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METHODOLOGY OF NUMERICAL COMPUTATIONS
WITH INFINITIES AND INFINITESIMALS  *

Abstract. A recently developed computational methodology for exeguhumerical calcu-
lations with infinities and infinitesimals is described ifistpaper. The approach developed
has a pronounced applied character and is based on theptgitithe part is less than the
whole” introduced by the ancient Greeks. This principle ppleed to all numbers (finite,
infinite, and infinitesimal) and to all sets and processegdfand infinite). The point of view
on infinities and infinitesimals (and in general, on Matheasatpresented in this paper uses
strongly physical ideas emphasizing interrelations tludd between a mathematical object
under observation and the tools used for this observattos shown how a new numeral sys-
tem allowing one to express different infinite and infiniteal quantities in a unique frame-
work can be used for theoretical and computational purpasesnerous examples dealing
with infinite sets, divergent series, limits, and probapitheory are given.

1. Introduction

The concept of infinity has attracted the attention of pedpléng millennia (see the
monographs [1, 4, 7, 9, 10, 12, 13, 14, 16] and referencesitherTo emphasize the
importance of the subject for modern Mathematics, it is sigffit to mention that the
Continuum Hypothesis related to infinity was included by dailbert as Problem
Number One in his famous list of 23 unsolved mathematicadbleros (see [10]) that
have strongly influenced the development of Mathematicler20th century.

There exist different ways to generalize traditional amigtic for finite numbers
to the case of infinities and infinitesimals (see, e.g., [11&},and references given
therein). However, the arithmetics developed for infinitentvers up to now have been
quite different from the finite arithmetic that we are usediéaling with. Very often
they leave undetermined many operations that involve igfifior example,oo — oo,
%, sum of infinitely many items, etc.) or use a representatiomfinite numbers
based on infinite sequences of finite numbers. In spite otthagial difficulties and
due to the enormous importance of the concept of infinity iers®e, people try to
introduce infinity into their work with computers. We can rtien the IEEE Standard
for Binary Floating-Point Arithmetic containing represations for+oo and —co and
incorporation of these notions in interval analysis impdetations.

The development of modern views on infinity and infinitesisnahs strangely
enough not simultaneous. The point of view on infinity acedptowadays takes its
origins from the famous ideas of Georg Cantor (see [1]) whedh@wn that there exist
infinite sets having different cardinalities. On the othandi, in the early history of
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Calculus, arguments involving infinitesimals played a pva@ole in the Differential
Calculus developed by Leibniz and Newton (see [12, 14]). fidt@n of an infinitesi-
mal, however, lacked a precise mathematical definition imnakder to provide a more
rigorous foundation for the Calculus, infinitesimals weradyally replaced by the
d’Alembert—Cauchy concept of a limit (see [3, 5]).

The creation of a rigorous mathematical theory of infiniteds remained an
open problem until the end of the 1950s when Robinson intednis famous non-
standard Analysis approach (see [16]). He has shown thaardnmedean ordered
field extensions of the reals contain numbers that couldester role of infinitesimals
and their reciprocals could serve as infinitely large nureb@pbinson then derived the
theory of limits, and more generally of Calculus, and hastba number of important
applications of his ideas in many other fields of Mathematics

In his approach, Robinson used mathematical tools and nefagy (cardinal
numbers, countable sets, continuum, one-to-one corregpoe, etc.) taking their
origins from the ideas of Cantor (see [1]), thus introducatigthe advantages and
disadvantages of Cantor’s theory into non-standard Amagswell. In fact, it is well
known nowadays that while dealing with infinite sets, Caatapproach leads to some
counterintuitive situations that are often called “pareek3 by non-mathematicians.
For example, the set of even numbéEs,can be put in a one-to-one correspondence
with the set of all natural numben, in spite of the fact thdE is a proper subset o¥:

even numbers: 24 6, 8 10, 12
(1) K
natural numbers: 12 3 4 5 6,

)

In contrast, we can observe that for finite sets, if a/set a proper subset of a sBt
then it follows that the number of elements of the Aé$ smaller than the number of
elements of the sd.

