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Abstract: Research in pharmacogenomics and precision medicine has recently introduced the concept of Polygenic 

Scores (PGSs), namely, indexes that aggregate the effects that many genetic variants are predicted to have on individual 

disease risk. The popularity of PGSs is increasing rapidly, but surprisingly little attention has been paid to the idealisa-

tions they make about phenotypic development. Indeed, PGSs rely on quantitative genetics models and methods, which 

involve considerable theoretical assumptions that have been questioned on various grounds. This comes with episte-

mological and ethical concerns about the use of PGSs in clinical decision-making. In this paper, I investigate to what 

extent idealisations in genetics models can impact the data gathering and clinical interpretation of genomics findings, 

particularly the calculation and predictive accuracy of PGSs. Although idealisations are considered ineliminable com-

ponents of scientific models, they may be legitimate or not depending on the epistemic aims of a model. I thus analyse 

how various idealisations have been introduced in classical models and progressively readapted throughout the history 

of genetic theorising. Notably, this process involved important changes in the epistemic purpose of such idealisations, 

which raises the question of whether they are legitimate in the context of contemporary genomics. 
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Introduction 

 

A major focus of precision medicine and pharmacogenomics is the prediction of how individuals’ 

genetic characteristics affect their response to drugs and environmental intervention. Investigation 

of the genetics of complex diseases figures among the core aims of precision medicine also to 

prevent the onset of symptoms at early stages of development. Recent work in this area is based 

on quantitative genetics – the branch of genetics focusing on complex traits – which has recently 

introduced the concept of Polygenic Score (PGS) and Polygenic Risk Score (PRS). 

Since genetic information on complex traits is often difficult to interpret causally, these 

scores do not aim to provide a better mechanistic understanding of the aetiology of diseases, but 

rather aim to predict phenotypic outcomes given an individual’s genetic profile. More specifi-

cally, Polygenic Risk Scores (PRS) aggregate the contribution of many genetic variants to the risk 

of developing binary (yes/no) diseases; PRS are thus more often cited in the medical literature 

investigating disease risk. Polygenic Scores (PGS), instead, represent the role of such variants in 

between-individual variability in quantitative traits like human stature, body-mass index (BMI), 

educational attainment (EA), and the Intelligent Quotient (IQ). Since the development of these 

traits is not well captured by the notion of risk, PGS are more often cited in the context of this 

type of traits.1 

The popularity of PGSs is increasing rapidly, especially in the behavioural sciences.2 Alt-

hough the methods for calculating them are relatively new and guidelines for their use are still 

under development (Kullo et al. 2022), some applications are already in practice, and more are 

about to come. Private healthcare and direct-to-consumer companies are marketing them as part 

of in vitro fertilisation in countries such as the US and Japan (Nature Editorial 2022; NHGRI 

Online Resource). Individuals’ genetic data can also be uploaded to online tools to calculate the 

score for specific diseases, such as type 2 diabetes, breast cancer, and cardiovascular diseases. 

The future potential of PGSs is uncertain, but scholars have argued that they will eventually be-

come an invaluable tool in medical and social sciences (for an enthusiastic defence, see Plomin 

 
1 To a certain extent, the distinction is however historical and contingent: one can consider either the PRS or the PGS 
of a trait depending on whether one conceptualises such trait as binary (qualitative) or continuous (quantitative). For 
example, schizophrenia has been conceptualised in both senses in different areas and periods of psychiatry genetics 
(see Serpico 2020). In this paper, I shall use the term PGS to denote both PRS and PGS. 
2 A bibliometric research on the database of Web of Science (WoS) on the query [TS=((“polygenic score*” OR “poly-
genic risk score*”))] reveals that, among about 5.350 research outputs, more than 4.400 have been published between 
2019 and 2023 (up to July 2023). In terms of research areas, more than 2.000 results are in the behavioural and brain 
sciences (e.g., psychiatry, neuroscience, neurology, psychology). This research can be replicated through WoS Ad-
vanced Search (https://www.webofscience.com/wos/woscc/advanced-search). 
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2019). For instance, PGSs would predict the development of personality and educational attain-

ment to inform personalised education (Wang et al. 2022), but it is unclear whether PGSs will 

bring substantial benefits in psychiatry (Giangrande et al. 2022). 

While many discussions revolve around the predictive power of PGSs, little attention has 

been paid to the idealisations they involve about phenotypic development and to the relationship 

between idealisations, descriptive accuracy, and prediction. Broadly speaking, idealisations are 

theoretical assumptions that deliberately misrepresent a system or a phenomenon for some epis-

temic or practical purpose.3 In this paper, I focus on limitations of PGSs deriving from idealisa-

tions in quantitative genetics models that can generate uncertainty in data gathering and clinical 

interpretation of genomics findings. What types of idealisations does quantitative genetics intro-

duce as regards pathological development? To what extent, if any, do such idealisations impair 

the predictive capability of PGSs? 

Addressing these questions will promote a better understanding of the role of idealisations 

quantitative genetics, with extensive implications in terms of an ethically sensitive use of PGSs. 

This analysis will also help contextualise methodological problems in contemporary genomics 

within a broader theoretical perspective, according to which much of the uncertainty relating to 

the use of PGSs depends on their reliance on highly idealised models of the genetic architecture 

of complex traits. 

Indeed, as in many -omics areas of biology, where scientists are dealing with an outstanding 

degree of complexity, relevant epistemological and ethical questions about contemporary ge-

nomics can be easily obscured. Moreover, PGSs derive from a branch of genetics where many 

genes are thought to be involved in the development of complex traits. This sounds immediately 

‘more desirable’ (both ethically and epistemologically) than the reduction of individual differ-

ences to single genes, as with the classical notion of Mendelian trait.4 However, quantitative ge-

netics involves a core of methodological and theoretical assumptions that have been criticised as 

questionable at the very least, if not strongly misleading.  

Models and data in contemporary quantitative genetics draw on three main sources: classi-

cal additive models (Fisher 1918; Falconer 1965), which describe the combined additive effects 

of thousands of alleles on complex phenotypes; heritability analyses, which provide evidence that 

 
3 Here, with Levy (2021), I consider idealisations as misrepresentations of some aspect of a phenomenon, in contrast 
to abstractions, which involve the level of details in a scientific representation or model (see also Portides 2021 and §2 
below). 
4 Indeed, quantitative genetics does not imply any straightforward reduction of phenotypes to single genes and seem to 
prevent popular discourses about the ‘gene for x,’ where x is any complex trait (see Kendler 2006; Rutter 2006; Sarkar 
1998). 
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variation in every human trait has a genetic basis; and genome-wide association studies (GWAS), 

which aim to identify genetic variants statistically associated to phenotypic variation. In the last 

decades, there have been extensive debates on all such facets of quantitative genetics (Downes & 

Matthews 2019; Lewontin 1974; Kempthorne 1978; Nelson et al. 2013; Serpico et al. 2023), 

which come with concerns on the use of PGSs in medical explanation and decision-making 

(Baverstock 2019; De La Vega & Bustamante 2018). These criticisms lie at the core of a long-

standing divide between quantitative genetics and other areas of biology, such as epigenetics and 

developmental biology: while the former has traditionally focused on statistical genetic effects, 

models from the latter are more causally oriented and traditionally considered ‘less idealised’ or 

more descriptively accurate due to their reliance on mechanistic explanations. Attempts to con-

nect statistical and causal explanations have been made (Lu & Bourrat 2022; Tabery 2014), but 

the gap between the two is still unbridged (Matthews 2022; Matthews & Turkheimer 2021, 2022; 

Kaplan & Turkheimer 2021). 

Limitations of quantitative genetics methods have potential reflections not only on the es-

timation of PGSs, but also on the reliability of the clinical decisions that they would recommend, 

with impactful ethical implications, too. In the context of genetic screening, future parents may 

make decisions based on evidence from these studies. Genetic tests are also directly available to 

consumers, who can get information about their genotype without competent supervision, with 

potentially adverse psychological, ethical, and legal consequences (see Wang et al. 2022: 309). 

Baverstock (2019), for instance, argued that misrepresentation of PGSs may lead to misplaced 

confidence in low scores – with the risk that a disease is not diagnosed – or misplaced confidence 

in high scores – which can lead to unnecessary treatment (biopsies, operations) or unwarranted 

reproductive decisions. Burt (2022), as another example, invited special caution about the use of 

PGSs in the social sciences. In the context of prenatal screening, PGSs “could trigger the unnec-

essary destruction of viable embryos or induce women to undergo extra cycles of ovarian stimu-

lation to collect more oocytes” (Nature Editorial 2022). 

