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A set of distributed robust finite-time state observers was developed and tested to estimate the main biochemical substances
in interconnected metabolic networks with complex structure. The finite-time estimator was designed by composing several
supertwisting based step-by-step state observers. This segmented structure was proposed accordingly to the partition of metabolic
network obtained as a result of applying the observability analysis of the model used to represent metabolic networks.The observer
was developed under the assumption that a sufficient and small number of intracellular compounds can be obtained by some
feasible analytic techniques. These techniques are enlisted to demonstrate the feasibility of designing the proposed observer. A set
of numerical simulations was proposed to test the observer design over the hydrogen producing metabolic behavior of Escherichia
coli. The numerical evaluations showed the superior performance of the observer (on recovering immeasurable state values) over
classical approaches (high gain). The variations of internal metabolites inserted in the hydrogen productive metabolic networks
were collected from databases. This information supplied to the observer served to validate its ability to recover the time evolution
of nonmeasurable metabolites.

1. Introduction

Metabolic engineering (ME) represents one of the most
relevant disciplines in bioengineering [1]. The set of methods
and techniques integrated in this novel discipline seeks to
optimize the metabolic circuits and regulatory mechanisms
in different cells that increase their production of relevant
metabolites [2]. ME is closely connected to genetic engi-
neering and molecular biology [3] that can use complex
interconnected network models with diverse structures.

ME takes into consideration the tools of applied math-
ematics to obtain models of the metabolic networks under
study [4, 5]. The correct application of these models could
save lots of resources and reduce the time to introduce
productive modified cells with their remarkable secondary
metabolites to the market.

There are different options to generate the model includ-
ing Boolean structures, algebraic relationships, or time de-

pendent descriptions based on ordinary or partial differential
equations (ODE/PDE) [6]. This last option seems to be the
most complete because the transient behavior of the cell
can be captured in the ODE model. However, two natural
problems arise when ODEs are used: (1) the data density
needed to characterize the model is bigger than all other
cases and (2) the number of parameters included in the
model could be so large that existing parametric identi-
fication methods cannot be powerful enough to get a com-
plete validation of the model [7].

The identification of uncertain parameters from time-
series measurements of interesting biochemical compounds
is a major aspect in system biology and ME. The majority of
existing methods aimed at obtaining the parameters require
the information of all compounds continuously or at least
with some periodicity. On the other hand, best-fit parameter
estimates are ill-posed due to issues related to data informa-
tiveness, problem formulation, and parameter sensitiveness
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[8, 9]. Even when the so-called canonical power-law formal-
ism (using relative simple structures in the right-hand side of
the ODE representing the metabolic network) is considered
to obtain the model, the parametric identification solution
remains as a complicated problem. This characteristic is
emphasized when regulatory interactions amongmetabolites
are considered. Despite the benefits of power-law formalism,
the number of parameters increases if the metabolic network
is described more precisely (including more metabolites and
regulation interactions).

One major additional issue that must be solved to get
accurate parameter values in themetabolic network represen-
tation is the necessity of measuring all the metabolites in the
network. This is one of the most challenging aspects when
ODEs are used to generate the model. Several experimental
options have been proposed as the so-called metagenomics
or using real-time polymerase chain reaction (PCR). Never-
theless, the expensiveness of applying these techniques may
limit their application on characterizing metabolic networks.
The number of experiments needed to characterizemetabolic
networks accurately is usually large. Nevertheless, in actual
metabolic networks, only a small fraction of intracellular
metabolites can be directly measured, and therefore ini-
tial conditions should be also estimated. Undoubtedly, in
metabolic networks, lack of experimental data is unavoidable.
This condition compromises the accurateness of parameters
estimated by any feasible method [10].

State estimation in metabolic engineering has become
an option to recover the time variation of compounds in
metabolic networks. Different options have been proposed
to solve the reconstruction of the metabolites concentration
over time. However, the complexity of these networks limits
the application of global observers for the entire network.
One popular strategy recently explored is the divide-and-
conquer scheme where a set of low-order state observes are
running in parallel. Each of these observers is applied on a
certain section of the network where observability property
holds [11–13].

State observers to recover immeasurable information
from biological and biotechnological systems have been
developed for many years [14]. The application of these
observers can provide information that can be eventually
used to regulate the metabolic network and, in consequence,
optimize the production of some metabolites. In this sense, a
state observer is known as a software sensor.That is, a suitable
and well-designed state estimator can be used as an accurate
artificial sensor of some specific variables. The artificial mea-
surements provided by the observer correspond to variables
that cannot be measured online or their measuring cost is
relatively high [15].

This study describes the design of a so-called step-by-step
decentralized observer to estimate the unknown states of the
selected metabolic network.This state estimator is composed
of a set of robust high-order sliding mode differentiators.
In particular, the decentralized observer is applied on a
system representing hydrogen (H2) production by a strain of
Escherichia coli.

Notice that, in this study, no general characteristics of
metabolic networks are used for the construction of the

observers or for proposing a method to estimate their state
variables.We only considered a simplifiedmetabolic network
that cannot generalize all the constraints, restrictions, and
characteristics of general metabolic networks. Any possible
solution for such problem requires a deeper understanding
of internal interactions between metabolites, enzymes, and
genes. However, a possible solution of that problem is beyond
the scope of this article.

2. Notation

This section introduces the nomenclature used in this
manuscript. Acronyms of all substances considered to con-
struct the model of metabolic network are listed as follows.

𝑋: Biomass
Glc: Glucose
G6p: Glucose 6-phosphate
2gp: 2-Phospho-D-glycerate
Pep: Phosphoenolpyruvate
Oxa: Oxalacetate
Mal: Malate
Suc: Succinate
Cit: Citrate𝛼-kg: 𝛼-Ketoglutarate
Pyr: Pyruvate
Acoa: Acetyl coenzyme A
Aad: Acetaldehyde
EtOH: Ethanol
Acp: Acetylphosphate
Acet: Acetate
For: Formate
Lac: Lactate
H2: Hydrogen
CO2: Carbon dioxide.

3. Hydrogen Producing Metabolic
Network of E. coli

The model used in this study was built using 18 ODEs that
represent the dynamic behavior of all metabolites involved in
the metabolic pathway presented in Figure 1. Notice that this
system was selected just as an example that demonstrates the
application of the state estimation technique proposed in this
study. The first ODE of the model represents the production
of biomass 𝑋 and the rate of the reaction is modeled as
Monod kinetics containing two different parameters: 𝜇max
and 𝐾𝑆. The subsequent reactions correspond to intracellular
and extracellularmetabolites of themetabolic network.These
equations consider the production and consumption of each
metabolite due to the action of the enzymes that catalyze the
reactions. Each enzyme has a specific reaction rate depending
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Figure 1: Metabolic pathway of hydrogen production in Escherichia coli.

on the concentration of its substrate, product, or any other
metabolite that participates in the regulation mechanisms
and can take a positive sign to express production or a
negative sign to express consumption. The cell takes up Glc
from the culture media by the action of the PTS system.
This system is activated by the presence of Pep and takes
Glc as substrate forming G6p as a product. According to
[17], an activated mechanism can be modeled as a bisubstrate
reaction (a second-order one).

The conversion of G6p to Fbp is made by the enzyme
pfkA. This reaction is inhibited by the presence of Pep and
it is modeled as a bisubstrate reaction due to the presence of
ADP and taking into account Pep as an inhibitor.

Enzymes gpmA and eno catalyze the transformation of
Fbp to 2pg and 2pg to Pep, respectively. These reactions are
modeled as a Michaelian first-order system.

The variable Pep is used in two different reactions, one
of them to produce Oxa by the enzyme ppc that is repressed
by the presence of Mal and activated by Acoa and Fbp.
This reaction rate is modeled as a trisubstrate reaction [17]
due to the action of Acoa and Fbp as activators and taking
into account Mal concentration as an inhibitor. Pep is also
converted to Pyr by the enzyme pyk that is activated by Fbp
whereby it is modeled as a bisubstrate reaction.

The term Oxa is converted to two different products by
two different reactions. In this reaction, the involved enzyme
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is mdh.This enzyme uses Oxa as a substrate and the products
of this reaction are Mal and NADH. The second reaction is
catalyzed by the enzyme gltA. This reaction takes Oxa and
Acoa as substrates to produce Cit and it is inhibited by the
concentration of 𝛼-kg.

The variable Mal is converted to Suc by the action of the
enzyme frdA that is inhibited by Oxa concentration. Cit is
converted into two products by the action of the enzyme
icd. Pyr is used as a substrate in two different reactions; the
first one is catalyzed by the enzyme ldhA to produce Lac
that is in turn excreted to the media culture. In the second
reaction, Pyr is converted to Acoa and For by the enzyme
pflB. Formate is used by the complex Fhc to obtain H2 and
CO2. Also, the enzyme focA excretes For to the culturemedia.
Acoa is also used by the enzymes pta and adhE. Enzyme pta is
activated by Pep to produce Acp that is converted to Acet by
the enzyme ackA and released to the media culture. Enzyme
adhE converts Acoa to Acd that is eventually converted into
EtOH.

The proposed modeling strategy yields the mathemat-
ical model of the metabolic pathway focused on the H2
production by Escherichia coli. The model is presented in
(1). This model contains all the equations considered as
a solution of the thermodynamic study with the set of
parameters gotten from bibliography sources. The model
proposed in this study has not been presented before
and it was constructed using the arguments described
above.

