
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definitions of local extrema and critical points, and Rolle’s theorem. Four
others are given below:

(A) If lim f(z) exists and is positive, then there is an open interval
r—C
containing ¢ such that f{x) > 0 for every x # c in the interval.

(B) If f'(z) = ¢'(z) for all x in an interval I then f and g differ by a
constant on I, that is, there is a constant k such that f(x) — g(x) = k for all
xinl

(C) If flc) is either a local maximum or minimum of f, then either (i)
f'(c) = 0or(ii) f'(c) does not exist.

(D) If g is continuous at ¢ and f is continuous at g(c), then f o g is
continuous at c.

One class of fourteen students was given these nine unpacking tasks
as homework. Of 126 responses, just three coming from one student were
completely correct. However, this fourth-year student, who got C in the
course, may have received outside help on this assignment. Another student
gave an almost correct unpacking of (D).

Ten students in a subsequent class were given these nine unpacking
tasks as an open-book, take-home test. Since the instructor had discussed
the unpacking of the ¢ — § definition of limit in detail prior to the test,
we did not tally either correct or incorrect unpackings of this statement.
Just one individual, a secondary education masters student who got a final
grade of A, successfully unpacked (D) and gave almost correct unpackings
of three other statements, including (B) and (C). Thus, at most 5% of these
unpacking tasks (4 of 80) could be considered successfully completed. Not
one student from either class successfully unpacked (A).

4.4, Summary and Analysis

No student in this study, the majority of whom were third- or fourth-year
university students specializing in mathematics or secondary mathemat-
ics education, could consistently unpack informally written mathematical
statements into equivalent formal versions using the symbols of predicate
calculus with which they were familiar. At best, a few students could do
so occasionally. Thus when such a student considers an informally written
theorem, his/her image of it would be very unlikely to contain a formal
version of it, and consequently, probably would not contain a proof frame-
work for it. The knowledge that a written proof framework embedded in a
particular argument is appropriate for establishing the truth of a particular
theorem is an essential part of knowing that the argument is a proof of
that theorem, i.e., of knowing that the “proof” actually proves the theo-
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rem. Thus, for many informally stated theorems, these students could not
have known that a given argument proved a theorem, however much they
might have thought so and however well they understood the relationship
between the mathematical concepts involved at an intuitive level.

5. DISCUSSION

5.1. Beginning Undergraduates and Validation

The subjects in this study had a number of advantages over typical begin-
ning university students, most of whom study mathematics in service cours-
es. They were third- or fourth-year mathematics or mathematics education
majors, who had taken a number of university-level mathematics courses
beyond calculus. Consequently, it is reasonable to conclude that beginning
university mathematics students, lacking these advantages, would also be
unable to unpack the logical structure of informal statements. This means
they would neither have nor be able to generate proof frameworks in their
images of theorems and would also not be able to validate proofs. In gen-
eral, anything requiring logical unpacking or validation would probably be
less transparent for them than might be expected. We see lack of validation
skills as linked to beginning university students’ well-documented inade-
quate conceptions of proof and discuss this in the following section. Next
we discuss undergraduate students’ lack of an appropriate experiential base
of argumentation in school, which may contribute to their poor validation
skills and inadequate conceptions of proof.

5.2. Poor Validation Skills and Inadequate Conceptions of Proof

Students, who lack unpacking and validation skills, would be unlikely
to develop an appreciation for one of the major purposes of conveying
information in the theorem-proof format, namely, that a reader can inde-
pendently check a theorem’s correctness. They may also have difficul-
ty distinguishing supplementary and explanatory remarks from the proof
itself, and thus lack prototypical examples for constructing the concept of
proof. Because of this, it should not be surprising that they have inade-
quate conceptions of proof, and this expectation is supported by a number
of observations. Fischbein and Kedem (1982) and Martin and Harel (1989)
found that many students at this level are confused about the nature and
use of mathematical proofs. Owens (1992), in a study of preservice sec-
ondary mathematics teachers, found that they saw proofs as remote and
irrelevant, that this view seemed to originate with high school geometry,
and that it tended to be reinforced by college work. In addition, Schoenfeld
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(1985, pp. 355-357) has described undergraduates who, having just proved
a geometry theorem, failed to apply the results of their own reasoning and
reverted to naive empiricism when attempting a geometric construction
problem essentially contained in the theorem they had just proved. Indeed
such students do not seem to regard deductive reasoning as useful for
solving problems or linked to common sense reasoning.