Below is a detailed structure of the paper.  

In §1, I outline how PGSs are calculated based on GWAS data. Then, I summarise major 

limitations in standard GWAS that are source of both epistemic and ethical uncertainty; I will 

suggest, however, that some of such limitations may have little relevance for the PGSs’ predictive 

capability. 

In §2, I explain in what sense idealisations in genetic models can impact the calculation, 

interpretation, and use of PGSs. Idealisations are usually considered ineliminable components of 

scientific models due to a variety of epistemic benefits. For instance, they may enhance our 
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understanding of complex phenomena by focusing only on certain aspects of such phenomena, 

thus having heuristic or explanatory purposes, or help exclude irrelevant correlations, simplifying 

statistical or mathematical analyses. Nevertheless, scholars agree that an idealisation may be le-

gitimate or not depending on the epistemic aims of a model. Since the main aim of PGSs is to 

predict development and individual genetic risk, I mostly frame the discussion in terms of how 

idealisations could impact the predictive accuracy of PGSs. However, I also argue that prediction 

is not the only aim of PGSs: within the vision of genomics-based precision medicine, the key aim 

of PGSs is to devise personalised therapeutic and environmental interventions. This suggests that 

the legitimacy of PGSs idealisations should consider factors beyond predictive accuracy. 

In §3, I focus on three types of idealisations in quantitative genetics models. First, each 

genetic variant has an additive effect on phenotypic variation (the additivity idealisation). Second, 

genetic risk for most complex traits is normally distributed (the normality idealisation). Third, 

variation at the level of single nucleotides represents the appropriate level of complexity to inves-

tigate genetic variability in complex traits (the SNP-causality idealisation). Drawing on the exist-

ing historical and epistemological literature, I analyse how each of these idealisations has been 

originally introduced in classical models and inherited by contemporary genomics throughout the 

history of genetic theorising. Notably, this process involved a progressive re-adaptation of the 

idealisations above and, crucially, of their epistemic purpose. I thus evaluate such idealisations in 

terms of whether they are legitimate given the epistemic aims of contemporary genomics, partic-

ularly the calculation and practical use of PGSs. 

Although much of this analysis intersects with current debates on the role of scientific mod-

els in data gathering and interpretation, it is mostly motivated by the need of an accurate assess-

ment of what contemporary quantitative genetics can tell us about phenotypic development, par-

ticularly complex medical traits. Indeed, each of the three idealisations above reflects precise 

theoretical and methodological choices about how to best describe the biology of living beings, 

with extensive practical consequences. Throughout §3 and the Conclusions, I will explore the 

clinical implications – in terms of prediction and treatment – of making such choices. This in-

cludes, for instance, the inclusion versus the exclusion of non-additive genetic effects from ge-

netics models; the assumption that most complex traits have a quantitative genetic architecture or 

not (that is, if they are quantitative traits or are just operationalised as such); and the question of 

whether the analysis of single-nucleotide genetic variants can help us understand inter-individual 

phenotypic variability. 
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1. What is a Polygenic Score? 

 

Polygenic Scores express, in one single index, the cumulative effects that multiple genetic vari-

ants are predicted to have on individual phenotypes. Statistical associations between genetic and 

phenotypic variation are established through GWAS, a method that tests up to millions of genetic 

variants in thousands of individuals in case-control designs without prior hypotheses about how 

such genetic variants may affect phenotypic variation.5 

The variants that are investigated by GWAS are called single-nucleotide polymorphisms 

(SNPs), that is, mutations in single DNA base pairs that are common in most target populations 

(allele frequency > 1%) and that occur normally throughout a person’s DNA (NIH National Li-

brary of Medicine 2022). At the phenotype level, the variability under the lenses of GWAS usu-

ally involves traits such as human stature, cancer, diabetes, obesity, IQ, and major depression, 

where many genetic variants are thought to be involved. In short, if compared to more classical 

forms of genetic prediction aimed at identifying highly penetrant genes of large effect size, PGSs 

focus on the impact of many genetic variants with small effect on individual differences in com-

plex traits. 

The primary output of GWAS are lists of p-values and effect sizes of all the tested genetic 

variants with variation in the phenotype under investigation. Further analyses are then needed to 

interpret these data and determine the most likely causal variants (for a methodological review, 

see Uffelmann et al. 2021). In most cases – especially in psychological traits – each SNP identified 

through GWAS accounts for only a small portion of phenotypic variance, usually less than 0.1%, 

and for this reason, geneticists need huge samples to identify significant associations. For in-

stance, the effect size of SNPs associated with educational attainment corresponds to 1.7 weeks 

of schooling per allele (Lee et al. 2018). 

This sort of finding is believed to have confirmed classical additive models developed at 

the dawn of modern genetics (Fisher 1918; Mather 1941, 1943). According to such models, indi-

vidual differences in complex traits are due to many independent alleles (hundreds, thousands) 

that have an additive effect on the phenotype. Quantitative traits differ from Mendelian traits, 

where discontinuous phenotypic differences are due to single, highly penetrant alleles: individual 

differences in quantitative traits are thought to be determined by the average value that many 

alleles bring about at the phenotype level in different individuals (Chabris et al. 2015). 

 
5 In this sense, GWAS differ from classical candidate-gene studies, where the identification of genes depends on con-
siderations on their functional role. 
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GWAS allowed scholars to successfully identify SNPs involved in traits like obesity, can-

cer, and autoimmune diseases, which is hoped to eventually reveal the genetic basis of complex 

traits (Marees et al. 2017). Due to limitations that I will discuss shortly, the data obtained through 

GWAS are today valued for their predictive potential, regardless of knowledge about the causal 

role of SNPs in development, and it is here that PGSs come into play: the calculation of these 

scores takes the available information on which SNPs are more present in individuals with a given 

disease and summarise this information into single scores that aim to predict individual genetic 

risk for such disease. 

The construction process of a PGS requires several steps and methodological choices. For 

our purposes, it is worth highlighting a few aspects (for further details, see Burt 2022; Fries 2020; 

Janssens 2019; Marees et al. 2017; Uffelmann et al. 2021; Wang et al. 2022; Woodward & 

Kendler 2023). 

First, a PGS is based on data from a previous GWAS, the target or discovery sample: the 

number of risk alleles of an individual needs to be weighted by the effect size of each variant 

detected by the target GWAS, and the resulting products are summed up across all genetic loci. 

Second, not every SNPs identified in the discovery sample need to be included in a PGS: there is 

rather a selection phase of which variants will constitute the score, which depends on what p-

value thresholds are chosen for the score’s calculation. Such thresholds are manipulated, for in-

stance, to exclude SNPs that have little statistical evidence for genome-wide association. The 

predictive accuracy of PGSs generated by different p-value thresholds is assessed by comparing 

the PGS’s phenotypic prediction with the phenotypic information available, and only the SNPs 

that have higher predictive accuracy are retained. 

 

1.1 Epistemological and Ethical Questions 

 

The reliance of PGSs on quantitative genetics invite new types of epistemological and ethical 

challenges.  

An often-cited issue is that PGSs are vulnerable to stratification biases (e.g., geographic, 

ancestral, and/or socioeconomic confounders): there is a relevant risk that the associations iden-

tified through GWAS are due to indirect genetic effects mediated by environmental heterogeneity 

in the samples (Trejo & Domingue 2018; Woodward & Kendler 2023). This connects to ethical 

questions such as whether PGSs could exacerbate existing health inequities given that most 

GWAS are conducted on participants of European ancestry (Martin et al., 2019; Nature Editorial 

2022). In other words, genomics studies have a “strong Eurocentric bias” (Giangrande et al. 
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2022), which implies that PGSs may not be transferable from a population to another (Johnston 

& Matthews 2022; Palk et al 2019). 

The ethical significance of PGSs, however, is far more wide-ranging than this. Although 

genetic information is believed to have potential relevance for prevention and treatment, there is 

a question of what type of information should be pursued through genetic testing and how such 

information could be communicated.  

First, as regards the ‘what’ question, epistemic and ethical uncertainty can arise in case of 

information overload. According to Bayefsky and Berkman (2021), reproductive decision may 

need limitation in access to fetal genetic information: indeed, unrestricted access to immense 

amounts of information, including genetic variants with uncertain phenotypic significance, would 

detract from autonomous decision-making. For instance, 

 
it will be increasingly unlikely that any fetus will be entirely free from potentially harmful gene variants. 