𝑑𝑋𝑑𝑡 = 𝜇maxGlc𝐾𝑠 + Glc
𝑋

𝑑Glc𝑑𝑡 = −𝑞𝑆 𝜇maxGlc𝐾𝑠 + Glc
𝑋

𝑑G6p𝑑𝑡 = ]𝑟1Glc𝐾𝑟1 + Glc
− 2 ]𝑟2G6p𝐾𝑟2 + G6p

𝑑Pdgp𝑑𝑡 = 2 ]𝑟2G6p𝐾𝑟2 + G6p − ]𝑟3Pdgp𝐾𝑟3 + Pdgp

𝑑Pep𝑑𝑡 = ]𝑟3Pdgp𝐾𝑟3 + Pdgp
− ]𝑟4Pep𝐾𝑟4 + Pep

− ]𝑟5Pep𝐾𝑟5 + Pep

𝑑Pyr𝑑𝑡 = ]𝑟4Pep𝐾𝑟4 + Pep
− ]𝑟13Pyr𝐾𝑟13 + Pyr

− ]𝑟12Pyr𝐾𝑟12 + Pyr

𝑑Oxa𝑑𝑡 = ]𝑟5Pep𝐾𝑟5 + Pep
− ]𝑟9Oxa𝐾𝑟9 + Oxa

− ]𝑟6Oxa𝐾𝑟6 + Oxa

𝑑Cit𝑑𝑡 = ]𝑟6Oxa𝐾𝑟6 + Oxa
− ]𝑟7Cit𝐾𝑟7 + Cit

𝑑Iso𝑑𝑡 = ]𝑟7Cit𝐾𝑟7 + Cit
− ]𝑟8Iso𝐾𝑟8 + Iso

𝑑𝛼kg𝑑𝑡 = ]𝑟8Iso𝐾𝑟8 + Iso

𝑑Mal𝑑𝑡 = ]𝑟9Oxa𝐾𝑟9 + Oxa
− ]𝑟10Mal𝐾𝑟10 + Mal

𝑑Fum𝑑𝑡 = ]𝑟10Mal𝐾𝑟10 + Mal
− ]𝑟11Fum𝐾𝑟11 + Fum

𝑑Acoa𝑑𝑡 = ]𝑟13Pyr𝐾𝑟13 + Pyr
− ]𝑟15Acoa𝐾𝑟15 + Acoa

− ]𝑟14Acoa𝐾𝑟14 + Acoa

𝑑For𝑑𝑡 = ]𝑟13Pyr𝐾𝑟13 + Pyr
− ]𝑟17For𝐾𝑟17 + For

𝑑Suc𝑑𝑡 = ]𝑟11Fum𝐾𝑟11 + Fum

𝑑Lac𝑑𝑡 = ]𝑟12Pyr𝐾𝑟12 + Pyr

𝑑Acp𝑑𝑡 = ]𝑟14Acoa𝐾𝑟14 + Acoa
− ]𝑟18Acp𝐾𝑟18 + Acp

𝑑Aad𝑑𝑡 = ]𝑟15Acoa𝐾𝑟15 + Acoa
− ]𝑟16Aad𝐾𝑟16 + Aad

𝑑EtOH𝑑𝑡 = ]𝑟16Aad𝐾𝑟16 + Aad

𝑑Acet𝑑𝑡 = ]𝑟18Acp𝐾𝑟18 + Acp

𝑑H2𝑑𝑡 = ]𝑟17For𝐾𝑟17 + For

𝑑CO2𝑑𝑡 = ]𝑟18Iso𝐾𝑟18 + Iso
+ ]𝑟17For𝐾𝑟17 + For

.
(1)

The set of parameters used in the model presented in (1)
is detailed in Table 1. These parameters were obtained
from bibliographic references as shown at the bottom
of the table. Many of them have been experimentally
confirmed in different experimental analytic forms.
The initial conditions used in the numerical simulation
results were also taken from a similar set of published
results.

4. Segmentation of Metabolic Network

The entire metabolic network was divided into 7 different
subsystems. The rules to divide the network were proposed
in order to get simpler models that satisfy the observability
condition proposed in [18]. Then, a set of seven different
output-input pairs were selected in order to satisfy the afore-
mentioned conditions in each subsystem. These conditions
were obtained from the structural analysis of networks,
including the formation of cycles and bifurcations. Based on
these rules, Table 2 contains the information of which states
were selected as input and output in each subsystem.

Each of the input-output pairs was selected in order to
use the canonical Brunovskii transformation. The selection
of the corresponding output variable 𝑦𝑖 provides the full
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Table 1: Parameter values used to simulate the metabolic network.

Parameter Real value (h−1) Parameter Real value (mM)𝜇max 0.768∗ 𝐾𝑆 1.65∗𝑞𝑆 0.36∗
Parameter Real value (mMh−1) Parameter Real value (mM)
]𝑟1 3.14∗ 𝐾𝑟1 0.78∗∗
]𝑟2 2.99∗ 𝐾𝑟2 0.42∗∗
]𝑟3 2.07∗ 𝐾𝑟3 0.097∗∗
]𝑟4 2.46∗ 𝐾𝑟4 0.5∗∗
]𝑟5 0.091∗ 𝐾𝑟5 0.07∗∗
]𝑟6 0.00229∗ 𝐾𝑟6 0.07∗∗
]𝑟7 0.00229∗ 𝐾𝑟7 11∗∗
]𝑟8 0.00229∗ 𝐾𝑟8 0.5∗∗
]𝑟9 0.0864∗ 𝐾𝑟9 2.6∗∗
]𝑟10 0.0864∗ 𝐾𝑟10 1.1∗∗
]𝑟11 0.0864∗ 𝐾𝑟11 0.5∗∗
]𝑟12 0.0709∗ 𝐾𝑟12 26.5∗∗
]𝑟13 2.39∗ 𝐾𝑟13 2.0∗∗
]𝑟14 1.02∗ 𝐾𝑟14 0.0095∗∗
]𝑟15 1.36∗ 𝐾𝑟15 0.13∗∗
]𝑟16 1.36∗ 𝐾𝑟16 0.5∗∗
]𝑟17 2.39∗ 𝐾𝑟17 26∗∗
]𝑟18 1.02∗ 𝐾𝑟18 1.5∗∗
∗Taken from [16]. ∗∗Taken from EcoCyc database.

Table 2: Distribution of input-output pairs in the different subsys-
tems of the metabolic network.

Subsystem Input variable 𝑢𝑖 Output variable 𝑦𝑖
1 Glc Pep
2 Pep Suc
3 AcoA 𝛼-kg
4 AcoA EtOH
5 AcoA Acet
6 Pyr H2
7 Pyr Lac

relative degree for each subsystem according to the procedure
described in [19]. Therefore, using the results given in the
same reference, there exists a nonlinear transformation 𝑧𝑖 =𝑇𝑖(𝑥𝑖) (𝑧𝑖) = [𝑧𝑖1, 𝑧𝑖2, . . . , 𝑧𝑖𝑛𝑖]⊤, where

𝑇𝑖 (𝑥𝑖) = [𝑦𝑖 (𝑥𝑖) 𝑑𝑑𝑡𝑦𝑖 (𝑥𝑖) ⋅ ⋅ ⋅ 𝑑𝑛−1𝑑𝑡𝑛−1𝑦𝑖 (𝑥𝑖)]
⊤ , (2)

where 𝑛𝑖 is the order of each subsystem 𝑖. By assumption, all
the time derivatives (𝑑𝑗/𝑑𝑡𝑗)𝑦𝑖(𝑥𝑖) are different from zero for
all 𝑗 = 0, 1, . . . , 𝑛−1 and bounded at least to the 𝑛th derivative.
If the metabolic network has no regulation feedback or it
can be neglected because of its relative impact on kinetic
equations of each metabolite, then the observer proposed in

this study can be applied. In consequence, the new variables𝑧𝑖 obey the following dynamics:

𝑑𝑑𝑡𝑧𝑖1 (𝑡) = 𝑧𝑖2 (𝑡) + ℎ𝑖1 (𝑧𝑖 (𝑡) , 𝑧𝑖 (𝑡)) 𝑧𝑖1 (0) = 𝑧𝑖1,0
𝑑𝑑𝑡𝑧𝑖2 (𝑡) = 𝑧𝑖3 (𝑡) + ℎ𝑖2 (𝑧𝑖 (𝑡) , 𝑧𝑖 (𝑡)) 𝑧𝑖2 (0) = 𝑧𝑖2,0

...
𝑑𝑑𝑡𝑧𝑖𝑛𝑖 (𝑡) = 𝑓𝑖 (𝑧𝑖 (𝑡)) + 𝑔𝑖 (𝑧𝑖 (𝑡)) 𝑢𝑖 (𝑡)

+ ℎ𝑖𝑛𝑖 (𝑧𝑖 (𝑡) , 𝑧𝑖 (𝑡)) 𝑧𝑖𝑛𝑖 (0) = 𝑧𝑖𝑛𝑖 ,0,

(3)

where the nonlinear functions 𝑓𝑖(𝑧𝑖) and 𝑔𝑖(𝑧𝑖) can be
calculated as a solution of a regular differentiation method
of the corresponding output variable. The functionsℎ𝑖1(𝑧𝑖(𝑡), 𝑧𝑖(𝑡)), . . . , ℎ𝑖𝑛𝑖(𝑧𝑖(𝑡), 𝑧𝑖(𝑡)) are obtained by the
presence of feedback regulations. However, all of them
are measurable because they depend on those metabolites
selected as inputs or outputs of the submodels described in
Table 3. The variables marked with 𝑧𝑖 represent all the states
of subsystems different from the 𝑖th one.