Another famous example that is difficult to understand fonye Hilbert's
Grand Hotel paradox, which has the following formulation.al normal hotel with a
finite number of rooms no more new guests can be accommodatexfull. Hilbert’s
Grand Hotel has an infinite number of rooms (of course, thebearraf rooms is count-
able, because the rooms in the Hotel are numbered). Due tmiCédra new guest
arrives at the Hotel where every room is occupied, it is, néedess, possible to find a
room for him. To do so, it is hecessary to move the guest odogppom 1 to room
2, the guest occupying room 2 to room 3, etc. In such a way roavitl be ready for
the newcomer and, in spite of our assumption that there asvaitable rooms in the
Hotel, we have found one.

These results are very difficult for a non-mathematicianuity fcomprehend,
since in everyday experience in the world around us the paatways less than the
whole and if a hotel is complete there are no places left imibrder to understand how
it is possible to tackle the situations discussed abovedora@ance with the principle
“the part is less than the whole” let us consider a study ghblil inSciencgsee [8])
where the author describes a primitive tribe living in Amazo- Pirah& — that uses a
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very simple numeral systenfor counting: one, two, many. For Pirah3, all quantities
larger than two are just “many” and such operations as 2+22aridgive the same
result, i.e., “many”. Using their weak numeral system Péralne not able to see, for
instance, numbers 3, 4, 5, and 6, to execute arithmeticahtipes with them, and, in
general, to say anything about these numbers becauseritatigiiage there are neither
words nor concepts for that. Moreover, the weakness of Rsatumeral system leads
to such results as

umanyu + 1= “many”, umanyn + 2 — “many",

which are very familiar to us in the context of views on infinitsed in the traditional
calculus
00+ 1=o00, 00 + 2= 00.

Thus, the modern mathematical numeral systems allow ustmguish a larger quan-
tity of finite numbers with respect to Pirah&, but give similasults when we speak
about infinite numbers.

The arithmetic of Pirahd involving the numeral “many” hasoah clear simi-
larity with the arithmetic proposed by Cantor for his Alepf#is similarity becomes
even stronger if one considers another Amazonian tribe —dvwuku (see [15]) — who
fail in exact arithmetic with numbers larger than 5 but areab compare and add
large approximate numbers that are far beyond their nanainge. In particular, they
use the words “some, not many” and “many, really many” toiuggtish two types of
large numbers (in this connection one can contemplate Caitg and,).

These observations lead us to the following id€aobably our difficulty in
working with infinity is not really connected to the natureiinity but is a result of
inadequate numeral systems used to express infinite nunfeatogously, Pirahd are
not able to distinguish numbers 3 and 4 not due to the natuteest numbers but due
to the weakness of the numeral system that Piraha use.

In this paper, we show how the introduction of a new numerala one to
express different infinite and infinitesimal quantitieskda together with a new (phys-
ically oriented) methodology for Mathematics, this new raunai system can be used
for theoretical and computational purposes using the gfidomputer (see [21]) that
is able to work numerically with infinite and infinitesimal mbers expressed in the
new system.

2. From absolute truth to relativity and the accuracy of mathematical results

In this section, we give a brief introduction to the new melblogy that can be found
in a rather comprehensive form in the survey [20] downlogaltbm [27] (see also the
monograph [18] written in a popular manner and [24] desoghihe foundations of a

1Recall that mumeralis a symbol or group of symbols that represemsimber The difference between
numerals and numbers is the same as the difference betweeds amd the things they refer to. fumber
is a concept that aumeralexpresses. The same number can be represented by differaerals. For
example, the symbols “10”, “ten”, and “X” are different nuraks, but they all represent the same number.
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new differential calculus). Numerous examples of the usddle proposed method-
ology can be found in [18, 19, 22, 23, 25, 26, 27]. The goal efehtire operation
is to propose a way of thinking that would allow us to work wiihite, infinite, and
infinitesimal numbers in the same way, namely, in the way veeused to deal with
finite quantities in the world around us.