There will be ‘no more perfect babies,’ and parents who pursue expanded testing will be forced to come 

to terms with their children’s genetic risks or choose to terminate the pregnancy and roll the genetic 

dice once again (Bayefsky and Berkman 2021: 3). 

 

It is thus important to consider the psychological burden of the parents in making decisions based 

on uncertain information from GWAS and PGS calculation. This requires guidance regarding 

testing for not just harmful diseases, but also learning and cognitive disabilities and non-medical 

traits, which may not turn out to be not immediately useful for decision-making processes.6 

Equally important would be for individuals to develop an understating of the many ethical issues 

at stake, e.g., a child’s right to an open future, the risk of implementing eugenic regulatory prac-

tices, and disability rights (for a discussion, see Bayefsky & Berkman 2021). 

Second, there is the problem of how to communicate information about risk. Lewis et al. 

(2021), for instance, identified three potential representations of risk assessment through PGSs, 

each of which with different advantages, disadvantages, and applications. Moreover, scholars 

have extensively discussed how to understand the role of genetic variants with unknown biologi-

cal meaning and the impact of ‘data tsunami’ in medical communication. Indeed, like other -

omics technologies, GWAS generate data that are not easily translatable into greater explanatory 

details. In particular, the small effect size of SNPs comes with notoriously unclear biological 

 
6 There is, in fact, a sense in which genetic characteristics can be assimilated into an individual’s “sense of self” or 
personal identity (Palk et al. 2019: 8). Relatedly, researchers and individuals diagnosed with a mental condition disagree 
about whether psychiatric diagnoses should be seen as harmful, humanizing, or liberating (Botha et al. 2020; Kenny et 
al. 2016). This suggests that genetic information on future pathological development may not have straightforward 
implications for clinical decisions. 
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insights (Uffelmann et al. 2021), and it is debated whether SNPs data can have any causal value 

and potential for treatment (Craver et al. 2020; Kaplan & Turkheimer 2021; Oftedal 2022; Turk-

heimer 2011; Woodward & Kendler 2023). For instance, Giangrande et al. noted that GWAS 

helped to prioritise research on alleles involved in various psychiatric disorders but uncovering 

causal mechanisms “would require experimental studies that either are in nascent stages or are 

not yet possible” (2022: 14).7 

The SNPs’ small effect size connects to another major issue of GWAS known as the Miss-

ing Heritability Problem (MHP). The missing heritability is the gap between the heritability of a 

trait estimated through classical family studies (h2TWIN) and the heritability accounted for by the 

SNPs detected through GWAS (h2GWAS) (Matthews & Turkheimer 2021, 2022).8 For instance, an 

impressive study of schizophrenia (37,000 subjects and 113,000 controls) identified 128 SNPs 

that accounted for about 3.4% of the estimated genetic risk (Schizophrenia Working Group 2014). 

The MHP arises as the SNPs associated with variation in schizophrenia cannot account for the 

totality of the heritability of the trait: the h2TWIN of schizophrenia is about 80%, but the SNPs 

identified account for just a small percentage. 

Uncertainty about the causal role of a genetic variant in development can have unpredicta-

ble consequences in the selection of embryos (see Turley et al. 2021). As Wang and colleagues 

warn, 

 
a previous study reported that embryo selection based on higher polygenic scores for educational at-

tainment would increase the risk of bipolar disorder by 16% from an absolute risk of 1% to 1.16%. The 

magnitude of this unintended consequence depends on many parameters, including heritability, genetic 

correlation, PRS predictive performance, the number of embryos for selection, and the prevalence of 

the traits in the population (2022: 302). 

 

Overall, PGSs information comes with clinical, epistemological, and ethical uncertainty. Even 

physicians and practitioners may be uncertain about what information is ‘certain’ or ‘uncertain’ 

 
7 More generally on making causal claims based on quantitative genetics methods, Madole & Harden (2022) have 
recently argued that the genetic causes of complex traits (particularly behaviours) are to be intended as shallow causes: 
many variants from across the genome relate statistically to phenotypic outcomes, but they are non-unitary (they operate 
within intricate causal systems), non-uniform (produce heterogeneous effects across individuals), and not immediately 
explanatory in mechanistic terms. For example, individuals diverge at many points along the causal pathway from 
genes to behaviour, beginning already at the gene-function level; moreover, the probability that single genes matter for 
phenotypic variation depends on individual-level environmental exposures. 
8 Matthews and Turkheimer take into account three independent facets of the MHP: the numerical gap, the mechanism 
gap, and the prediction gap. The authors argue that the MHP, rather than being a merely technical problem, depends 
on profound theoretical differences between traditional and molecular methods in quantitative genetics. 
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and how to communicate this. It is thus unsurprising that the current literature is so deeply con-

cerned with the clinical potential of PGSs. 

The raising connection between quantitative genetics, PGSs, reproductive, and clinical de-

cision-making leads us to the main target of this article: in what sense idealisations in quantitative 

genetics may impact the predictive accuracy, calculation, and use of PGSs? 

It is worth stressing that epistemological and methodological limitations in GWAS may not 

affect the predictive power of PGSs. For instance, as I discuss below, the limited mechanistic 

information of SNPs may be irrelevant for predictive purposes since prediction is based on the 

aggregation of statistical effects of SNPs, rather than on understanding their causal role. By con-

trast, the MHP may be relevant for PGSs because the predictive power of a PGS is limited by the 

amount of variance that the identified SNPs can explain. 

 

 

2. How Predictive are Polygenic Scores? 

 

Recent theorising on scientific modelling converges on the idea that scientific models typically – 

and deliberately – involve idealisations that misrepresent or distort some characteristics of the 

system they depict (Levy 2021; Portides 2021). Not only idealisations are somewhat inevitable 

components of scientific models but are, in many cases, desirable means to achieve certain aims. 

Idealisations are thus often connected with different aims of scientific research: for instance, they 

may enhance our understanding of complex phenomena, thus having heuristic or explanatory pur-

poses, or help exclude minor correlations that are considered irrelevant, simplifying statistical or 

mathematical analyses (Brigandt 2013; Jacquart et al. 2022; Strevens 2021; Potochnik 2020; 

Weisberg 2012). 

This also implies that complete descriptive accuracy may not be required for a model to be 

explanatorily useful in the context of some reasonably well-constrained research programme. In-

deed, the role of idealisations should be evaluated in the context of the specific epistemic and 

practical goals of a given model. According to Brigandt (2013), an idealisation can be legitimate 

“if the model ignores only those empirical details that do not contribute to the explanatory aim.” 

More recently, Strevens (2021) provided a framework to assess whether an idealisation is safe to 

make, that is, whether it impairs a model’s ability to achieve its goals: according to this frame-

work, the safety of an idealisation depends on whether its inclusion/exclusion makes a difference 

to the epistemic aim of the model. 
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Since the main epistemic aim of PGSs is prediction, the question of how idealisations can 

impact PGSs may need to be mostly framed in terms of empirical accuracy (Camacho 2021; 

Hitchcock & Sober, 2004; Van Fraassen 1980). On this view, the possibility of making successful 

predictions with PGSs would be more important than their ability to capture ‘real’ causal rela-

tionships between the genotype and the phenotype or explain how the phenotype develops over 

time – Janssens (2019) puts this in terms of the criterion validity of PGSs; Plomin and Von Stumm 

(2023) argued that “the goal of prediction is to account for as much variance as possible, without 

regard for explanation”; Matthews & Turkheimer (2022) suggest that bridging the “prediction 

gap” is somewhat independent from the causal explanation of the genotype-phenotype relation-

ship. Moreover, the connection between causality and prediction of PGSs might be irrelevant in 

certain areas – e.g., in animal breeding – or given certain objectives (Kaplan & Turkheimer 2021). 

One may also suppose that some idealisations do not impact polygenic prediction in significant 

ways. For instance, Briley et al. (2019) suggest that the question of the gene-environment inter-

play might be unimportant in genetics models as long as such models do not attempt to explain 

how genetic variation causes phenotypic variation.  

In short, if just prediction is the aim of PGSs, then the exclusion/inclusion of some causal 

details from genetics models might have negligible effects on a score’s predictive accuracy.  