In all the cases considered in this study, all the functions𝑔𝑖 were different from zero. Therefore, the relative degree is
completed andwell defined in all the selected subsystems.The
possible situations where the relative degree may be less than𝑛𝑖 are never attainable in the system proposed to represent the
metabolic network. Based on this condition, each subsystem
is observable with the corresponding input-output pairs
selected as in Table 3. Notice that full relative degree is not a
necessary condition because only the observability restriction
is needed within each subsystem [20]. Therefore, a simpler
version of the nonlinear transformation can be proposed but
this is a matter of further research.

4.1. Example of Transformation Procedure. Let us consider
the first subsystem characterized using Glc as input and Pep
as output. So, the nonlinear transformation between the set
of states Pep, 2pg, Fbp, G6p, and Glc and the corresponding𝑧𝑖 ∈ R3 is defined by

𝑧11 = Pep

𝑧12 = ]𝑟32pg𝐾𝑟3 + 2pg − ]𝑟4 (0.909𝑧1)𝐾𝑟4 + (0.909𝑧1)
− ]𝑟5 (0.032𝑧1)𝐾𝑟5 + (0.032𝑧1)

𝑧13 = ]𝑟3 ̇2pg𝐾𝑟3(𝐾𝑟3 + 2pg)2 − 0.909]𝑟4𝑧2𝐾𝑟4(𝐾𝑟4 + 0.909𝑧1)2
− 0.032]𝑟5𝑧2𝐾𝑟5(𝐾𝑟5 + 0.032𝑧1)2
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Table 3: Real and estimated parameters and relative error between them.

Parameter Real value (h−1) Estimated value
(h−1)

Relative error
(%) Parameter Real value (mM) Estimated value

(mM)
Relative error

(%)𝜇max 0.768∗ 0.760 1.002 𝐾𝑆 1.65∗ 1.666 0.96𝑞𝑆 0.36∗ 0.03636 1.0

Parameter Real value
(mMh−1)

Estimated value
(mMh−1)

Relative error
(%) Parameter Real value (mM) Estimated value

(mM)
Relative error

(%)
]𝑟1 3.14∗ 2.983 5.0 𝐾𝑟1 0.78∗∗ 0.819 5.0
]𝑟2 2.99∗ 2.841 4.98 𝐾𝑟2 0.42∗∗ 0.4323 2.92
]𝑟3 2.07∗ 1.967 4.97 𝐾𝑟3 0.097∗∗ 0.09215 5.0
]𝑟4 2.46∗ 2.337 5.0 𝐾𝑟4 0.5∗∗ 0.5018 0.36
]𝑟5 0.091∗ 0.08645 5.0 𝐾𝑟5 0.07∗∗ 0.0735 5.0
]𝑟6 0.00229∗ 0.00229 0 𝐾𝑟6 0.07∗∗ 0.0735 5.0
]𝑟7 0.00229∗ 0.00229 0 𝐾𝑟7 11∗∗ 11 0
]𝑟8 0.00229∗ 0.00229 0 𝐾𝑟8 0.5∗∗ 0.4776 0
]𝑟9 0.0864∗ 0.08208 5 𝐾𝑟9 2.6∗∗ 2.73 5.0
]𝑟10 0.0864∗ 0.08208 5.0 𝐾𝑟10 1.1∗∗ 1.155 5
]𝑟11 0.0864∗ 0.08208 5 𝐾𝑟11 0.5∗∗ 0.525 5
]𝑟12 0.0709∗ 0.0673 4.97 𝐾𝑟12 26.5∗∗ 27.82 4.98
]𝑟13 2.39∗ 2.271 4.97 𝐾𝑟13 2.0∗∗ 2.028 1.4
]𝑟14 1.02∗ 0.969 5.0 𝐾𝑟14 0.0095∗∗ 0.00963 1.42
]𝑟15 1.36∗ 1.295 4.77 𝐾𝑟15 0.13∗∗ 0.133 2.31
]𝑟16 1.36∗ 1.292 5.0 𝐾𝑟16 0.5∗∗ 0.5092 1.84
]𝑟17 2.39∗ 2.271 4.97 𝐾𝑟17 26∗∗ 27.3 5.0
]𝑟18 1.02∗ 0.9727 4.63 𝐾𝑟18 1.5∗∗ 1.533 2.2
*All the corresponding real values were obtained from [16]. **The real parameters came from [6].

𝑔 (𝑧) 𝑢 = ]𝑟3 ̈2pg𝐾𝑟3(𝐾𝑟3 + 2pg)2 − 2]𝑟3 ̇2pg2𝐾𝑟3(𝐾𝑟3 + 2pg)3
− ]𝑟40.909𝑧3𝐾𝑟4(𝐾𝑟4 + 0.909𝑧1)2 + ]𝑟41.652562𝑧22𝐾𝑟4(𝐾𝑟4 + 0.909𝑧1)3
− 0.032]𝑟5𝑧3𝐾𝑟5(𝐾𝑟5 + 0.032𝑧1)2
+ 0.0002048]𝑟5𝑧22𝐾𝑟5(𝐾𝑟5 + 0.032𝑧1)3 ,

(4)

where 𝑢 is Glc.

4.2. Basic Assumptions. The corresponding calculus of non-
linear functions𝑓𝑖(𝑧𝑖) and𝑔𝑖(𝑧𝑖) yields the following assump-
tions.

Assumption 1. The function associated with the control
action 𝑔𝑖 is bounded and does not change sign:

0 < 𝐺𝑖1 ≤ 󵄨󵄨󵄨󵄨󵄨𝑔𝑖 (𝑧)󵄨󵄨󵄨󵄨󵄨2 ≤ 𝐺𝑖2, (5)

where 𝐺𝑖1 and 𝐺𝑖2 are two positive constants. The input signal
must fulfill the following.

Assumption 2. The control action 𝑢𝑖 belongs to the following
admissible set:

𝑈adm = {𝑢𝑖 | 󵄩󵄩󵄩󵄩󵄩𝑢𝑖 (𝑡)󵄩󵄩󵄩󵄩󵄩2 ≤ 𝑢𝑖,+, 𝑡 ≥ 0, 𝑢𝑖,+ ∈ R
+} . (6)

Assumption 3. All the functions ℎ𝑖𝑗 satisfy the following
inequality:

󵄨󵄨󵄨󵄨󵄨ℎ𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝐿𝑖𝑗, (7)

where 𝐿𝑖𝑗 are positive scalars.
Assumption 4. By the nature of elements included in the
nonlinear transformation 𝑇𝑖(𝑥𝑖), all the variables 𝑧𝑖𝑗 are
bounded as follows:

𝑁𝑖𝑗 ≥ 󵄨󵄨󵄨󵄨󵄨𝑧𝑖𝑗+1 (𝑡)󵄨󵄨󵄨󵄨󵄨 ∀𝑡 ≥ 0. (8)

The upper bounds described in the previous assumption
can be obtained by the time evolution of metabolites or they
can be theoretically calculated by the mass balance executed
on the specific metabolic network considered in this study as
presented in [10].
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5. Finite-Time Convergent Observer of
Segmented Metabolic Network

The set of observers proposed in this study satisfies the
following differential equation:

𝑑𝑑𝑡 𝑧̂𝑖1 (𝑡) = 𝐸𝑖1 (𝑧̃𝑖2 + 𝑘𝑖11𝜙𝑖1,1 (𝑒𝑖1 (𝑡) , 𝛼𝑖1)) 𝑧̂𝑖1 (0) = 𝑧̂𝑖1,0
𝑑𝑑𝑡 𝑧̃𝑖2 (𝑡) = 𝐸𝑖1 (𝑘𝑖12𝜙𝑖1,2 (𝑒𝑖1 (𝑡) , 𝛼𝑖1)) 𝑧̃𝑖2 (0) = 𝑧̃𝑖2,0
𝑑𝑑𝑡 𝑧̂𝑖2 (𝑡) = 𝐸𝑖2 (𝑧̃𝑖3 (𝑡) + 𝑘𝑖21𝜙𝑖2,1 (𝑒𝑖2 (𝑡) , 𝛼𝑖2))

𝑧̂𝑖2 (0) = 𝑧̂𝑖2,0
𝑑𝑑𝑡 𝑧̃𝑖3 (𝑡) = 𝐸𝑖2 (𝑘𝑖22𝜙𝑖2,2 (𝑒𝑖2 (𝑡) , 𝛼𝑖2)) 𝑧̃𝑖3 (0) = 𝑧̃𝑖3,0

...
𝑑𝑑𝑡 𝑧̂𝑖𝑛𝑖−1 (𝑡) = 𝐸𝑖𝑛𝑖−1 (𝑧̃𝑖𝑛1 + 𝑘𝑖11𝜙𝑖𝑛𝑖−1,1 (𝑒𝑖1 (𝑡) , 𝛼𝑖1))