In order to start, let us make some observations. As was or@diabove, the
foundations of modern Set Theory dealing with infinity haeeib developed starting
from the end of the 19th century until more or less the firstades of the 20th cen-
tury. The foundations of classical Analysis dealing botthvinfinity and infinitesimals
were developed even earlier, more than 200 years ago. Thefjtacreation was to
produce mathematical tools allowing one to solve problerissng in the real world
in that time. As a result, classical Analysis was built using background of ideas,
common at the time, that people had about Physics (and Bptg3. Thus, this part of
Mathematics does not include the numerous achievemengtlot2ntury Physics. In
fact, classical Analysis operates with absolute truthd,ideas of relativity and quanta
are not reflected in it. Let us give just one example to clatifg point.

In modern Physics, the “continuity” of an object is relatilfeve observe atable
by eye, then we see it as being continuous. If we use a micpedoo our observation,
we see that the table is discrete. This meanswleatlecidehow to see the object, as
a continuous or as a discrete, by the choice of the instrufoerthe observation. A
weak instrument — our eyes — is not able to distinguish ieriral small separate parts
(e.g., molecules) and we see the table as a continuous oljestifficiently strong
microscope allows us to see the separate parts and the &tdenbs discrete but each
small part now is viewed as continuous.

In contrast, in traditional Mathematics, any mathematitgéct is either con-
tinuous or discrete. For example, the same function canadidbh continuous and
discrete. Thus, this contraposition of discrete and cootirs in the realm of tradi-
tional Mathematics does not reflect properly the physidabsion that we observe in
practice.

Note that even the results of Robinson in the middle of thé 2@ntury were
directed towards a reformulation of classical Analysisimts of infinitesimals, rather
than the creation of a new kind of Analysis that would incogte the new achieve-
ments of Physics. In fact, in paragraph 1.1 of his famous §d6k Robinson wrote:
“It is shown in this book that Leibniz’ ideas can be fully vindted and that they lead
to a novel and fruitful approach to classical Analysis anantny other branches of
mathematics”.

In order to overcome this delay in the introduction of idesf 20th century
Physics into Mathematics, the point of view on infinities anfinitesimals (and in
general, on Mathematics) presented in this paper usesgfrogiativity and the in-
terrelations that hold between the object of an observatiahthe tool used for this
observation. The latter is directly related to connectibasveen numeral systems
used to describe mathematical objects and the objects éhegss Numerals that we
use to write down numbers, functions, etc. are among oustobthe investigation
and, as a result, they strongly influence our capabilitiesudy mathematical objects.
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This separation (having an evident physical spirit) of reathtical objects from
the tools used for their description is crucial for our stualyt is used rarely in contem-
porary Mathematics. In fact, the idea of finding an adequaisdlutely the best) set of
axioms for one field or another of Mathematics continues tarheng the most attrac-
tive goals for contemporary mathematicians. Usually, wihénnecessary to define a
concept or an object, logicians try to introduce a numbexafrasdefiningthe object.
However, this way is fraught with danger for the followingsens.

First, when we describe a mathematical object or conceptre/kénaited by the
expressive capacity of the language we use to make thisigegor A richer language
allows us to say more about the object and a weaker langusgjeliaus, development
of mathematical (and not only mathematical) languagesléad continuous necessity
for transcription and specification of axiomatic systemecdd, there is no guarantee
that the chosen axiomatic system defines “sufficiently wek' required concept and a
continuous comparison with practice is required in ordestteck the effectiveness of
the accepted set of axioms. Again however, there cannotypguarantee that the new
version will be the final and definitive one. Finally, the thliimitation already men-
tioned above has been discovered by Gddel in his two famaosipleteness theorems
(see [6]).