How could we know that a highly idealised model is empirically adequate? In the case of 

models that inform the calculation of PGSs, a plausible test would be to check how much pheno-

typic variance is accounted for by the genetic variants detected through GWAS that are aggre-

gated in PGSs. If the answer is ‘very much’ or ‘about 100%,’ then it might be less interesting to 

make a philosophical analysis of how idealisations impact the calculation of PGSs – based on the 

pragmatic assumption that we may not need to know much mechanistic details if PGSs have al-

ready proved to be highly predictive. However, to the best of our knowledge, the real answer is 

that the predictive capability of PGSs is a matter of degree, and there is wide disagreement about 

whether it is adequate for their application in the medical and social sciences.  

Palk et al. (2019: 4), for example, explain that PGSs are currently able to explain between 

1 and 15% of the variance between cases and controls, and argue that such percentages should 

not be underestimated. Wang et al. (2022) consider in more detail the areas of medicine where 

PGSs have demonstrated better performance – breast and prostate cancer, type 1 and 2 diabetes, 

and cardiovascular diseases. Plomin and Von Stumm (2023) reviewed recent increases in the 

PGS’s predictive accuracy for behavioural traits:  
 

[PGSs] for schizophrenia, which predicted up to 3% of the liability variance in 2009, can now predict 

6%. [PGSs] can predict 2% of the liability variance for major depressive disorder, 5% for bipolar 
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disorder, 3% for neuroticism, 6% for attention deficit hyperactivity disorder and 10% for externalising 

behaviours. […] variance predicted by [PGSs] is 7% for general cognitive ability (intelligence), 11% 

for years of schooling (educational attainment (EA)) and 15% for tested school performance at age 16, 

which is the most predictive [PGS] in the behavioural sciences. 

 

Various scholars have nonetheless expressed concerns about the performance of PGSs. According 

to Janssens (2019: 144), the predictive validity of PGSs is modest except when they include one 

or more SNPs that have a strong impact on disease risk. Janssens & Joyner (2019) argue that the 

aggregation of millions of SNPs (with close to zero statistical effects) into a single score may be 

unsuited to informing about the risk of developing a disease.9 Mostafavi et al. (2020) and Wang 

et al. (2022) point out various limitations in the performance of PGSs, including inconsistency 

across studies due to ancestry, population stratification, and trait-specific genetic architectures. 

Turkheimer (2022) discusses differences in the PGSs’ predictive capability in different study de-

signs of educational attainment. Burt (2022: 24), too, disregards the predictive utility of PGSs in 

education. 

I do not aim to take a firm position on whether PGSs are predictive enough: the above 

disagreements suggest already that further investigation of the epistemological basis of polygenic 

prediction would be beneficial to secure that idealisations carried out by PGSs are legitimate given 

their predictive aims. However, there is more than just prediction in PGSs. 

 

2.1. Polygenic Scores Have Many Aims 

 

One may defend an instrumentalist perspective according to which, among the various goals that 

can motivate a scientific model, predictive accuracy is all that matters for PGSs. However, the 

relationship between idealisations and descriptive accuracy may be somewhat relevant in the case 

of PGSs. Below, I make the case that a solely predictive view of PGSs – detached from explana-

tory aspects – would impair the very calculation, interpretation, and application of PGSs. 

For a start, we know that the development of a model involves choices as regards what to 

represent and how (Harvard et al. 2021; Harvard & Winsberg 2022), and it is here that idealisa-

tions usually come along. As I mentioned, such choices depend on what is expected to better fit 

 
9 Notably, the inclusion of millions of SNPs that do not meaningfully change risk prediction may have consequences 
in medical communication: the score would suggest that such SNPs do in fact matter in the development of a disease 
and that scientists know how SNPs affect diseases. However, neither of these conclusions would be correct: only 10s 
to 100s SNPs have been reliably associated with any disease, and most of them have no clear mechanistic or causal 
relationship with phenotypic outcomes. Khera et al. (2018) claimed that PGSs using millions of SNPs outperformed 
those based on statistically significant SNPs and that the scores identified individuals with risk equivalent to monogenic 
mutations. Janssens & Joyner (2019) argued that none of these conclusions is warranted. 
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with the epistemic aims of a model. Even in cases where descriptive accuracy is not the main 

target, a highly idealised model may be committed to capturing some ontological aspects, such as 

what entities ‘exist’ and how they interact to generate a phenomenon. For instance, mechanistic 

models idealise several details and usually choose specific ways to decompose a system (Craver 

& Kaplan 2020; Love & Nathan 2015; Piccinini & Craver 2011). This provides a somewhat 

‘static’ and simplified picture of how the components of a system (molecules, cells, etc.) interact 

with each other but are nonetheless intended to represent real causal processes and interactions.  

Something similar may be true for predictive models. As Strevens (2021: 93) explains, 

predictive models do often ‘black-box’ some causal elements but, in other cases, they are “causal 

in character, that is, […] attempt to predict phenomena using a representation of certain causal 

structures that characteristically produce those phenomena.” If so, one may wonder how descrip-

tively inaccurate a model can be without losing some relevant epistemic properties, predictive 

accuracy included. In the case of PGSs, their prediction certainly has some causal characteristics, 

that is, they aim to predict phenotypic development from knowledge about the genotype. One can 

thus agree that their predictive accuracy could in part depend on their ability to capture actual 

causal interactions between the genotype and the phenotype, such as the role of genotype-envi-

ronment interactions (G´E) that can mediate genetic effects (I return to this point in §3).10  

Moreover, the prediction of phenotypic development is far from being the only aim of 

PGSs: rather, they probably have some explanatory and practical aims, too. 

Starting with explanatory aims: although GWAS do not usually explain how the genotype 

brings about phenotypic traits, they nonetheless provide data to stratify risk. This is one key aim 

of PGSs: assessing whether an individual is at the low or high end of a normal distribution of 

genetic risk (NHGRI Online Resource). For this reason, it might be important that the SNPs ag-

gregated in a PGS are causally relevant for the genetic risk of an individual: they should be actual 

(or plausible) difference makers. 

There are also more practical reasons to ask for some degree of descriptive accuracy in 

genetics models: in genomics-based precision medicine, the calculation of individual scores 

would ultimately guide clinical decision-making in prevention and personalised treatment. Im-

portantly, even if prediction with PGSs was nearly perfect, this alone could not guide clinical 

decisions: indeed, to intervene at any level (pharmacological, psychotherapeutic, educational), we 

need to achieve some reliable causal knowledge. For instance, to prevent the onset of a complex 

 
10  Woodward & Kendler (2023) have recently made a similar point: “a good PRS is not just predictively successful 
but must also satisfy the stronger condition that it is predictively successful because it tracks underlying genetic influ-
ences that are causal.” 
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disease like obesity, we need to know what G´E interactions matter (not just that some G´E 

probably matter) to prevent potentially obesogenic environmental factors (for similar considera-

tions, see Briley et al. 2019; Génin & Clerget-Darpoux 2015; this move away from predictive 

capability was also advised by Janssens & Joyner (2019) concerning genetic consultancy). 

To summarise, even if the main epistemic focus of PGSs is prediction, not every type of 

idealisation in genetic models is, in principle, equally legitimate: while some of them may have 

little impact on prediction, others may alter a model’s capacity of representing causal relationships 

between genetic and phenotypic variance and, in turn, the PGSs predictive capability. If so, it 

would be a mistake not to investigate what idealisations may possibly make a difference in poly-

genic prediction. That said, prediction is probably not the only epistemic aim of PGSs: to stratify 

risk and inform clinical decisions, genetics models need to meet some degree of descriptive ac-

curacy – regardless of the brute predictive power of PGS. 

In the next section, I discuss three types of idealisations involved in quantitative genetics 

models and in the calculation of PGSs. For each idealisation, I analyse questions such as: how 

does this idealisation enter models and methods? how does it impact the interpretation of the data? 

does it impair the predictive and descriptive accuracy of PGSs? 

 

 

3. Idealisations in Polygenic Scores 

 

As I mentioned in the Introduction, the idea that complex traits are highly polygenic is widely 

uncontroversial and is probably a key reason behind the success of quantitative genetics. There 

are, however, several corollaries of polygenic models that have instead attracted criticism. Here, 

I focus on aspects that relate to the following three idealisations: a) each SNP has an additive 

effect on phenotypic variation; b) genetic risk for most complex traits is normally distributed; c) 

variation in single nucleotides (SNPs) represents the appropriate level of causal complexity to 

investigate genetic variability in complex traits. 