𝑧̂𝑖𝑛𝑖−1 (0) = 𝑧̂𝑖𝑛𝑖−1,0
𝑑𝑑𝑡 𝑧̃𝑖𝑛𝑖 (𝑡) = 𝐸𝑖𝑛𝑖−1 (𝑘𝑖12𝜙𝑖𝑛𝑖−1,2 (𝑒𝑖1 (𝑡) , 𝛼𝑖1))

𝑧̃𝑖𝑛𝑖 (0) = 𝑧̃𝑖𝑛𝑖 ,0
𝑑𝑑𝑡 𝑧̂𝑖𝑛𝑖 (𝑡) = 𝐸𝑖𝑛𝑖 (𝑓𝑖 (𝑧̂𝑖 (𝑡)) + 𝑔𝑖 (𝑧̂𝑖 (𝑡)) 𝑢𝑖 (𝑡))

+ 𝐸𝑖𝑛𝑖 (
𝑛𝑖∑
𝑗=1

𝐾𝑖𝑗𝑒𝑖 + 𝐾𝑖SM sign (𝑒𝑖𝑛𝑖)) 𝑧̂𝑖𝑛𝑖 (0) = 𝑧̂𝑖𝑛𝑖 ,0,

(9)

with the estimation error 𝑒𝑖𝑗 satisfying the following equation:
𝑒𝑖𝑗 = 𝑧̂𝑖𝑗 − 𝑧̃𝑖𝑗, 𝑗 ∈ {1, 2, . . . , 𝑛𝑖} . (10)

The set of variables 𝑧̂𝑖𝑗 represents the corresponding
estimated trajectories of 𝑧𝑖𝑗.The variables 𝑧̃𝑖𝑗 serve as auxiliary
(intermediate) estimation of velocity for each variable 𝑧𝑖𝑗.
In particular, 𝑧̃𝑖1 = 𝑧𝑖1. The observer gains represented by𝑘𝑖11, 𝑘𝑖11, 𝑘𝑖21, and 𝑘𝑖22 are scalars that must be adjusted to
force the convergence of the observer trajectories to the states
of the uncertain system.

The gains 𝑘𝑖1𝑗 and 𝑘𝑖2𝑗 belong to the set
𝐾𝑖 = 𝐾𝑖1 ∪ 𝐾𝑖2
𝐾𝑖𝑗 = {{{(𝑘𝑖𝑗1, 𝑘𝑖𝑗2) ∈ R

2 | 0 < 𝑘𝑖𝑗1 < 2√𝐿𝑖𝑗, 𝑘𝑖𝑗14

+ (𝐿𝑖𝑗)2
(𝑘𝑖𝑗1)2 < 𝑘𝑖𝑗2}}} ∪ {(𝑘𝑖𝑗1, 𝑘𝑖𝑗2) ∈ R

2 | 2√𝐿𝑖𝑗
< 𝑘𝑖𝑗1, 2𝐿𝑖𝑗 < 𝑘𝑖𝑗2}

𝐾𝑖SM = −2𝐺𝑖2𝑢+ − 𝛼, 𝛼 > 0.
(11)

The indicator function 𝐸𝑖𝑗(𝑡) fulfills the following defini-
tion:

𝐸𝑖𝑗 (𝑡) = {{{
0 𝑡 < 𝑡𝑖,∗𝑗
1 𝑡 ≥ 𝑡𝑖,∗𝑗 . (12)

The switching time 𝑡∗𝑖 is found as a result of the fixed-time
converge obtained for the observer in the following section.
The nonlinear functions 𝜙1𝑗(𝑒𝑗, 𝛼𝑗) and 𝜙2𝑗(𝑒𝑗, 𝛼𝑗) (𝑗 = 1, 2)
were designed in agreement with the proposal given in
[21]. Then, the following structures were considered in each
observer design:

𝜙𝑖𝑗,𝑖 (𝑒𝑖𝑗, 𝛼𝑖𝑗) = 󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑗󵄨󵄨󵄨󵄨󵄨1/2 sign (𝑒𝑖𝑗) + 𝛼𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑗󵄨󵄨󵄨󵄨󵄨3/2 sign (𝑒𝑖𝑗)
𝜙𝑖𝑗,2 (𝑒𝑖𝑗, 𝛼𝑗) = 12 sign (𝑒𝑖𝑗) + 2𝛼𝑖𝑗𝑒𝑗

+ 32 (𝛼𝑖𝑗)2 󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑗󵄨󵄨󵄨󵄨󵄨2 sign (𝑒𝑖𝑗) .
(13)

Parameters 𝛼𝑖𝑗 represent extra gains that should be adjusted
according to the results presented in themain theorem of this
work. For the purposes of this study, the sign function was
used as follows:

sign (𝑧) =
{{{{{{{{{

−1 if 𝑧 < 0
∈ [−1, +1] if 𝑧 = 0
1 if 𝑧 > 0.

(14)

One must recall that the solution of (9) is understood in the
sense of Filippov [22]. The observer proposed in this study
provides the so-called fixed-time stability for the origin of the
estimation error. To clarify this concept, we introduced the
following definition [23].

Definition 5. The origin of

𝑑𝑑𝑡𝜁 (𝑡) = 𝜓 (𝜁, 𝑡) , 𝜁 (0) = 𝜁0, (15)

where 𝜁 ∈ R𝑛 and 𝜓 : R𝑛+1 → R𝑛, is said to be (a)
globally finite-time stable if it is globally asymptotically stable
and any solution 𝜁(𝑡, 𝜁0) reaches the equilibrium point at
some finite time (𝜁(𝑡, 𝜁0) = 0, ∀𝑡 ≥ 𝑇(𝜁0)) or (b) globally
fixed-time stable if it is globally finite-time stable and the
convergence time 𝑇(𝜁0) is bounded, that is, ∃𝑇𝑀 fulfilling𝑇(𝜁0) ≤ 𝑇𝑀 ∀𝜁0.
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Based on the previous definition, the convergence for
each individual observer has been already proven in [24].
Nevertheless, the solution of the observer proposed in this
study requires a new theoretical result described in the
following proposition.

Proposition 6. Suppose that assumptions (5) and (6) are
valid; then, the estimation error (10) is uniformly exact con-
vergent to the origin with a fixed-time 𝑇𝑀(𝑒(𝑡) = 0 ∀𝑡 ≥ 𝑇𝑀)
given by

𝑇𝑀 = 𝑛𝑖∑
𝑗=1

𝑡∗𝑗
𝑡∗𝑗 = 4𝜆1/2max {𝑃𝑗} 𝜂1/2𝑗𝜖𝑗 + 12 (2𝐶2𝑗)7/6 (𝜖𝑗)−1/6

1 ≤ 𝑗 ≤ 𝑛𝑖
𝜖𝑗 ≥ 𝐶1𝑗 (2𝐶3𝑗 + 2√𝐶23𝑗 + 𝐶4𝑗)

𝐶1𝑗, 𝐶2𝑗, 𝐶3𝑗, 𝐶4𝑗, 𝜂𝑗 positive constants,

(16)

if there exist some positive scalars 𝜏𝑖𝑗 such that the following pair
of LMIs have at least one positive definite solution of each 𝑃𝑗 =𝑃⊤𝑗 ≥ 0, 𝑃𝑗 = ∑𝑛𝑖=𝑖 𝜏𝑖𝑗𝑃𝑖𝑗, where each matrix 𝑃𝑖𝑗 is the positive
definite solution of

[
[

𝑃𝑖𝑗𝐴𝑖𝑗 + [𝐴𝑖𝑗]⊤ 𝑃𝑖𝑗 + 𝜖𝑖𝑗𝐼 + 4 (𝑁𝑖𝑗)2 𝐶⊤𝐶 𝑃𝑖𝑗𝐵𝐵⊤𝑃𝑖𝑗 −1 ]
] ≤ 0

𝐴𝑖𝑗 = [−𝑘𝑖1𝑗 1
−𝑘𝑖2𝑗 0] ,

𝐶⊤ = [1
0] ,

𝐵 = [0
1] .

(17)

Proof. Proving the convergence (in uniform exact sense) of
the states of each observer given in (9) to the variables of
(3) requires the application of two Lyapunov-like candidate
functions [21]. The first function is used to demonstrate the
global and exact convergence of (9) to the trajectories of (3),
but not the uniformity with respect to the initial conditions.
The second function is proposed to show the robust uniform
convergence of the estimation error trajectories.

The convergence of each state observation error 𝑒𝑖 is
obtained in 𝑛𝑖 − 1 steps.

Step 1. Assume that 0 ≤ 𝑡 ≤ 𝑡∗1 and 𝑒1(0) ̸= 0. Let us introduce
a set of auxiliary variables defined as Δ𝑖𝑗 = 𝑧𝑖𝑗 − 𝑧̃𝑖𝑗 (𝑗 ∈{1, 2, . . . , 𝑛𝑖}).The error between the states of each (9) and the

corresponding transformed system (3) is characterized by 𝑒𝑖𝑗
andΔ𝑖𝑗.Their dynamics within the period of time [0, 𝑡∗1 ] obey

𝑑𝑑𝑡𝑒𝑖1 (𝑡) = Δ𝑖2 (𝑡) − 𝑘𝑖11𝜙𝑖1,1 (𝑒𝑖1 (𝑡) , 𝛼𝑖1)
𝑑𝑑𝑡Δ𝑖2 (𝑡) = 𝑧𝑖3 (𝑡) − 𝑘𝑖12𝜙𝑖2,1 (𝑒𝑖1 (𝑡) , 𝛼𝑖1)

𝑑𝑑𝑡𝑒𝑖2 (𝑡) = −𝑘𝑖12𝜙2,1 (𝑒𝑖1 (𝑡) , 𝛼𝑖1)
𝑑𝑑𝑡Δ𝑖3 (𝑡) = 𝑧𝑖4 (𝑡)

𝑑𝑑𝑡𝑒𝑖3 (𝑡) = 0
...