5.3. Building an Early Experiential Base for the Concept of Proof

We believe that both weak validation skills and viewing proofs as ritualistic,
and unrelated to common sense reasoning, may be partiaily traceable to the
absence of arguments, especially student-produced arguments, in school
mathematics. School mathematics need not be devoid of such arguments,
In a study from a social perspective, Yackel, Cobb, and Wood (1991)
encouraged elementary students to reflect on their work. They induced
them to solve problems cooperatively and to make arguments supporting
their conjectures. In another study, Davis (1992) described four fourth-
grade students who were given two colors of Unifix cubes and challenged
to build as many three-cube towers as possible. Each was to convince the
others he/she had found every possible tower with no duplications. The
children found three different methods for doing this and in the process
invented the idea of a situated “mathematical proof”. For these students,
mathematical arguments arose naturally without explicit instruction and
were probably similar to their arguments in other contexts.

Encouraging elementary school children to reflect on their own actions
and give reasoned arguments may not only enhance their construction of
concepts such as number and exponent, the arguments might also act as
precursors to the concept of proof — precursors linked to common sense
arguments. However, the continued development of student-made argu-
ments appears to depend heavily on the culture of the mathematics class-
room, the influencing of which is well illustrated in Lampert (1990).

Such a rich experiential base of argumentation could be, but usually is
not, present prior to U.S. undergraduates’ first encountering proofs. What
would happen if it were? Would such undergraduates’ conceptions of proof
include that proofs are refinements of everyday arguments and really do
assure the truth of the associated theorems? Perhaps such undergraduates
would regard theorems and proofs as a natural, useful part of mathematics.
Perhaps their validation skills might be better developed and their statement
images of theorems might more readily contain proof frameworks.
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5.4. Implications for Teaching

We are not the only ones to have noticed difficulties with the unpacking of
informal statements. Epp observed that undergraduate students have great
difficulty writing formal versions of statements involving quantifiers, such
as “everyone is older than someone”. However, if she first asked students
for completions of the statement “V people x ... ”, they were subsequently
able to tackle the original statement (Epp, 1994). Her teaching strategy
seems to draw on students’ existing contextual knowledge to help them
enrich emerging statement images.

Moore (1991), in studying a “transition” course at the University of
Georgia, found that knowing a definition and being able to give examples
and nonexamples did not necessarily provide the language and logical
structure to write proofs. However, learning to translate a definition into
symbolic form in which quantifiers are explicit, e.g., fis one-to-one if and
only if V x V y (fix) = fly) — x = y), helped students to see the logical
structure of proofs based on that definition.

Radford (1990) gave first-year engineering students at the University
of San Carlos in Guatemala geometrical and numerical theorems, together
with scrambled, seven or eight-line proofs thereof. The students reassem-
bled these proofs in a variety of mostly incorrect ways, indicating they had
little appreciation for the logical structure of an argument.

The analysis presented in this paper leads us to three suggestions for
teaching. First, since many undergraduate students have difficulty unpack-
ing informally written statements, it might be useful to present theorems
and definitions both in a more informal way and in a more formal way®.
This should accommodate the needs both for intuitive understanding and
for the careful validation of proofs or even validation of less formal argu-
ments.

Second, it might be useful to offer university students some explicit
instruction or advice on validation, an area currently more or less neglected.
There is no reason for such instruction to be restricted to proofs. Much of
the reasoning employed in determining the correctness of solutions to
nonroutine problems is similar to the reasoning used in validating proofs.
Asking students to explain why their proposed solutions to novel problems
should be accepted or discussing why an argument proves a theorem, rather
than some other theorem, might be helpful. This suggestion is similar to
part of the “method of scientific debate” (Alibert and Thomas, 1991).