It should be emphasized that in Linguistics, the relatiaity language with re-
spect to the world around it is well known, and has been foateal in the form of the
Sapir—-Whorf thesis (see [2, 17]) also known as the “linguistlativity thesis”. As be-
comes clear from its name, this thesis does not accept thersality of language and
postulates that the nature of a particular language infieetie thought of its speakers.
The thesis challenges the possibility of perfectly repméng the world with language,
because it implies that the mechanisms of any language timm¢te thoughts of its
speakers.

Thus, our point of view on axiomatic systems is different.islsignificantly
more applied and less ambitious and is related only to ariidih necessities to make
calculations. In contrast to modern mathematical fashiat tries to make all ax-
iomatic systems more and more precise (thereby decreasgrges of freedom of the
studied part of Mathematics), we just define a set of genelad describing how prac-
tical computations should be executed leaving as much smapessible for further
changes and developments of the mathematical languageg iminduced, changes
that are dictated by practice. Speaking metaphoricallypreder to make a hammer
and to use it instead of describing what a hammer is and howrksv

Since our point of view on the mathematical world is signffitamore physical
and more applied than the traditional one, it becomes nagegsclarify it better. Let
us formulate three methodological postulates that wildguour further study and will
show where our positions are different with respect to tadition.

Traditionally, when mathematicians deal with infinite alife(sets or processes)
it is supposed that human beings are able to execute cepamtions infinitely many
times (e.g., see (1)). However, since we live in a finite wenhd all human beings
and/or computers are forced to finish operations that theg &irted, this supposition
is not adopted.
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Postulate 1.There exist infinite and infinitesimal objects but human g&iznd
machines are able to execute only a finite number of operstion

Due to this postulate, we accept a priori that we shall neeealtle to give a
complete description of infinite processes and sets becdus# finite capabilities.

The second postulate is adopted following the way of reagpased in natural
sciences where researchers use tools to describe the otfeeir study and the choice
of instrument influences the results of the observationseMéphysicist uses a weak
lensA and sees two black dots in his/her microscope he/she dosayiot he object of
the observatiolis two black dots. The physicist is obliged to say: the lens lsade
microscope allows us to see two black dots and it is not plesgilsay anything more
about the nature of the object of the observation until wéaepthe instrument — the
lens or the microscope itself — by a more precise one. Supghasbe/she changes the
lens and uses a stronger ldhiand is able to observe that the object of the observation
is viewed as ten (smaller) black dots. Thus, we have two miffeanswers: (i) the
object is viewed as two dots if the leAds used; (ii) the object is viewed as ten dots by
applying the len8. Which of the answers is correct? Both. Both answers arecorr
but with the different accuracies that depend on the lend isehe observation.

The same thing happens in Mathematics studying naturalgghena, numbers,
and objects that can be constructed by using numbers. Nusystams used to express
numbers are among the instruments of observations usedtematicians. Usage of
powerful numeral systems gives one the possibility to obtadre precise results in
Mathematics in the same way as usage of a good microscopeaiecthe possibility
of obtaining more precise results in Physics. However, #pabilities of the tools will
always be limited by Postulate 1 (we are able to write dowty anfinite number of
symbols when we wish to describe a mathematical object)banduse of Postulate 2
we shall never be able to sayhat for example, a numbes, but we will merely
observe it through numerals expressible in a chosen nusystm.

Postulate 2.We cannot telWwhatthe mathematical objects that we deal waite
we just shall construct more powerful tools that will allos/to improve our capacities
to observe and to describe properties of mathematical adjec

This means that mathematical results are not absolute diaggnd on mathe-
matical languages used to formulate them, i.e., there a\eaists an accuracy to the
description of a mathematical result, fact, object, etcr iRstance, the result of Pi-
rahd 242 = “many” is not wrong, it is just inaccurate. The introductioha stronger
tool (in this case, a numeral system that contains a numeral fepresentation of the
number four) allows us to have a more precise answer.