𝑑𝑑𝑡Δ𝑖𝑛𝑖 (𝑡) = 𝑓𝑖 (𝑧𝑖 (𝑡)) + 𝑔𝑖 (𝑧𝑖 (𝑡)) 𝑢𝑖 (𝑡)
𝑑𝑑𝑡𝑒𝑖𝑛𝑖 (𝑡) = 0.

(18)

The first couple of equations in (18) coincide with the so-
called modified supertwisting algorithm. The rest of the
dynamics do not grow because 𝐸𝑖2, 𝐸𝑖3, . . . , 𝐸𝑖𝑛𝑖 are all identi-
cally zero, considering the nature of the functions 𝑓𝑖 and 𝑔𝑖.

To prove the fixed time of [𝜎𝑖1]⊤ = [𝑒𝑖1 Δ𝑖2], two
Lyapunov functions are needed [21]: the first one provides the
finite-time stability of 𝜎𝑖1 but it cannot be used to prove the
fixed-time stability. The second Lyapunov function is used to
ensure the fixed-time stability of 𝜎𝑖1 but considering that 𝜎𝑖1 is
not so far from the origin.The first energetic function used in[0, 𝑡∗1 ] is defined as 𝑉𝑖11:

𝑉𝑖11 (𝜉1) = [𝜉𝑖1]⊤ 𝑃𝑖1𝜉𝑖1
[𝜉𝑖1]⊤ = [𝜙𝑖11 (𝑒𝑖1, 𝛼𝑖1) Δ𝑖2] . (19)

The second energetic function 𝑉𝑖12 used in the same period of
time is defined as

𝑉𝑖12 (𝑒𝑖1, Δ𝑖2) = 𝛿𝑖2 [𝜇𝑖]2 𝑘𝑖12 󵄨󵄨󵄨󵄨󵄨𝑒𝑖1󵄨󵄨󵄨󵄨󵄨3
− 𝑒𝑖1 󵄨󵄨󵄨󵄨󵄨Δ𝑖2󵄨󵄨󵄨󵄨󵄨4/3 sign (Δ𝑖2) + 𝛿𝑖2 󵄨󵄨󵄨󵄨󵄨Δ𝑖2󵄨󵄨󵄨󵄨󵄨2 ,

(20)

where 𝛿𝑖 and 𝜇𝑖 are two positive scalars. According to the
result presented in [21], the combination of both energetic
functions can be used for proving that ‖𝜉𝑖1‖ = 0, ∀𝑡 ≥ 𝑡∗2 ,
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under the assumption of ‖𝑧𝑖3‖ ≤ 𝐿𝑖1, with 𝐿𝑖1 ∈ R+. Therefore,
if 𝑡 ≥ 𝑡∗2 , the following identities hold:

𝑒𝑖1 (𝑡) = 0 󳨐⇒
𝑧𝑖1 = 𝑧̃𝑖1 = 𝑧̂𝑖1

Δ𝑖2 (𝑡) = 0 󳨐⇒
𝑧𝑖2 = 𝑧̃𝑖2.

(21)

Step 2. Within the period of time 𝑡∗2 < 𝑡 ≤ 𝑡∗3 , the following
identity is true: 𝑧𝑖3 = 𝑘𝑖12𝜙𝑖12(𝑒𝑖1(𝑡), 𝛼𝑖1); then, the dynamical
evolution of 𝑒𝑖2 and Δ𝑖3 is given by

𝑑𝑑𝑡𝑒𝑖1 (𝑡) = 0
𝑑𝑑𝑡Δ𝑖2 (𝑡) = 0

𝑑𝑑𝑡𝑒𝑖2 (𝑡) = Δ𝑖3 (𝑡) − 𝑘𝑖21𝜙𝑖21 (𝑒𝑖2 (𝑡) , 𝛼𝑖2)
𝑑𝑑𝑡Δ𝑖3 (𝑡) = 𝑧𝑖4 (𝑡) − 𝑘𝑖22𝜙𝑖2,2 (𝑒𝑖2 (𝑡) , 𝛼𝑖2)

𝑑𝑑𝑡𝑒𝑖3 (𝑡) = −𝑘𝑖31𝜙𝑖31 (𝑒𝑖3 (𝑡) , 𝛼𝑖3)
...

𝑑𝑑𝑡Δ𝑖𝑛𝑖 (𝑡) = 𝑓𝑖 (𝑧𝑖 (𝑡)) + 𝑔𝑖 (𝑧𝑖 (𝑡)) 𝑢𝑖 (𝑡)
𝑑𝑑𝑡𝑒𝑖𝑛𝑖 (𝑡) = 0.

(22)

Once again, the dynamic equations of 𝑒𝑖2 andΔ𝑖3 coincidewith
the so-called modified supertwisting algorithm. The rest of
the dynamics do not grow because 𝐸𝑖3 = 𝐸𝑖4 = ⋅ ⋅ ⋅ = 𝐸𝑖𝑛𝑖
are identically zero. A new combination of two energetic
functions named 𝑉𝑖21 and 𝑉𝑖22 defined by

𝑉𝑖21 (𝜉𝑖2) = [𝜉i2]⊤ 𝑃𝑖2𝜉𝑖2
𝜉𝑖2 = [𝜙𝑖21 (𝑒𝑖2, 𝛼𝑖1) Δ𝑖3]⊤ ,

𝑉𝑖22 (𝜉𝑖2) = 𝛿𝑖2 [𝜇𝑖]2 𝑘𝑖12 󵄨󵄨󵄨󵄨󵄨𝑒𝑖2󵄨󵄨󵄨󵄨󵄨3 − 𝑒𝑖2 󵄨󵄨󵄨󵄨󵄨Δ𝑖3󵄨󵄨󵄨󵄨󵄨4/3 sign (Δ𝑖3)
+ 𝛿𝑖2 󵄨󵄨󵄨󵄨󵄨Δ𝑖3󵄨󵄨󵄨󵄨󵄨2

(23)

are used in this part of the proof. Once again, these two
functions can be used for proving that ‖𝜉𝑖2‖ = 0, ∀𝑡 ≥ 𝑡∗3 ,
and therefore

𝑒𝑖2 (𝑡) fl 0 󳨐⇒
𝑧̃𝑖2 = 𝑧̂𝑖2

Δ𝑖3 (𝑡) fl 0 󳨐⇒
𝑧𝑖3 = 𝑧̃𝑖3.

(24)

Step 𝑛𝑖. The last step of the observer design included the
accurate design of 𝜙2𝑖(𝑒𝑖(𝑡), 𝛼𝑖) to stabilize

𝑑𝑑𝑡𝑒𝑖1 (𝑡) = 0
𝑑𝑑𝑡Δ𝑖2 (𝑡) = 0
𝑑𝑑𝑡𝑒𝑖2 (𝑡) = 0
𝑑𝑑𝑡Δ𝑖3 (𝑡) = 0
𝑑𝑑𝑡𝑒𝑖3 (𝑡) = 0
...
𝑑𝑑𝑡𝑒𝑖3 (𝑡) = 𝑘𝑖22𝜙𝑖𝑛𝑖 ,2 (𝑒𝑖𝑛𝑖 (𝑡) , 𝛼𝑖2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓𝑖(𝑧𝑖(𝑡))+𝑔𝑖(𝑧𝑖(𝑡))𝑢𝑖(𝑡)

− [
[𝑓𝑖 (𝑧̂𝑖 (𝑡)) + 𝑔𝑖 (𝑧̂𝑖 (𝑡)) 𝑢𝑖 (𝑡) + 3∑

𝑗=1

𝐾𝑖𝑗𝑒𝑖𝑗 + 𝐾𝑖SM sign (𝑒𝑖𝑛𝑖 (𝑡))]
] .

(25)
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The last part of the proof is based on a Lyapunov-candidate
function defined as follows:

𝑉𝑖𝑛𝑖 = 12 [𝑒𝑖𝑛𝑖]2 . (26)

The regular analysis based on Lyapunov technique yields

𝑑𝑑𝑡𝑉𝑖𝑛𝑖 (𝑡) = 𝑒𝑖𝑛𝑖 (𝑡) 𝑑𝑑𝑡𝑒𝑛𝑖 (𝑡) . (27)

The substitution of (𝑑/𝑑𝑡)𝑒𝑛𝑖 in the previous differential
equation leads to

𝑑𝑑𝑡𝑉𝑖𝑛𝑖 (𝑡) = 𝑒𝑖𝑛𝑖 (𝑡) (𝑓𝑖 (𝑧𝑖 (𝑡)) − 𝑓𝑖 (𝑧̂𝑖 (𝑡))
+ (𝑔𝑖 (𝑧 (𝑡)) − 𝑔𝑖 (𝑧̂ (𝑡))) 𝑢𝑖 (𝑡)) − 𝑒𝑖𝑛𝑖 (𝑡)

𝑛𝑖∑
𝑗=1

𝐾𝑖𝑗𝑒𝑖𝑗 (𝑡)
+ 𝐾𝑖SM𝑒𝑖𝑛𝑖 (𝑡) sign (𝑒𝑖𝑛𝑖 (𝑡)) .