Finally, because university students who still have weak validation skills
may not be able to distinguish proofs from supplementary or explanatory
comments, it might be good to present material in a way that makes this
distinction clear. For example, explanations of definitions, illustrations of
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relevant concepts, cautionary remarks, and even remarks on the structure
of proofs, except those needed to organize their linear presentation and
help readers with validation, might best be treated as annotations. This
might simultaneously provide prototypical examples for enhancing stu-
dents’ conceptions of proof and also encourage them to validate proofs
carefully.

APPENDIX 1

A SAMPLE VALIDATION

The following example illustrates some of the ideas discussed in this
paper, namely, the kind of proof we are considering, validation, informal
and formal statements, the unpacking of the former into the latter, and
proof frameworks. For this purpose, we have selected a familiar calculus
theorem, but are not suggesting what follows should be used in teaching
calculus. Nor is the example meant to illustrate how a theorem or its
proof might be invented since it does not consider such things as intuition,
insight, visualization, false starts, or cognitive strategies.

Although the theorem we have selected is similar to Leron’s Theorem
2.2 (1983), our purpose is different — in fact, it is complementary. Leron
presents the argument in a nontraditional, top-down, structured way in
order to facilitate grasping its basic structure, as well as the relationship
between relevant mathematical concepts. We, on the other hand, give
a traditional linear presentation which facilitates the validation process.
Both points of view are important in the practice of mathematics.

Neither the statement of the theorem, its unpacking, its proof frame-
work, its proof, nor its validation are unique. These could be done in other
ways. Validation, in particular, depends heavily upon the individual val-
idator, his/her domain knowledge, and his/her knowledge of validation
procedure.

We present a plausible, but imaginary, transcript detailing the main
questions, answers, and comments of our (hypothetical) validator. The
transcript is written entirely as internalized speech, but an actual validator
might also draw some pictures, think out loud, or visualize portions of the
proof. For reference, we have numbered the sentences in the proof, using
brackets to enclose both reference numbers and our comments.

Theorem. f + g is continuous at a point, provided f and g are.

Proof [1] Let a be a number and let f and g be functions continuous at
a. [2] Let ¢ be a number greater than 0. [3] Note that £/2 is greater than
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0. [4] Now because f'is continuous at a, there is a §; greater than 0, such
that for any x1, if | x; — a | < é;, then | ix1) — fla) | < /2. [5] Also there
is a 6, greater than 0, such that for any xs, if | x — a | < &, then | g (x2)
— g(a) | < &/2. [6] Let § be the smaller of §; and 8,. [7] Note that § is
greater than 0. [8] Let x be a number. [9] Suppose | x — a | < §. [10] Then
|x—al| <b1,80 | fx) —Ra) | < /2. [11] Also | x — a | < 63,50 | g(x) —
¢(@) | < /2. [12] Now | (fx) + () — (@) + g(@))] = | (F) — fla)) + (g
@) —g@) | <|fix)—fla)|+]| gx) — gla) | < e/2 + /2 =¢.[13] Thus
| (f(x) + g(x)) — (a) + g(a)) | < €. [14] Therefore f+ g is continuous at a. [J

Our (hypothetical) transcript follows.

[1] “OK, a, f, and g can be introduced this way because they haven’t
been used before - this is the first line of the proof. Why is the argument
starting with something about fand g when the theorem starts with f+ g?
Does the argument really prove the theorem? The theorem really means:
For every number a and every function f and every function g, if fand g
are continuous at a, then f + g is continuous at a. [This is an unpacking
of the original informal statement into a more formal one.] So the proof
should start with an arbitrary a, f, and g and assume f and g are continuous.
That amounts to [1]. After some argument, the proof should end with f + ¢
is continuous at a, which turns out to be the last line, [14]. OK, if the
argument checks out, the theorem is true.” [That is, a proof framework
obtained from the statement of the theorem agrees with the one embedded
in this argument.]