It is necessary to comment upon another important aspedteotlistinction
between a mathematical object and a mathematical tool wsebigerve this object.
Postulates 1 and 2 impose us to think always alloeifpossibility to executa math-
ematical operation by applying a numeral system. They tethat there always exist
situations where we are not able to express the result of eratpn.
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Let us consider, for example, the operation of construdtimgsuccessor ele-
ment widely used in number and set theories. In traditionathidmatics, the question
of whether this operation can be executed is not taken imsideration; it is supposed
that it is always possible to execute the operakienn+ 1 starting from any integer.
Thus, there is not any distinction between the existench@htimbek and the pos-
sibility to execute the operatiom+ 1 and to express its result, i.e., to have a numeral
that can expreds

Postulates 1 and 2 emphasize this distinction and tell us {fain order to
execute the operation it is necessary to have a numerahsydkaving one to express
both numbersy andk; (ii) for any numeral system there always exists a nunkitaat
cannot be expressed in it. For instance, for Pitekd, for Mundurukk = 6. Even for
modern powerful numeral systems there exist such a nukntber instance, nobody is
able to write down a numeral in the decimal system havin§%gigits). Hereinafter
we shall always emphasize the triad — researcher, objebedhvestigation, and tools
used to observe the object—in various mathematical and gtipnal contexts paying
special attention to the accuracy of the results obtained.

In particular, Postulate 2 means that, from our point of yi@domatic systems
do not definenathematical objects but just determine formal rules faraping with
certain numerals reflecting some properties of the matheatatbjects being studied
using a certain mathematical langudge We are aware that the chosen language
has its accuracy and there always can exist a richer langu#gs would allow us to
better describe the object under study. Due to Postulateyllaaguage has a limited
expressibility, in particular, there always exist sitoas where the accuracy of the an-
swers expressible in this language is not sufficient. Suohtons lead to “paradoxes”
exhibiting the boundaries of the applicability of a langedtheory, concept, etc.)

Let us return again to Pirah&@ and illustrate this point bynggheir answers
2+ 1="many”, and 2+ 2 = “many”. From these two identities one can obtain the
“paradoxical”’result 2-1=2+2. From our point of view, this situation just determines
the boundaries of the applicability of their numeral system

Finally, we adopt the principle of the ancient Greeks, nwred above, as a
third postulate.

Postulate 3. The principle “The part is less than the whole” is applied tth a
numbers (finite, infinite, and infinitesimal) and to all setedgrocesses (finite and
infinite).

Due to this declared applied statement, it becomes cleathitbaubject of this
paper is outside Cantor’'s approach and, as a consequerts&eoaf non-standard
Analysis of Robinson. Such concepts as bijection, numerabhd continuum sets,
cardinal and ordinal numbers cannot be used in this papesechey belong to a
theory working with different assumptions. However, themach used here does
not contradict Cantor and Robinson. It can be viewed just asanger lens of a
mathematical microscope that allows one to distinguishenobijects and to work with
them.



102 Ya. D. Sergeyev

3. An infinite unit of measure expressible by a new numeral

In [18, 20], a new numeral system was developed in accordaitbenethodological
Postulates 1-3. It gives one the possibility to execute mio@leeomputations not only
with finite numbers but also with infinite and infinitesimalesn The main idea consists
of the possibility of measuring infinite and infinitesimalamtities by different (infinite,
finite, and infinitesimal) units of measure.

A new infinite unit of measure has been introduced for thippse as the num-
ber of elements of the s&t of natural numbers. The new number is caltgdssone
and is expressed by the numeral It is necessary to stress immediately thais
neither Cantor’d1p nor w. Particularly, it has both cardinal and ordinal properires
common with usual finite natural numbers (see [20]). Note #ilat sincé], on the one
hand, andlg (andw), on the other, belong to different mathematical languagak-
ing with different theoretical assumptions, they cannatbed together. Similarly, it is
not possible to use together Piraha’s “many” and the modenmenal “4”.