(28)

The application of the Cauchy-Schwartz inequality provides
the following upper bound for (𝑑/𝑑𝑡)𝑉𝑖𝑛𝑖 :

𝑑𝑑𝑡𝑉𝑖𝑛𝑖 (𝑡)
≤ 󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑛𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 (󵄨󵄨󵄨󵄨󵄨𝑓𝑖 (𝑧𝑖 (𝑡)) − 𝑓𝑖 (𝑧̂𝑖 (𝑡))󵄨󵄨󵄨󵄨󵄨) + 𝑒𝑖𝑛𝑖 (𝑡)

𝑛𝑖∑
𝑗=1

𝐾𝑖𝑗𝑒𝑖𝑗
+ 󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑛𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 [󵄨󵄨󵄨󵄨󵄨𝑔𝑖 (𝑧𝑖 (𝑡)) − 𝑔𝑖 (𝑧̂𝑖 (𝑡))󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝐾𝑖SM] .

(29)

By virtue of the continuity of all functions 𝑓𝑖 and the bounds
considered in Assumption 2, one gets

𝑑𝑑𝑡𝑉𝑖𝑛𝑖 (𝑡) ≤ 𝐿𝑖1 󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑛𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 (󵄩󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩Δ𝑖 (𝑡)󵄩󵄩󵄩󵄩󵄩)
+ 𝑒𝑖𝑛𝑖 (𝑡)

𝑛𝑖∑
𝑗=1

𝐾𝑖𝑗𝑒𝑖𝑗
+ 󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑛𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 [2𝐺𝑖2𝑢𝑖,+ + 𝐾𝑖SM] ,

(30)

where Δ𝑖 = [Δ 1, Δ 2, . . . , Δ 𝑛𝑖]⊤. Hence, 𝑡 ≥ 𝑡𝑀 ‖𝑒𝑖(𝑡)‖ =|𝑒𝑖𝑛𝑖(𝑡)| and Δ𝑖 = 0. Then, considering the value of 𝐾𝑖SM
presented in (5), one gets

𝑑𝑑𝑡𝑉𝑖𝑛𝑖 (𝑡) ≤ −𝛼𝑖√𝑉𝑖𝑛𝑖 (𝑡). (31)

Following a regular procedure [25], one can show that

𝑒𝑖 (𝑡) = 0, ∀𝑡 ≥ 𝑇 = 𝑇𝑀. (32)

6. Parametric Characterization of
Metabolic Network

It is evident that each differential equation of the model
presented above satisfies

𝑑𝜁𝑖 (𝑡)𝑑𝑡 = 𝑓𝑖 (𝜁 (𝑡) , 𝛼𝑖1)𝑔𝑖 (𝜁 (𝑡) , 𝛼𝑖2) + 𝜒𝑖 (𝑧, 𝑡) , 𝜁𝑖 ∈ R, (33)

where 𝜁𝑖 is any variable in the model presented in (1). The
entire set of variables 𝜁𝑖 is lumped in the supertwisting
algorithm vector 𝜁 ∈ R𝑛 and 𝑛 is the number of variables.
Then, 𝜁 represents all the variables involved in the metabolic
network under study. Also, it is assumed that all the functions𝑓𝑖 and 𝑔𝑖 are linearly parametrized by 𝛼𝑖1 ∈ R𝑃1,𝑖 and 𝛼𝑖2 ∈
R𝑃2,𝑖 , respectively. Nonlinear functions 𝑓𝑖 : R𝑛+𝑃1,𝑖 → R, 𝑔𝑖 :
R𝑛+𝑃2,𝑖 → R satisfy󵄨󵄨󵄨󵄨󵄨𝑓𝑖 (𝜁1, ⋅) − 𝑓𝑖 (𝜁2, ⋅)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐿𝑖 󵄩󵄩󵄩󵄩𝜁1 − 𝜁2󵄩󵄩󵄩󵄩 ∀𝜁1, 𝜁2 ∈ R

𝑛

󵄨󵄨󵄨󵄨󵄨𝑔𝑖 (𝜁, 𝛼)󵄨󵄨󵄨󵄨󵄨 ̸= 0 ∀𝜁 ∈ R
𝑛 𝛼 ∈ R

𝑃2,𝑖 . (34)

Therefore, a couple of nonlinear functions 𝜓𝑖1 : R𝑛 →
R𝑃1,𝑖 and 𝜓𝑖2 : R𝑛 → R𝑃2,𝑖 exist, such that

𝑓𝑖 (𝜁) = [𝛼𝑖1]⊤ 𝜓𝑖1 (𝜁) + 𝜑𝑖1 (𝜁)
𝑔𝑖 (𝜁) = [𝛼𝑖2]⊤ 𝜓𝑖2 (𝜁) + 𝜑𝑖2 (𝜁) . (35)

The nonlinear functions 𝜑𝑖1 : R𝑛 → R and 𝜑𝑖2 : R𝑛 → R

are introduced to define the so-called residual representation
of 𝑓𝑖 and 𝑔𝑖. In the unrealistic case when the derivative of the
whole vector 𝜁 can be measured, the ODE described in (33)
can be alternatively represented as

𝑦𝑖 (𝑡) = [𝜃𝑖]⊤ 𝑥𝑖 (𝑡) + 𝜒𝑖 (𝜁 (𝑡) , 𝑡)
𝜃𝑖 = [𝛼𝑖1𝛼𝑖2]

𝑥𝑖 (𝑡) = [[
[

𝜓𝑖1 (𝜁)
[𝜒𝑖 (𝜁, 𝑡) − 𝑑𝜁𝑖 (𝑡)𝑑𝑡 ] 𝜓𝑖2 (𝜁)]]]

𝑦𝑖 (𝑡) = [[𝑑𝜁𝑖 (𝑡)𝑑𝑡 − 𝜒𝑖 (𝑧, 𝑡)] 𝜑𝑖2 (𝜁) − 𝜑𝑖1 (𝜁)] .

(36)

This form obeys the regular linear regression form. The
solution for the parametric identification can be obtained as
in [26]:

𝜃𝑖 (𝑡)
= (∫𝑡
0

𝑥𝑖 (𝜏) [𝑥𝑖 (𝜏)]⊤ 𝑑𝜏)−1 (∫𝑡
0

𝑥𝑖 (𝜏) 𝑦𝑖 (𝜏) 𝑑𝜏) . (37)

Table 3 demonstrates the real and estimated values of all
the parameters calculated by the method proposed in this
study.
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7. Implementation Issues

7.1. Effect of Sampling the Metabolites Concentrations. The set
of finite-time state estimators proposed in this study requires
a special implementation scheme.This section details how the
set of distributed finite-time state estimators was developed.

The keystone technical fact to implement the observer
proposed in this study is the possibility of measuring all the
metabolites considered as input or output in the segmenta-
tion process. Nowadays, there are several methods to obtain
the actual concentrations of key internal metabolites in the
cell.

For example, the study presented in [24] reports a detailed
list of experimental methods to detect all the metabolites
considered either as input or as output of each subsystem
proposed in this study. Despite the fact that the observer
suggested in this study demands the continuous monitoring
of metabolites concentrations, it has been proven that the
sampling process decreases the quality of estimation. Nev-
ertheless, this reduction is not severe if the sampling period
is small enough. For example, in the case of Escherichia coli
cultures, this time can be as small as 2 minutes. Then, the
observer proposed in this study still works on the more
realistic case of sampling the information of metabolites
concentrations.

The estimation method for substances considered in the
metabolite network assumes that their concentrations can
be obtained continuously which may seem as an unrealistic
assumption. Nevertheless, the effect of discrete sampling in
the output/input information injected in each sliding mode
observer has been previously analyzed in different studies
such as [27–29]. All of these studies explained the losses in the
estimation quality as a consequence of the sampling process.
According to [30], each estimation step performed by the
observer proposed in this study introduces an estimation
error which is proportional to the square of sampling time 𝑇𝑠
and proportional to the upper bound of uncertainties affect-
ing the supertwisting dynamics. Notice that this sampling
induced deviation prevents the finite-time convergence to the
origin of the estimation error at each step. In consequence,
the accumulated error after 𝑛-estimation steps cannot be
estimated directly as a proportional value of the estimation
error obtained after the first step of differentiation. Indeed,
this is an open problem in the implementation of robust step-
by-step differentiators under sampling process. Therefore, if
metabolites are measured discretely, the effect is a losing of
estimation quality with a bound defined in previous studies.
This is a natural consequence that has been observed not only
in the case of sliding mode observers but also in high-gain
state estimators and some others.

7.2. Effect of Noisy Measures of Metabolites Concentrations.
A second relevant assumption regarding the observer devel-
oped in this study is the noise presence on the measured
signal. Noise plays a major role in the estimation quality
obtained by any sliding mode based observer.