[2] “OK, ¢ hasn’t come up before, so it’s permissible to let it represent
any number.”

[3] [This comes from [2] and a bit of domain knowledge.] “Half a
positive number is positive. So [3] is OK, but why say it?” [The answer to
this would be helpful but is not essential to the validation.]

[4] “This is supposed to come from ‘f continuous at @’ which means:
For every ¢ greater than 0 there is a § greater than O so that for all x, if
|z —a| < 8, then | fix) — fa) | < . Here the symbols may mean something
different from those in the proof. [This comes from domain knowledge,
perhaps with some unpacking.] This says ‘for every £ so this part can
be dropped with ¢ replaced by any positive number. So €/2 can replace e.
Also, the x can be renamed as x; and the § as 6; throughout. That gives me
[41.”

[5] “There is no ‘because’ here. But, it looks like [4]. So I can start with
the definition of ‘fis continuous at @’ and change ‘f’ to ‘g’. Just as before
in ‘e greater than 0’, I can replace ¢ by /2. Also the x; can replace x and
8, can replace 6. So [5] is OK.”
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[6] “Now ‘6” has not been used before in the proof, so it can represent
any number made out of numbers already there.” [It will turn out later that
6 has to be treated this way, and cannot be arbitrary like €.]

[71 [This comes from some domain knowledge.] “The smaller of two
positive numbers is positive.”

[8] “OK, ‘x’ hasn’t been used yet so it can represent any number.”

[9] “This inequality is a statement because x, a, and § already represent
numbers and one can suppose any statement. But why?” [Tt turns out this
supposition is part of proving f + g is continuous at a. Knowing that would
help the validator keep track of the argument, but it is not essential to the
validation.]

[10] “The first part of this assertion follows from [9] and [6] [and
simple domain knowledge — if a quantity is less than the smaller of two
numbers, then it is less than either number separately]. The second part
comes from the first part and the implication in [4], replacing ‘x;’ by ‘x’.
This is permissible because [4] said ‘for any x;’.” [In addition, [10] is using
another kind of domain knowledge, namely, that Q can be inferred from P
and P implies Q.]

[11] “The first part comes from [9] and [6], just as in [10]. The second
part comes from the first part and [5], just as in [10].”

[12] “The first equality comes from (@ + b) — (c + d) = (a — ¢) +
(b—d). [Some domain knowledge.] The inequality comes from the triangle
inequality, | p+q | <|p|+|q|, where ‘fx) — fla) replaces ‘p’ and ‘g(x)
— g(a)’ replaces ‘q’. Next the strict inequality comes from the last parts of
[10] and [11] [and some domain knowledge, namely, a + b < ¢ + d can be
inferred from a < ¢ and b < dJ. The final equality is just arithmetic.”

[13] “This follows from [12] [and several instances of the transitive
property for real numbers, e.g., a < b and b < ¢ implies a < ¢].”

[14] “This must depend on the definition of continuous at a, applied to
f+g. Thatis, for every ¢, there is a § greater than 0, such that for every x,
if|x—a|<é then|(f+g)x) — (F+g)a)| <e”

“Now I need to check that the definition of continuity is satisfied and
that amounts to proving a theorem. [The validator, in effect, next constructs
aproof framework.] Let ¢ be an arbitrary real number greater than 0. That’s
[2] of the proof. Let § be a real number greater than 0, which can depend
on ¢ but not on x. That’s [6] and [7] of the proof. Let x be an arbitrary
real number. That’s [8], which comes after [6], so § doesn’t depend on x.
Suppose | x — a | < é. That’s [9]. Then, after some argument has been
given, | (f+ g)(x) — (f+ g)(@) | < €. This doesn’t look like [13], but it means
the same thing because (f + g)(x) means fix) + g(x) and (f + g)(a@) means
fa) + g(a).” [Here the validator does some notational unpacking.]
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“So [14] is OK.”

“Now the entire argument is OK, and at the beginning, I checked that
if the argument was OK, then it would prove the theorem.” [The validator
decided, as part of checking [1], that the proof framework of the argument
was appropriate for the statement of the theorem.]