To highlight the risks of introducing these idealisations in PGSs, I draw on Strevens’ (2021) 

framework to assess the safety of idealisations in scientific models, particularly the logical differ-

ence-maker criterion: an aspect x is a non-difference-maker for the prediction of a target phenom-

enon y if x can be removed from the model without affecting the model’s predictions. By contrast, 

if x is a difference-maker for prediction, idealising x is not safe. In our case, idealisations in quan-

titative genetics models are legitimate if they do not affect the calculation of PGSs in such a way 

as to impair their predictive accuracy and potential use in clinical contexts. 
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3.1. Classical Models 

 

Idealisations in contemporary GWAS and PGSs derive historically from idealisations made in 

early quantitative models (Fisher 1918; Falconer 1965; Mather 1941, 1943), which developed 

both the polygenic theory and the methods to analyse genetic sources of variance that geneticists 

used for many decades. GWA data and their typical interpretation are tied to the acceptance of 

such classical models and, at the same time, provide empirical support for such models. It is thus 

from such classical models that we need to reconstruct the origins of the idealisations involved in 

the calculation of PGSs. 

In the context of early genetics, where most data on genetic causality were gathered in 

experiments on plant and animal models, the architects of modern genetics were committed to 

reconciling Mendelian data with the statistical analyses of phenotypes developed by biometricians 

for the study of complex traits in humans. This required explaining how single genes could gen-

erate the continuous and normal distribution of such traits (Downes & Turkheimer 2021). Fisher 

(1918: 402) argued that the continuous distribution of phenotype values could depend on the in-

volvement of many small and additive genetic effects: 

 
Let us suppose that the difference caused by a single Mendelian factor is represented in its three phases 

by the difference of the quantities a, d, -a, and that these phases exist in any population with relative 

frequency P, 2Q, R where P + 2Q + R = 1. [...] a2 then is the variance due to this factor, for it is easily 

seem that when two such factors are combined at random, the mean square deviation from the new 

mean is equal to the sum of the values of a2 for the two factors separately. [...] To justify our statement 

that a2 is the contribution which a single factor makes to the total variance, it is only necessary to show 

that when the number of such factors is large the distributions will take the normal form. 

 

It is on this hypothesis that quantitative genetics is based: it is assumed that variation in complex 

traits is caused by a large (infinite, in Fisher’s model) number of alleles (SNPs, in contemporary 

terms), each of which with (infinitesimally) small effects on the phenotype. Moreover, genetic 

variation is normally distributed, and, at the population level, the average effects of alleles are 

reflected linearly on average phenotypic differences. In many mathematical descriptions (e.g., 

Panse 1940: 104; Purcell 2013: 374), a fixed coefficient is attributed to each allele. For instance, 

Mather (1943: 39-40) explains: 

 
With only three polygenes of equal effect, the genotypes AABBcc, AAbbCC and aaBBCC will, for 

example, give the same phenotype. This phenotype would also characterize the genotypes AaBBcc, 

AABbcc, AaBbcc, etc., if dominance were the rule, or AABbCc, AaBBCc, and AaBbCC in the absence 
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of dominance. […] The allelomorphs designated by small letters are assumed to add nothing to the 

expression of the character, while each allelomorph designated by a capital letter adds 1 unit. […] As 

the number of genes involved increases, more phenotypes are possible, and the distribution becomes 

more nearly continuous […] as observed, for example, in human stature. 

 

As I show below, with the development of genetic epidemiology and molecular biology, geneti-

cists capitalised on these additive models to explain far more than just how the normal distribution 

of phenotype values could originate from the combination of many independent genes: the model 

was recruited to analyse heritability (the portion of phenotypic variance accounted for by additive 

genetic variance) and, later, provided the basis for GWAS aimed at identifying the genes that 

account for a trait’s heritability. Over time, the idealisations made by early geneticists have thus 

been re-adapted across different types of methods, data, and research contexts. Remarkably, such 

idealisations were originally introduced in a different explanatory and methodological context to 

serve specific epistemic aims, which raises the question of whether their re-adaptation is legiti-

mate given the aims of contemporary genomics. 

 

3.2. Additivity 

 

After Fisher defined non-additive effects as the mere “deviation” from the expectation of typical 

allelic effects (Fisher 1918: 403-408; Phillips 2008), the additivity idealisation was often made to 

make genetic and environmental variation more tractable and exclude non-additive sources of 

variance that would generate higher complexity. The first step was operationalising phenotypic 

variance in terms of the additive effect of two, independent sources of variance (nature and nur-

ture): the total phenotypic variance (VP) is modelled as the sum of genetic (VG) and environmental 

variance (VE), meaning that phenotypic values depend on an organism’s alleles plus additive en-

vironmental factors. 

This allowed the application of analysis-of-variance techniques (ANOVA) and the estima-

tion of the popular statistics known as narrow-sense heritability (h2), namely, the proportion of a 

trait’s variance associated with additive genetic variance. In plant and animal breeding, h2 pro-

vided a useful breeding value coefficient to predict how much a population will change over gen-

erations (Downes & Turkheimer 2021; Falconer & Mackay 1996; Schaffner 2016). 

Eventually, it became routine to make sense of quantitative traits in biochemical terms, 

translating statistical additive effects into biochemical additive effects. For instance, Pierce (2017, 

chapter 24): 
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If the characteristic is polygenic, many different genotypes are possible, several of which may produce 

the same phenotype. For instance, consider a plant whose height is determined by three loci (A, B, and 

C), each of which has two alleles. Assume that one allele at each locus (A+, B+, and C+) encodes a 

plant hormone that causes the plant to grow 1 cm above its baseline height of 10 cm. The other allele 

at each locus (A−, B−, and C−) does not encode a plant hormone and thus does not contribute to addi-

tional height. If we consider only the two alleles at a single locus, 3 genotypes are possible (A+ A+, A+ 

A−, and A− A−). If all three loci are taken into account, there are a total of 33 = 27 possible multilocus 

genotypes (A+ A+ B+ B+ C+ C+, A+ A− B+ B+ C+ C+, etc.). 

 

Similar descriptions of biochemical additivity regard enzymatic effects on pea seeds pigmenta-

tion, where continuous variation can be explained in terms of different pigments – encoded by 

different genes – that additively generate colour (for an interpretation of additivity in pea seeds 

texture, see Jamieson & Radick, 2013: 583-584). 

In short, the development of quantitative genetics reflects a transition from a statistical 

interpretation of additivity to a causal (biochemical, molecular) one. Notably, this transition 

comes with changes in the epistemic aims of genetics models: on the one hand, Fisher’s model 

aimed at modelling continuous variation under the assumption that phenotypic variation is caused 

by Mendelian alleles; on the other hand, recent models attempt to explain how the genotype and 

the phenotype interact in molecular terms. Over time, the necessity to emphasise the pragmatic 

origin of the additivity idealisation seems to have gradually faded: for instance, Bouchard (2004) 

claimed that there is no evidence of non-additive genetic effects for IQ and mental disorders; 

Plomin et al. (2013: 199) then stated that the absence of non-additive variance is very fortunate 

for the attempts to identify intelligence genes because this allows studying intelligence with sta-

tistical methods within a purely quantitative framework.  

In contemporary genomics, the additivity idealisation translates into the practice of focus-

ing exclusively on average SNPs’ effects on a trait’s distribution and into the assumption that 

SNPs are nearly inter-independent and can be fit additively (Wang et al. 2022: 296). When it 

comes to the construction of PGSs, relaxing the p-value threshold below the genome-wide signif-

icance (§1) seems to depend in part on an endorsement of Fisher’s infinitesimal model (see also 

below). 

Crucially, the additivity idealisation underestimates the role of non-additive gene-gene 

(G´G) and gene-environment interactions (G´E). Both types of interactions concern background 

effects where the phenotypic outcome of a genetic variant depends on other independent variables 

(mutations at other loci or environmental exposures). An example of G´G is epistasis, where an 

individual with a particular combination of alleles can display a phenotype beyond what is ex-

pected from the effects of such alleles if they were independent (Carlborg & Haley 2004; Phillips 
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2008; Webber 2017). This type of interaction can mask dramatically the G-P map even in single-

gene diseases (Campbell et al. 2018). Likewise, G´E are known to be an important source of 

individual differences (Champagne & Mashoodh 2009; Nagpal et al. 2018; Sauce & Matzel 2018; 

Schaffner 2016; Tabery 2014; Wahlsten 1994).  