The set of observers proposed in this study assumed that𝑧𝑖1 is measured free of noises. Under this assumption, the

estimate of the state 𝑧𝑖 is achieved in fixed time. However,
if the output signal is measured affected by noise 𝑧𝑖1,𝑚, that
is, 𝑧𝑖1,𝑚 = 𝑧𝑖1 + 𝜂𝑖 with 𝜂𝑖 being the noise signal, the result
presented in the theorem and using the results presented in
[31] showed that the estimation error is input to state stable if
the noise is considered as the external unknown input. On the
other hand, STA is particularly sensitive to the noise effect.
This characteristic can be attenuated by a correct selection of
gains. The study presented in [32] reviewed deeply this issue.
The first theorem in that study claims that the ultimate bound
for 𝑒𝑖𝑗 denoted by 𝑒𝑖𝑗,𝑠𝑠 is the largest solution of

𝑘11 + 2𝑘12 󵄨󵄨󵄨󵄨󵄨𝑧𝑖1󵄨󵄨󵄨󵄨󵄨1/2
= 𝜖2𝑃1𝐿Γ (𝑧𝑖1)

+ 𝑄12Γ (𝑧𝑖1) [0.5 (𝑘𝑗𝑖 )2𝐷𝑖0 + 1.5 (𝑘𝑗𝑖 𝑘𝑗𝑖 )2𝐷𝑖1 + 𝑘𝑗𝑖 ]
+ 𝑄11Γ (𝑧𝑖1) [1.5 (𝑘𝑗𝑖 𝑘𝑗𝑖 )2𝐷𝑖1 + 𝑘𝑗𝑖 ] .

(38)

Based on the value obtained in (38), the ultimate bound
of Δ𝑖𝑗+1, namely, Δ𝑖𝑗+1,𝑠𝑠, is given by

Δ𝑖2,𝑠𝑠 = 𝜖𝑃2𝐿Γ (𝑧𝑖1) + 𝜖−1Σ (𝑧𝑖1, 𝛿𝑖)
Γ (𝑧𝑖1) = 2 󵄨󵄨󵄨󵄨󵄨𝑧𝑖1󵄨󵄨󵄨󵄨󵄨𝑘11 + 2𝑘12 󵄨󵄨󵄨󵄨𝑧𝑖1󵄨󵄨󵄨󵄨1/2

𝐷𝑖0 = 1 − sign (󵄨󵄨󵄨󵄨󵄨𝑧𝑖1󵄨󵄨󵄨󵄨󵄨 − 𝜂𝑖)
𝐷𝑖1 = 󵄨󵄨󵄨󵄨󵄨𝑧𝑖1󵄨󵄨󵄨󵄨󵄨1/2 − 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧𝑖1󵄨󵄨󵄨󵄨󵄨 − 𝜂𝑖󵄨󵄨󵄨󵄨󵄨 sign (󵄨󵄨󵄨󵄨󵄨𝑧𝑖1󵄨󵄨󵄨󵄨󵄨 − 𝜂𝑖)
𝑃𝑖𝑗 = ∫∞

0

󵄨󵄨󵄨󵄨󵄨󵄨[𝑒𝐴𝑖𝑗𝑡𝐵]
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑡
𝑄𝑖𝑗𝑘 = ∫∞

0

󵄨󵄨󵄨󵄨󵄨󵄨[𝑒𝐴𝑖𝑗𝑡𝐷𝑘]
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑡,

(39)

where the notation [⋅]𝑘 denotes the 𝑘th element of a two-
dimensional matrix.This study did not consider the presence
of noises. However, if experimental information is injected to
the observer structure, then themethod described in (38) can
be applied.

8. Numerical Simulation

This section describes the solution obtained when the pro-
posed observer was evaluated numerically. The observers
were simulated using the trajectories of model (1) with
the parameters collected from different published results
regarding kinetic characterization of Escherichia coli. These
parameters were obtained in different studies. A summary of
the parameters is presented in Table 2 where the references
consulted for simulation purposes are detailed.

The production of H2 was selected as the target metabolic
network considering that research on renewable fuels has
gained importance due to the decline in international
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Table 4: Initial conditions on 𝑧 space and original space.

Subsystem 1
Pep 0.00018 𝑧1 0.00018 𝑧1(𝑡) 0.1
pg 0.00018 𝑧2 0.00302 𝑧2(𝑡) 0.5
G6p 0.00018 𝑧3 −0.04068 𝑧3(𝑡) −2

Subsystem 2
Suc 0.00018 𝑧1 0.00018 𝑧1(𝑡) 0.1
Fum 0.00018 𝑧2 0.00003 𝑧2(𝑡) 0.1
Mal 0.00018 𝑧3 −0.29280 × 10−5 𝑧3(𝑡) 0.01

Subsystem 3𝛼 kg 𝑧1 0.00018 𝑧1(𝑡) 0.01
Iso 0.00018 𝑧2 8.24103 × 10−7 𝑧2(𝑡) 0.1
Cit 0.00018 𝑧3 −3.60017 × 10−9 𝑧3(𝑡) 0.01

Subsystem 5
EtOH 0.00018 𝑧1 0.00018 𝑧1(𝑡) 0.1
Aad 0.00018 𝑧2 0.00048 𝑧2(𝑡) 0.1

Subsystem 6
Acet 0.00018 𝑧1 0.00018 𝑧1(𝑡) 0.1
Acp 0.00018 𝑧2 0.00012 𝑧2(𝑡) 0.1

Subsystem 7
H2 0.00018 𝑧1 0.00018 𝑧1(𝑡) 0.1
For 0.00018 𝑧2 0.00001 𝑧2(𝑡) 0.1

reserves of fossil fuels as well as their climatic and economic
effects [33, 34]. Among the investigated renewable fuels,
H2 has some advantages; for example, it has high energy
efficiency (122KJg−1) and its application produces only water
as a byproduct and can be obtained from cheap carbon
sources [35–37].

H2 production can be obtained as a result of microor-
ganisms biological activity. Among other advantages of these
methods, the possibility of using different nonconventional
sources (even waste resources) as a carbon source for
microorganisms seems to be a relevant factor when technical-
economical balance is a key condition. Moreover, many
of these processes may occur under normal conditions of
pressure and temperature [35, 38].

Biological hydrogen production can be made with differ-
ent microorganisms. One of the most popular is Escherichia
coli, a Gram-negative facultative anaerobic bacterium, which
is able to produce H2 by mixed acid fermentation with a
theoretical maximum production of 2 moles of H2 by 1
mole of glucose [39]. Main efforts to improve H2 production
have focused on (a) identifying and characterizing the effect
of oxygen-tolerant hydrogenases, (b) improving H2 molar
yields, (c) developing efficient H2 separation techniques
from bioreactor head-space, and (d) modifying metabolic
pathways response by genetic engineering [40].

The optimization of H2 production can be obtained by
regulating substrates used to feed Escherichia coli. These
substrates may not serve only as carbon or nitrogen sources
but as genetic regulator. The expensiveness of this evaluation
can compromise the economical yield produced by the
production of Escherichia coli with respect to the resources

invested in H2 final optimization. The accurate model of
the H2 production by E. coli can be used to test diverse
genetic or metabolic strategies. This testing scheme can be
used to reduce the final H2 production costs. This is a main
motivation of this study.

The parameter values were taken as they were presented
in all the studies described in Table 4. The numerical
evaluation of transformation for system (1) presented in this
study was simulated in Matlab/Simulink.The simulation was
executed using a fixed step numerical integration algorithm
(ODE8-Dormand Price method) with an integration step
of 0.0001 hours. This value has been recommended when
simulations include some variants of sliding mode systems
[31]. In order to offer a fair comparison between STA
and high-gain observers, a similar gain tuning process was
considered including similar time processing. The gains in
the STA solution only use the values predicted by the set gain
included in the main theorem presented in this study. The
parameters included in the high-gain observer satisfied the
tuning rules presented in [41]. The set of initial conditions
used in simulation appears in Table 4.

Figure 2 shows the performance of the first observer
in the 𝑧-coordinates for the first subsystem. The trajecto-
ries depicted in this figure were obtained as a solution of
the set of discontinuous systems described in (3). These
figures show also the step-by-step convergence of all the
states. The first state 𝑧11 (Figure 2(a)) converged before 𝑧12
(Figure 2(b)) and it did it before 𝑧13 (Figure 2(c)). The
convergence of all states is achieved in finite time and the
estimation error converged before 0.5 h. This value coincides
with the predicted time 𝑇1 proposed in the theorem and
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Figure 2: Simultaneous visualization for the states of the transformed coordinates in the first subsystem, the corresponding high-gain
observer, and the STA-based estimator: (a) 𝑧11 , (b) 𝑧12 , and (c) 𝑧13 . (d)–(f) depict the variation of the concentrations for the compounds (d)
G6p, (e) 2pg, and (f) Pep as well as their estimates produced by the inverse transformation applied to both the high-gain and the STA-based
observer.

it is considered to be relatively low with respect to the
period of simulation (30.0 h). The same set of figures shows
the state estimation attained as a solution of the first high-
gain observer applied on the first subsystem. At first sight,
no evident differences are detected between the high-gain
observer and STA trajectories. Nevertheless, the smaller
differences observed within the first two hours of reaction are
enough to induce high frequency oscillations in the states of

the high-gain observer, especially after applying the inverse
transformation.