This completes the validation.

The proof in this example is fairly detailed — some might say overly so.
Many proofs omit lines like [1] which serve to “introduce” a, f, and g. An
expert validator would not need [1]. The importance of [1] however is that
it emphasizes the need to check that a, f, and g are arbitrary. If this were
not the case — say f somehow depended on g or a — then an expert validator
would notice the error even though [1] were missing. That is, he/she would
act as if [1] were there should arbitrariness fail, but might not even notice
its absence otherwise.

All or part of [12] might also be omitted from the proof. In that case, the
validator might add the omitted portions to his/her own expanded version
of the proof. In general, the need to produce additions to written proofs
cannot be avoided. The writer of a proof must depend on his/her own
domain knowledge and writes, in a sense, for an idealized reader. The
actual validator of a proof may depend on a very different base of domain
knowledge. In some cases, a validator may treat a proof as just an outline
within which his/her own version of the proof is to be constructed during
the validation process. In such cases validation can be creative and very
long.

An actual validator might well carry out the validation process in this
example much more quickly than the transcript can be read. On the other
hand, if [12] were omitted from the proof, a relatively inexperienced student
might take some time to realize that the key to proving [13] was the triangle
inequality. Furthermore, if the need to insert an argument to justify [13]
were not noticed until [14] was checked, another problem might arise.
The checking of [14] is sufficiently complex that stopping for some time to
justify [13] might overload working memory and cause part of the checking
of [14] to be neglected. To guard against this sort of potential error, some
validators make multiple passes through a proof.

The proof we have discussed here is short and “structurally simple”,
consisting only of a brief proof within a proof. Many proofs are much
longer and structurally more complex, and hence, require more compli-
cated validations. As mathematics is now taught at university, advanced
undergraduate students are apparently expected to acquire this complex
ability to validate proofs without much direct instruction. We do not know
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whether they do acquire it, but our data suggest that our mid-level under-
graduate students have not yet done so.

APPENDIX 2

BUILDING A STATEMENT IMAGE

Both the idea of statement images and their construction can be illustrated
by considering a (hypothetical) mathematician or advanced mathematics
student, whom we call M. We assume M knows some abstract algebra, a lit-
tle topology, and nothing of statement (1) concerning compact semigroups.
We suggest a few plausible steps in M’s (not necessarily intentional) con-
struction of a statement image of (1).

Suppose M first encounters (1) during a particularly long and boring
colloquium and casually considers why it might be true and how it might
be proved. M might first unpack (1) into (2).

M may next wonder how an apparently algebraic hypothesis could lead
to a topological conclusion, i.e., that the maximal group is closed. This
may cause M to think of topological groups and conclude by analogy that
a compact semigroup must mean a topological semigroup, that is, that mul-
tiplication is assumed to be continuous, thereby linking the topology and
the algebra. Now M has associated (1) with his/her concepts of topological
algebra and topological group.

Next M might look for an example, even though he/she knows so little
about topological semigroups that nothing comes to mind at first. M might
nevertheless persist because finding examples helps enhance M’s feeling
of understanding and often leads to ideas for a proof. Now suppose M is
familiar with complex numbers and favors visualization. Eventually, after
some initial period of frustration, M might think of the complex unit disk
with multiplication, realize it “fits” (1), and see that the unit circle is a
maximal group contained in it. This sudden visualization of an example,
after a period of frustration, makes quite an impression on M and forms
a strong association between (1) and the complex unit disk. In effect, the
disk becomes, for M, a prototypical example — so much so that, whenever
M thinks of (1) in the future, shortly thereafter he/she is very likely to
visualize the disk. M might next try to construct a proof of (1).

Although this scenario illustrates what we mean by a statement image
and suggests events which might lead to the formation of such an image, a
discussion of the mechanisms by which the required associations are made
and remembered is beyond the scope of this paper.
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NOTES

1. This study was supported in part by a Faculty Research Grant from Tennessee Techno-
logical University. The authors would like to thank the referees for their many helpful
suggestions.