Although several studies on model organisms – and a few studies on humans – attest these 

interactions, GWAS provide little evidence of their relevance and, probably for this reason, G´E 

are rarely addressed in quantitative genetics literature.11 But this depends in part on methodolog-

ical limitations: interactions are difficult to capture in non-experimental studies due to their con-

textual nature, their small effect size and, in the case of G´E, the lack of standardised measures 

of environmental influences (Assary et al. 2018; Matthews & Turkheimer 2022).12 

For our analysis, the key aspect is that quantitative genetics models are designed to exclude 

non-additive sources of variance for the pragmatic reasons outlined above. In this sense, the ob-

servation that interactions have a negligible role might be model-dependent, meaning that it could 

depend on how data are gathered and interpreted based on the model. 

As Nelson et al. (2013: 673) noted, “the current quantitative genetics framework has a built-

in bias against inferring epistasis, making it insufficient for identifying and interpreting epistatic 

effects.” Burt (2022: 19) acknowledged that “evidence for a substantial role of interactionism is 

lacking; however, the current evidence is primarily based on low resolution tag SNP methodolo-

gies [that] have not yet substantiated the importance of gene-gene interactions [but do] not suggest 

they are not biologically important.” If compared with the multitude of quantitative geneticists 

advocating the negligible role of non-additive phenomena, these are sparse voices. They nonethe-

less suggest that the calculation of PGSs may be model-dependent to such an extent that it over-

looks phenomena that are not predicted by the additive model. 

If additivity misrepresents the complexity of the genotype-phenotype-environment rela-

tionship and masks the complexity of disease aetiology, this may have major consequences for 

the predictive accuracy of PGSs and their potential to inform treatment.  

 
11 For example, Plomin and Von Stumm (2023) only discuss the role of G´E correlations, which represent a statistical 
association between genetic and environmental variances, rather than causal interactions. 
12 Association studies would need much higher statistical power than regular GWAS to detect such interactions (Dai et 
al. 2018; Carlborg & Haley 2004; Giangrande et al 2022; Nagpal et al. 2018); however, increasing sample size intro-
duces more heterogeneity and may thus impair the results further (Hellwege et al. 2018; Marchini et al. 2004; Webber 
2017). This also connects to the problem of the portability of PGSs across populations: like classical heritability anal-
yses (Block 1995), the effects of SNPs on the phenotype are mediated by context-relative interactions between genetic 
and environmental variation (Burt 2022; Janssens 2019; Johnston & Matthews 2022; Matthews 2021; Wang et al. 
2022). Note that the PGSs predictive accuracy can also differ substantially across groups of similar ancestry (Mostafavi 
et al 2020). 
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As regards prediction, Woodward and Kendler (2023) recently noted that it may seem sur-

prising that PGSs are predictively successful given that they combine SNPs information according 

to a simple additive formula. As I explained in §2, however, the predictive power of PGSs comes 

in degree and is subject of controversy, so it worth considering whether prediction could be im-

proved by not making the additivity assumption. Our knowledge of G´E does suggest that the 

additivity assumption might be a difference-maker for prediction. Studies on obesity, for instance, 

show that PGSs explain different amounts of variance in groups of individuals exposed to differ-

ent environmental factors such as smoking, physical activity, or sugar consumption (Nagpal et al. 

2018: 2; on diabetes, see Génin & Clerget-Darpoux 2015). Furthermore, neglecting interactions 

can decrease our ability to predict how the presence/absence of a genetic variant will impact other 

(apparently unrelated) traits. For instance, if one selects an embryo with a lower risk of developing 

a disease, the embryo may have a higher susceptibility to other conditions that are pleiotropically 

affected by the excluded genetic variant (Nature 2022: 549). So, should be proved that non-addi-

tive phenomena are difference-makers for prediction, then the additivity idealisation would turn 

out to be illegitimate. 

As regards intervention, the idealisation arguably impairs our ability to target effectively 

pathological conditions through environmental intervention: by default, PGSs data will not in-

clude information regarding how pathologies could interact with the environment – rather, they 

tend to obscure the importance of non-genetic aspects. If we aim to use PGSs in real-world clinical 

scenarios, we need to understand the context-dependent role of genes as well as potential sources 

of stratification biases (literature on G´E and heterogeneous response to treatment testifies this 

clearly, see Farzan et al. 2018; Kersten & Koppelman 2017; Chang et al. 2015; Keers & Uher 

2012; Pedersen 2017; Uffelmann et al. 2021). Plomin and Von Stumm (2023: 51) argued that “the 

issue of whether population stratification confounds polygenic score prediction in a particular 

population is separate from the ability of polygenic scores to predict in different populations”. 

However, as I argued in §2.1, intervention cannot be completely detached from mechanistic ex-

planation: since polygenic prediction would ultimately guide personalised intervention (e.g., 

pharmacological, psychotherapeutic, educational), we need to know what G´E interactions matter 

for individual risk, that is, why – and in what contexts – a genetic variant can lead an individual 

to develop a disease or not. 

I am not suggesting that additive genetic effects do not exist at all, but I am making the 

case that a non-statistical interpretation of additivity makes probably sense in the case of simple 

biochemical interactions, where the phenotype is the result of a biochemical cascade of pigments. 

And these are, in fact, the cases where the additivity idealisation was originally introduced (see 
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above). However, additivity is often taken literally, as a ‘concrete’ aspect of the G-P relationship, 

even though this does not match our knowledge of biological systems characterised by multipli-

cative interactions between molecular, cellular, and environmental variables.  

 

3.3. Normality 

 

A second idealisation that derives from classical models is that genetic risk is normally distrib-

uted. As in the case of the additivity idealisation, normality depends on theoretical choices that 

have been introduced for pragmatic reasons, such as the aim to estimate quantitative genetic pa-

rameters in animal breeding. In fact, Fisher already posed some constraints on the model’s ap-

plicability: he aimed to characterise variation among relatives and to show that, “under the infin-

itesimal model, the distribution of genetic components within families remains normal, with var-

iance that evolves in a way that is entirely determined by relatedness” (Barton et al. 2017: 50). As 

Fisher (1918: 400) puts it: 

 
Speaking always of normal populations, when the coefficient of correlation between father and son, in 

stature let us say, is r, it follows that for the group of sons of fathers of any given height the variance is 

a fraction, 1 - r2, of the variance of sons in general. 

 

After Fisher, the normality idealisation had also much potential for the application of variance-

partitioning studies to yes/no traits, like pathologies that are either diagnosed or not. In 1965, 

Falconer extended Fisher’s infinitesimal model assuming that genetic liability is polygenic and 

continuously distributed even for these traits, thus reducing discontinuity at the phenotype level 

to continuity at the genotypic level. More recently, geneticists like Plomin et al. (2009) and 

Knopik et al. (2017) argued that continuity is not only observed at the genotype level, but also at 

the phenotype level (e.g., each of us feels occasionally more or less ‘sad’, and for some of us this 

translates into clinical conditions like major depression). 

In PGSs, normality comes as a heuristic to stratify genetic risk: starting from the mathe-

matical models above – where a fixed coefficient is attributed to each allele – PGSs aggregate the 

additive effects of GWAS-weighted allele risk and normalise such risk to obtain scores with a 

mean of 0 and standard deviation of 1 (Lewis & Vassos 2017). As the Broad Institute Online 

Resource explains: 

 
Some people will have a higher or lower score, depending on their number of risk-increasing or risk-

decreasing variants, and the magnitude of impact of each variant. People with an approximately even 

number of risk-increasing and risk-decreasing variants are at an average risk of disease based on their 
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genetics. People with more risk-increasing variants are at an increased risk of disease based on their 

genetics. People with more risk-decreasing variants are at a decreased risk of disease based on their 

genetics. 

 

Essentially, this provides a “human equivalent of the ‘breeding value’ in selective plant and ani-

mal breeding” or a single quantitative measure of genetic risk (Burt 2022: 10) that is convenient 

for many reasons. Among them, normalised PGSs allow one to determine an individual’s position 

on the distribution of risk and whether she crosses a sufficiently high threshold (e.g., beyond the 

5% of the population-wide risk) and thus requires clinical attention (Palk et al. 2019). 