The convergence of the estimated states in the 𝑧-
coordinates forces the corresponding fixed-time estimation
of all the states in the first subsystem that includes the effect
of substrate. These values are obtained as a solution of the
inverse transformation presented above. Figures 2(d), 2(e),
and 2(f) compare the time evolution of G6p, pg, and Pep.
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Figure 3: Detailed simultaneous visualization for the states of the transformed coordinates in the first subsystem, the corresponding high-
gain observer, and the STA-based estimator: (a) 𝑧11 , (b) 𝑧12 , and (c) 𝑧13 during the first 5 hours. (d)–(f) depict the detailed variation of the
concentrations for the compounds (d) G6p, (e) 2pg, and (f) Pep as well as their estimates produced by the inverse transformation applied to
both the high-gain and the STA-based observer during the first 5 hours.

Notice the presence of a high amplitude over estimation in
the estimation of G6p.

The graphical information included in Figure 2 may
be insufficient to justify the superior performance of STA-
based observer. Figure 3 depicts the variation of the same
states shown in Figure 2. However, the time period of state
evolution was constrained to the first 5 hours of reaction.
These closer views to the earlier stages of the reaction show

how the finite-time convergence is attained when only two
key compounds are measured (input-output). Indeed, the
number of estimated states where high frequency oscillations
and high amplitude transient states were detectedwas smaller
when the STA observer was applied to recover the nonmea-
surable states of the first subsystem.

Figure 4 depicts the time evolution of the trajectories
included in the third subsystem. The transformed states
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Figure 4: Simultaneous visualization for the states of the transformed coordinates in the third subsystem, the corresponding high-gain
observer, and the STA-based estimator: (a) 𝑧41 and (b) 𝑧42 . (c) and (d) depict the variation of the concentrations for the compounds (c) Aad
and (d) EtOH as well as their estimates produced by the inverse transformation applied to both the high-gain and the STA-based observer.

𝑧31 , 𝑧32 , and 𝑧32 corresponding to citrate, isocitrate, and 𝛼-kg as
well as their estimates 𝑧̂11 , 𝑧̂21 , and 𝑧̂31 in the transformed states
are shown in Figures 4(a), 4(b), and 4(c). This set of figures
evidences the remarkable transient behavior of the observer
proposed in this study. No oscillations of high frequency
and amplitude were obtained when the STA-based observer
was considered. Nevertheless, if a high-gain observer is
considered, unacceptable oscillations of the estimated states
are gotten for the estimated states. These oscillations were
obtained even after applying different strategies to adjust the
observer gains. Actually, the state estimation performance
is deficient in the early stages of the reaction. This can
be considered relevant because the duplication period of
Escherichia coli is around 45 minutes. The corresponding
states obtained after applying the corresponding inverse

transformation and the estimated states of Cit, IsoCit, and𝛼-kg matched the actual trajectories of the corresponding
states from model 1. One may notice that there is no evident
difference between the three pairs of trajectories when the
STA observer was applied. Despite the measurable variable
considered to adjust the observer performance, the observer
proposed in this study showed a lower level of oscillations
around the true trajectories of the metabolic network and
larger convergence time.

Figure 4 justifies how the performance of STA-based
observer was better than the one obtained by the high-
gain state estimation. Figure 5 shows the time variation
of the transformed estimated states. The variation of the
same states shown in Figure 4 is detailed within the first
5 hours of reaction. Once more, these closer views to the
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Figure 5: Detailed simultaneous visualization for the states of the transformed coordinates in the third subsystem, the corresponding high-
gain observer, and the STA-based estimator: (a) 𝑧41 and (b) 𝑧42 during the first 5 hours. (c) and (d) depict the detailed variation of the
concentrations for the compounds (c) Aad and (d) EtOH as well as their estimates produced by the inverse transformation applied to both
the high-gain and the STA-based observer during the first 5 hours.

initial period of the reaction show the finite-time convergence
of the STA-based observer. Notice that states of the STA-
based observer approach the actual states while the high-gain
version actually touches the real trajectories but they did not
remain over the trajectory as shown in 4which shows a longer
time period.

Figure 6 details the dynamical behavior of transformed
trajectories considered as part of the seventh subsystem. Both
transformed states 𝑧71 and 𝑧72 (that can be transformed into
formate and hydrogen) as well as their estimates 𝑧̂11 and 𝑧̂21
in the transformed states are shown in Figures 6(a) and 6(b).
Figures 6(a) and 6(b) contain the time evolution of 𝑧71 and 𝑧72 ,
respectively. This particular subsystem was elected to show
its trajectories because it is the most simple among the seven

ones considered to describe themetabolic network studied in
this article.

The actual concentrations of H2 and formate obtained
after applying the corresponding inverse transformation are
also depicted in Figures 6(c) and 6(d). The robustness of the
observer proposed in this study confirms that no evident
difference between both trajectories was obtained. Despite
the subsystem analyzed from the metabolic network, the
observer proposed in this study showed that true trajec-
tories of the metabolic network can be reproduced by the
distributed observer based on the sequential application of
the high-order sliding mode.

An additional figure (Figure 7) was included to describe
the variation of 𝑧71 and 𝑧72 as well as the time evolution of
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Figure 6: Simultaneous visualization for the states of the transformed coordinates in the seventh subsystem, the corresponding high-gain
observer, and the STA-based estimator: (a) 𝑧71 and (b) 𝑧72 . (c) and (d) depict the variation of the concentrations for the compounds (c) For and
(d) H2 as well as their estimates produced by the inverse transformation applied to both the high-gain and the STA-based observer.

formate and hydrogen. Even when these trajectories corre-
spond to the most simple subsystem, the superior perfor-
mance of the STA-based observer is conserved. Even when
both observers converge in less than one hour, the STA-based
observer did it within the first half hour.

To characterize the impact of the noise and sampling pro-
cess over the estimation quality for the observer developed in
this study, a specific set of simulations were evaluated. The
study of the noise impact was developed by aggregating a
source of noise over the measurable information obtained
in each subsystem. A bounded random signal generator
was added to the available information with a bound of
0.02mM. This value was proposed arbitrarily. The entire
set of simulations was executed to estimate all the states in
the metabolic model. Then, the upper bound for the noise
was increased 10 times with an increment of 0.02mM. The
mean square value for the estimation error was calculated
for the entire set of experiments. The value calculated for
the mean square was compared with the upper bound
proposed for the noise. Figure 8(a) presents this evalua-
tion.

The evaluation of the sampling process used a similar
strategy to the one presented above (used to evaluate the effect
of noise). Therefore, the sampling information was injected
in the observer structure considering subsequent increments
of the sampling period. The increment was of 0.2 hours (12
minutes). A set of ten increments was evaluated. Figure 8(b)
depicts the corresponding evaluation of sampling effect.

In both cases, there is a loss of estimation quality
(measured in terms of the mean square error increment) as
a consequence of two aspects: the sampling period and the
presence of noise.

The type of state estimator proposed in this study has
proven to be a useful tool to reconstruct the time evolution
of compounds included in metabolic networks. This fact
is supported by the evident superior performance obtained
when the STA-based observer was compared with a standard
method of estimation such as the high-gain scheme. Even
when the assumption of measuring some key compounds in
themetabolic networkmay seem difficult to fulfill, there are a
plenty of results reporting the application of diverse analytic
methods that can be used to solve this part of the problem.
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Figure 7: Detailed simultaneous visualization for the states of the transformed coordinates in the seventh subsystem, the corresponding
high-gain observer, and the STA-based estimator: (a) 𝑧71 and (b) 𝑧72 during the first 5 hours. (c) and (d) depict the detailed variation of the
concentrations for the compounds (c) For and (d) H2 as well as their estimates produced by the inverse transformation applied to both the
high-gain and the STA-based observer during the first 5 hours.

The finite-time convergence of the estimation error
obtained in all the subsystems also provides the additional
benefit of using the estimated information to solve the
parametric characterization of the mathematical model. This
condition has been also tested in this study where the
information of the estimated states is injected into the linear
regressor that is used in the least mean square method.

9. Conclusions

This study has developed a new class of state estimators to
reconstruct internal metabolites in the metabolic network
focused on producing hydrogen in Escherichia coli. The
estimator satisfied the step-by-step structure based on the
sequential application of the uniform supertwisting algo-
rithm. The method proposed in this study used a segmen-
tation process of the entire metabolic network. The seg-
mentation was enforced to keep the observability condition
in each subsystem. A specific step-by-step supertwisting

estimator was used to estimate the metabolites in each
subsystem. This distributed scheme was presented for the
first time in this study. The application of this estimation
method was tested in numerical simulation with better
solutions than the ones obtained by high-gain observers.
The simulation used a mathematical model that consid-
ered the key section of Escherichia coli’s metabolic network
focused on producing its main secondary metabolites. A
set of numerical simulations were executed to prove the
effectiveness of the proposed STA-based observer. The com-
parison of the estimates obtained by the STA-based observer
with respect to the regular high-gain version of the state
estimator supported also the more effective performance of
the suggested observer. Three of the seven subsystems were
numerically reported where the estimates of the STA were
closer to the states of the metabolic network. The rest of
the four subsystems showed similar results but they were
not included in the manuscript because of article length
restrictions. The estimation proposed in this study can be
easily extended to different metabolic networks in diverse
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Figure 8: Evaluation of the noise (a) and sampling process (b) over the estimation quality.

microorganisms. The only condition needed to apply the
technique developed in this study is to keep the observability
conditions in each subsystem obtained from the segmenta-
tion process.
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