2. We have, however, taken into consideration Livingston’s (1986) ethnomethodological
study of mathematicians’ work, as well as Michener’s (1978) study of mathematicians’
understandings.

3. Toulmin (1964) has considered how the soundness of practical arguments is established,
treating logic as “generalized jurisprudence” and introducing the idea of warrants which
allow one to establish claims from data.

4. Such informal statements may play a role similar to that of conceptual entities and
their associated mathematical notations in reducing working memory load, facilitating
comprehension of complex concepts, and focusing one’s attention during problem
solving (Harel and Kaput, 1991).

5. One impediment to unpacking can be ambiguity. Our experience suggests that an
ambiguity producing two inequivalent “unpackings” can sometimes be resolved by
domain knowledge indicating that one of the two is “clearly” false. Thus, the same
informal statement may be ambiguous for a student, while not being seen as so by a
teacher with greater domain knowledge. For example, (1) is similarto (1') In a compact
semigroup every group is contained in a maximal group which is closed. However, (1')
is ambiguous and might be “unpacked” to either (2) or (2') For every semigroup S, if §
is compact then there is a group H such that (i) H is a subgroup of S, (ii) H is maximal
and closed, and (iii) for every group G, if G is a subgroup of S then G is a subgroup
of H. As it turns out, there are many compact semigroups containing several disjoint
groups. However, the identities of these could not be distinct were they contained in a
single group H, showing that (2') is false. Thus a semigroup expert would fail to see
the ambiguity of (1) which might arise from an alternative “unpacking” — one that
could not have been intended as it is clearly false (for the expert). While we do not
know the extent or importance of this kind of unpacking impediment, we do know it
occurs. An early draft of this paper contained (1) instead of (1). This ambiguity was
pointed out by our referees.

6. Although proof frameworks do not depend on detailed knowledge of the mathematical
ideas in the statement of a theorem, they do depend, like proofs themselves, on the
style in which mathematics is customarily written. Sometimes it is said that proofs are
simply everyday arguments made more precise. In a sense this is true, but not every
style of everyday argument is generally favored by the mathematical community. For
example, we have noticed that undergraduate students first attempting proofs will
commonly unnecessarily include universal quantifiers — for example, arguing about
all £’s simultaneously, instead of about an arbitrary, but fixed, . They also quote
definitions and theorems in their proofs, in contrast to mathematicians who tend to
avoid this except in lectures and explanations. Furthermore, students may not avoid
redundancy and may vary the meaning of symbols within an argument. These are
not necessarily errors for everyday arguments, but are usually avoided in proofs. We
conjecture that the style in which proofs are customarily written by mathematicians is
related to reducing cognitive load during the validation process, thereby increasing its
reliability.

7. Our experience suggests that this position, which is not meant to be a complete descrip-
tion of mathematics, is consistent with the practice and view of a large portion of the
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mathematics community that actually produces or applies mathematics, as well as of
those who teach mathematics to advanced university students. There is an alternate
position (Ernest, 1991) which emphasizes social aspects of the mathematics communi-
ty and, to some extent, appears to deny the kind of individual ability and certainty we
describe, and which might well see these features of practice as illusory. Despite enjoy-
ing considerable support amongst mathematics education researchers, this position is,
we suspect, more or less unknown to most practicing mathematicians.

8. Theorems-in-action (Vergnaud, 1990) resemble ‘statementless’ statement images, like
concept images without concept definitions. An historical example of a ‘statementless’
statement image is the homotopy axiom, whose main idea was implicit in “homotopic
cycles are homologous” long before there was a structure in which to state the axiom
(Eilenberg and Steenrod, 1952, p. 47).

In addition, it would be interesting to know if impoverished statement images could
account for the lack of access to their knowledge bases which we observed in calculus
students’ inability to solve nonroutine problems (Selden, Selden and Mason, 1994).

9. In courses taught by the R. L. Moore, or Texas, Method, where students prove all
theorems themselves, definitions and theorems tend to be stated in a more formal
way than in typical textbooks. For more information on the Moore Method, see Jones
(1977).
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