As I mentioned above, Fisher’s model does not imply that a trait’s distribution in the whole 

population (which is the target of GWAS) is normal. But there are three specific reasons to think 

that genetic risk is not distributed normally as classical models predicted. 

First, while single-nucleotide variants might be distributed normally, this is probably not 

the case for other types of genetic variants, particularly rare and copy-number variants (the role 

of which is becoming increasingly clear in mental conditions, see Giangrande et al. 2022). PGSs 

exclude systematically the role of non-common variants that often account for a larger proportion 

of phenotypic variance: indeed, for the most part, these variants are difficult to capture through 

GWAS as they may be found only in small subgroups – so that they are not sufficiently repre-

sented in GWA large cohorts – and have imperfect penetrance (Baverstock 2019; Burt 2022; Fries 

2020; Génin 2020; Giangrande et al. 2022; McClellan & King 2010; Zaidi & Mathieson 2020). 

Thus, the normality idealisation risks masking the heterogeneity of genetic effects on population 

variance. 

Second, it should be noted that, beyond theoretical models, the main piece of evidence for 

the normal distribution of genetic risk is the presence of disease-associated SNPs in non-clinical 

populations (e.g., Owen et al. 2007; Riglin et al. 2016; Robinson et al. 2016). These data are 

interpreted as evidence that the genetic basis of complex traits, including behaviours, is continu-

ously distributed (e.g., for Plomin et al., 2009: 877, evidence of polygenicity seems enough to 

conclude that a trait is quantitative). But in fact, GWAS only suggest that complex traits are highly 

polygenic and that their distribution does not follow simple patterns (i.e., there is no specific 

genetic variant that only ‘diseased individuals’ have and ‘healthy’ individuals don’t). In other 

words, these data do not imply that there are individuals with an average number of ‘average-

value’ alleles (e.g., alleles that bring 0 as a phenotypic value in the mathematical models above) 

and that fewer individuals have a smaller number of ‘good-value alleles’ (+1) and ‘bad-value 

alleles’ (-1) (note that recent theories account for complex traits beyond a quantitative character-

isation, see Boyle et al. 2017; Serpico 2020; Serpico & Petrolini 2023). This is a case where the 
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normality idealisation forces the interpretation of the data under a Fisherian framework even if 

the data have other plausible interpretations. 

A final aspect is that the normality of phenotypes was, in classical models, a key reason to 

assume normality at the genetic level. However, this depends on whether a phenotypic trait is 

actually quantitative or is rather operationalised as such. As I mentioned above, classical models 

have been intended to provide a genetic account of physical traits like human stature (expressed 

in cm), body-fat content (expressed in BMI values), and behavioural traits like intelligence (op-

erationalised through IQ scores). The normality idealisation was suggested by the observation 

that phenotype values vary continuously in populations, rather than by empirical data on the ac-

tual distribution of genetic factors. Fisher himself had no empirical reason to believe that genetic 

variation is continuous: he aimed to provide a plausible – though idealised – explanation of how 

underlying genetic variability can generate phenotypic continuity. On this view, values in quan-

titative traits are assumed to be normally distributed because genetic variation is assumed to be 

distributed as such. 

This can be further clarified by Falconer’s model, which introduced a theoretical concept 

called liability denoting “an underlying gradation of some attribute immediately related to the 

causation of the disease” (1965: 52). Notably, Falconer did not make any “unwarranted assump-

tion about the real nature of the liability.” Such a notion “simply specifies that in order to express 

the degree of liability we shall choose a scale of measurement which, if we could measure the 

liability, would yield a normal distribution” (1965: 53). In this sense, the normality idealisation 

was not made to describe the ‘real’ relationship between genetic risk and phenotypic variation, 

but rather to provide a quantitative interpretation of the genetics of discontinuous traits that would 

allow for the application of ANOVA and heritability analyses to yes/no traits like diseases. 

The normal distribution of genetic liability is, in other words, predicted or postulated by 

such models, rather than simply observed. While a quantitative description makes sense in the 

case of human stature, quantitative variation in other traits can depend on how we operationalise 

and normalise them. For instance, operationalising body-fat content through BMI (as well as in-

telligence through IQ scores) may be convenient to analyse individual differences: the data get 

more tractable and can be inspected through ANOVA. However, this operationalisation involves 

precise methodological choices about how to normalise individual raw values/scores and ulti-

mately requires reducing individual variation in such complex traits to unidimensional metrics. 

One should not confuse the phenotypic continuity generated by our measurement methods with 

continuity in a stronger, ontological sense (Koi 2021; Meehl 1992, 1999; Michell 1997, 2012; 

Hibberd 2014; Serpico & Borghini 2021; Serpico 2018, 2020; Serpico & Petrolini 2023). 
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If we begin to cast doubts on the very possibility that genetic risk is normally distributed 

as quantitative genetics have initially postulated – and repeatedly assumed – the attempt to predict 

the ‘position’ of an individual on the ‘normal distribution of risk’ through PGSs loses part of its 

appeal. Moreover, an immediate implication of the normality idealisation is that PGSs would 

mask heterogeneity effects at different positions of the distribution of risk. Indeed, together with 

the additivity idealisation (§3.2), it is assumed that, on average, additive genetic effects will be 

similar for individuals at the low and high end of the distribution. This prevents accounting for 

individual differences in response to environmental influences (for similar considerations, see 

Wehby 2018). 

The normality idealisation is probably not a difference-maker for prediction, in the sense 

that its inclusion in genetic models may not affect the predictive power of a PGS. However, this 

idealisation justifies the very idea of a quantitative score of genetic liability: only if we embrace 

the view that genetic risk is normally distributed does polygenic prediction make sense. If we 

instead exclude this idealisation from genetics models, different types of genetic prediction – not 

involving the normalised effects of GWAS allele risks – happen to make much more sense. 

 

3.4. SNPs Causality 

 

There is extensive literature about whether GWAS data can be interpreted causally. But less ex-

plored is the question of whether single-nucleotide variants (SNVs), the simplest type of genetic 

variation, represent the appropriate level of complexity to analyse genetic causes. The fundamen-

tal assumption of contemporary genomics is that the effects of these genetic variants can be ob-

served at the phenotype level because these are the variants that, ultimately, generate phenotypic 

variation. Or they are just easier to detect. Either way, these variants are investigated in case-

control studies where the DNA of a population with a trait is statistically compared with the DNA 

of a population without the trait: the expectation is that the SNPs that are causally relevant for 

that pathological phenotype will be more common in the case group. What if, however, GWAS 

have significantly idealised the role of SNVs in development? 

Let us return once again to classical models. Fisher speaks of Mendelian factors which, 

back then, did not have a clear material nature. With the development of molecular genetics, 

genetic variation was characterised in terms of DNA point mutations. It seems reasonable to think 

that such small mutations would correspond to Fisher’s alleles – the infinitesimally small genetic 

causes that would explain the normal distribution of traits. So, one may think that the transition 

from classical models to contemporary genetics is a case of successful reduction of one scientific 
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theory to another: it just turned out that the abstract concept of allele used by early geneticists 

was to be reduced to SNPs. On this interpretation, it is also natural to interpret the small effect 

size of SNPs as a confirmation of classical models, because genetic effects are so small that stand-

ard GWAS cannot identify them easily (§1). 

Many critics argued that most SNPs may have little relevance for phenotypic variation as 

they are probably functionally irrelevant (Baverstock 2019; Oftedal 2022; Richardson & Jones 

2019). Here, I want to emphasise a different aspect: although the SNPs identified by GWAS may 

have some functional – yet unknown – role in phenotypic variation, they may not be the genetic 

causes that we are looking for when we talk about alleles. There are in fact various reasons to 

think that the concept of allele does not correspond to the concept of SNP but can rather reflect 

genetic variation of different sorts. 

To illustrate, let us consider a few cases of single-gene conditions. Sickle-cell anaemia is 

due to single-nucleotide substitution (A with T) in the gene encoding haemoglobin. In the result-

ing peptide of individuals carrying the allele, a GAG codon is substituted with a GTG codon, 

which encodes for a valine amino acid at position 6 instead of glutamate. This is a case where 

analysing variation at the SNV level makes perfect sense because a single-nucleotide difference 

generates the observed phenotypic difference. 

However, conditions of this sort constitute a relatively small set of single-gene diseases. 

More often, such conditions involve mutations at many sites of one gene (not just one mutation) 

and such mutations are usually not the same in every individual diagnosed with the condition. For 

instance, hundreds of different mutations are responsible for phenylketonuria (Kronfeldner 2009; 

Scriver 2007). As another example, most cases of Huntington's disease are caused by multiple 

copies of the CAG codon (Plomin et al. 2013: 130). That is, what is similar in different individuals 

is not a single-nucleotide mutation, but rather the impaired functionality of an encoded protein, 

which can be also determined by factors beyond the DNA sequence (e.g., ranging from cellular 

to environmental interactions). So, even in relatively ‘simple traits’ like Mendelian diseases, phe-

notypic variability can be realised by different mutations and be mediated by background effects. 

The key point is that the theoretical concept of allele of classical models does not strictly 

correspond to the concept of single-nucleotide variant. Alleles, intended as genetic variants that 

bring about a protein with impaired functionality, are multiply realised: they can have similar 

phenotypic effects (e.g., encoding of a dysfunctional protein, disrupting cellular functionality) 

despite different underlying structures or chemical bases, e.g., they can involve different types of 

variation, such as repeated codons or point mutations (a similar point was raised by Craver et al. 

2020: 1090; see also Bourrat 2020; Oftedal 2022). 
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One consequence is that most SNPs may have little or no phenotypic effect in many indi-

viduals. If so, the GWAS strategy of dividing a population into case and control groups can be 

risky: if the SNP-causality idealisation is inaccurate – and allelic variation is not reducible to 

single-nucleotide variation – we cannot expect stable correlations between the presence of a dis-

ease and the presence of simple variants like SNPs. 

While in most GWAS this risk is mitigated given standard requirements regarding the ge-

nome-wide threshold of statistical significance for the inclusion of SNPs, PGSs are usually cal-

culated by lowering p-value thresholds to include as many SNPs as possible (§1). Through this 

methodological choice, the selected p-value threshold of SNPs often is <1, which is below the 

typical threshold of genome-wide significance. Unsurprisingly, as Burt (2022) and Janssens 

(2019) warned, PGSs often end up including every available SNPs regardless of their statistical 

significance in the target GWAS, that is, genome-wide significant ones plus many others that 

have (arguably) little or indirect connections with variation in the trait of interest.  

Crucially, relaxing p-value thresholds may lead to including in a PGS also variants with 

low penetrance, i.e., variants that have phenotypic effects only in a small number of individuals. 

For many of such variants, the penetrance might be so low to make them practically irrelevant for 

prediction. In this sense, the SNP-causality idealisation likely is a difference-maker for the PGSs’ 

predictive power: if SNPs are not to be taken as alleles, then there is no clear sense in which a 

PGS based on SNPs information should be able to predict phenotypic development. 

To sum up: based on classical models, SNPs have been taken to represent genetic variabil-

ity at the relevant causal level: the inference was that the alleles in such models correspond to the 

smaller units of genetic variability. Given the idealised characteristics of such alleles (small ad-

ditive effects and normal distribution), SNPs investigated through GWAS are clearly natural can-

didates for the role of the “infinite number of Mendelian factors” that generate the continuous 

distribution of traits. This conclusion, however, is legitimate only if we take Fisher’s model liter-

ally and try to translate the idea of an “infinite number of Mendelian factors” into a concept from 

molecular biology. 

From what we know about biological systems, SNVs might not be the relevant genetic 

factors to investigate the impact of genetic variability on variability in complex traits. This is 

testified by the fact that genetic effects identified through GWAS are so small that the calculation 

of PGSs requires manipulating p-value thresholds. But what if we are not looking at the right level 

of complexity? 
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Conclusions 

 

The calculation of PGSs relies on highly idealised models of the genetic architecture of complex 

phenotypes that have been developed in the early days of quantitative genetics. In this paper, I 

explored whether idealisations in such models can impact polygenic prediction and the use of 

SNPs information in clinical decision-making. I focused on three types of idealisations: a) each 

allele has an additive effect on phenotypic variation; b) genetic risk for most complex traits is 

normally distributed; c) variation in single nucleotides represents the appropriate level of com-

plexity to investigate genetic variability in complex traits. Since the PGSs’ capability of predicting 

individual development is still a controversial topic, I argued that the inclusion of some idealisa-

tions in genetic models makes a difference to the predictive accuracy of PGSs and their ability to 

capture the relationship between genetic and phenotypic variation. 

These idealisations have played a crucial role in the development of quantitative genetics 

methods, but it is important to stress that their role have changed throughout the historical devel-

opment of quantitative genetics. 

Idealisations in early models deliberately misrepresented the G-P relationship in a way that 

decreased their descriptive accuracy, but the pragmatic aims of early geneticists seem to have 

abundantly justified such representational choices. Over time, classical models have been trans-

lated into more literal models with stronger descriptive aims: GWAS ultimately aims at capturing 

causal relations between genetic and phenotypic variation to inform medical decision-making. 

PGSs have similar objectives: some forms of therapeutic or environmental intervention would 

follow from prediction. The progressive re-adaptation of genetics idealisations risks making con-

temporary methods incapable of achieving the epistemic and practical aims of genomics-based 

precision medicine. Since such aims differ from those of the models where the idealisations were 

originally introduced, quantitative genetics idealisations seem now less legitimate than they prob-

ably were in the early days of genetic theorising. 

The presence of idealisations in PGSs conflates with the view that GWAS is a hypothesis-

free method: at the very least, GWAS is not a theory-free method given that they presuppose a 

model with specific choices regarding what to represent and how. I suggested that such choices 

determine both the data that we can reasonably get from GWAS as well as their interpretation. 

To illustrate how idealisations can mislead the generation and interpretation of empirical 

data, let us consider a hypothetical case. Let us say that 90% of people overestimate their driving 

skills. One could design a psychometric test including various sub-tests assessing individual dif-

ferences in such a trait; individuals’ sub-test performance could then be summarised into a single 
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score (say, the Proud Driver Quotient, PDQ), and such scores could be normalised to get a normal 

distribution. Through this procedure, it becomes possible to analyse the involvement of genetic 

variation in PDQ differences among individuals through analysis-of-variance techniques: first, 

twin studies could estimate the percentage of variance in PDQ that is associated with genetic 

variance (h2TWIN); second, GWAS could search for the SNPs that account for h2TWIN (getting a 

h2GWAS estimation for PDQ). If there is a gap between h2TWIN and h2GWAS for this trait, one can 

manipulate p-value thresholds to include every SNP below the threshold of genome-wide signif-

icance into a PGS. 

The question is: would this PGS capture the genetic liability of people’s attitude to overes-

timate their driving skills and predict where, on the normal distribution of PDQ scores, an indi-

vidual will be? 

First, if the additivity and SNP-causality idealisations involve aspects that are difference 

makers for prediction, then the exclusion of non-additive and non-common effects would decrease 

the predictive power of the PGS. We could thus find out that the inclusion of such effects in the 

calculation of PGSs explains PDQ variance better than their exclusion. 

Second, by dropping the SNP-causality idealisation, it may turn out that focusing on dif-

ferent (less common and more complex) types of genetic variants have a higher potential in terms 

of individual-level prediction of response to environmental and background conditions. 

Third, by dropping the normality idealisation, one could realise that the trait ‘overestimat-

ing one’s driving skills’ is not normally distributed; perhaps, it is not even a quantitative trait in 

the standard sense: it is only operationalised as such. In that case, assuming that genetic liability 

is normally distributed would be misleading, and the very attempt to position individuals on a 

Gaussian curve of genetic risk would make little sense. 

The main problem is that data and theories in contemporary quantitative genetics are heav-

ily model-dependent. Sometimes, idealisations enter scientific models in subtle ways, and we may 

easily lose sight of the relationship between models and empirical findings. For this reason, none 

of the three idealisations above can be easily ruled out until we stick to standard models. For 

instance, ever since Lewontin's (1974) seminal paper on the difficulty of making causal claims 

based on the analysis of variance, scholars have never achieved a consensus on whether additivity 

is ‘the norm’ or just ‘an exception.’ It is beyond my aims to discuss potential ways to improve the 

ability of GWAS to detect non-additive or non-common sources of variation (on rare variants 

identification through family-based whole-genome sequencing, see Giangrande et al. 2022; Uf-

felmann et al. 2021). Until such methods become widely available, the calculation of PGSs based 
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on GWAS should acknowledge the impact of theoretical idealisation on the descriptive and pre-

dictive accuracy of PGSs. 
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