Formally, grossone is introduced as a new number by desgrits properties
postulated by thénfinite Unit Axiom(IUA) (see [18, 20]). This axiom is adjoined
to the axioms for real numbers just as one adjoins the axiderméning zero to the
axioms of natural numbers when integers are introduced.ifhportant to emphasize
that we speak about axioms for real numbers in sense of Rts®) i.e., axioms do
not define real numbers, they just define formal rules of dmerawith numerals in
given numeral systems (tools of the observation), therefigating certain (not all)
properties of the object of the observation, i.e., propsertif real numbers.

Inasmuch as it has been postulated that grossone is a nualitoher axioms
for numbers hold for it, too. In particular, associativitydacommutativity of multipli-
cation and addition, the distributive property of multgation over addition, the exis-
tence of inverse elements with respect to addition and pligiition hold for grossone
as for finite numbers. This means that the following relaibold for grossone, as for
any other number

(2) 0-0=0-0=0, O-0=0, %:1, 0°=1, 1"=1, o"=o0.

The introduction of the new numeral allows us to use it fordbestruction of various
new numerals expressing infinite and infinitesimal numbadsta operate with them
as with usual finite constants. As a consequence, the numdgsaéxcluded from our
new mathematical language (together with numeragd],,... andw). In fact, since
we are able now to express explicitly different infinite nwerdy records of the type
v, become a kind ofy " Va;, i.e., they are not sufficiently precise. It becomes
necessary not only to say thiagoes to infinity, it is necessary to indicate to which
point at infinity (e.g./d,50 — 1,002 + 3, etc.) we want to sum up. Note that for sums
having a finite number of items the situation is the same:nbissufficient to say that
the number of items in the sum is finite, it is necessary tcciagi explicitly the number
of items in the sum.

The appearance of new numerals expressing infinite andteginial numbers
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gives us a lot of new possibilities. For example, it becomessible to develop a
Differential Calculus (see [24]) for functions that canwase finite, infinite, and in-

finitesimal values and can be defined over finite, infinite, erfiditesimal domains

avoiding indeterminate forms and divergences (all theseepts just do not appear
in the new Calculus). This approach allows us to work withwdgives and integrals
that can assume not only finite but infinite and infinitesimales, as well. Infinite

and infinitesimal numbers are not auxiliary entities in tlegvrCalculus, they are full

members in it and can be used in the same way as finite constants

Let us comment upon the nature of grossone and give some é&ithypstrat-
ing its usage and, in particular, its direct links with infensets.

ExAMPLE 1. Grossone has been introduced as the number of elemefhis of t
setN of natural numbers. As a consequence, by analogy to the set

3 A=1{1,2,3,4,5}

consisting of 5 natural numbers where 5 is the largest nunmb&r O is the largest
numbef in N, andd € N just as 5 belongs tA. Thus the selN of natural numbers can
be written in the form

O O OO O
4 ={12, ... =-2—-1——+4+1—=—+4+2 ... 0-2 0O-1 0O}
( ) N { ) ) 2 ) 2 ) 2) 2 + ) 2 + ) ) ) }
Note that traditional numeral systems did not allow us toisBeite natural numbers

0o .0 .00 .0
(5) v z-25 -l o4lo+2 . 0-20-10

Similarly, Pirah& are not able to see finite numbers largan thusing their weak nu-
meral system but these numbers are visible if one uses a marerful numeral sys-
tem. Due to Postulate 2, the same object of observation -etti¢ s can be observed
by different instruments — numeral systems — with diffeastturacies allowing one to
express more or less natural numbers. O

This example illustrates also the fact that when we speaktad®is (finite or
infinite) it is necessary to take care about tools used toritesa set (remember Pos-
tulate 2). In order to introduce a set, it is necessary to hdaaguage (e.g., a numeral
system) allowing us to describe its elements and to expnessumber of the elements
in the set. For instance, the sefrom (3) cannot be defined using the mathematical
language of Piraha.

In the same way, neither do the words “the set of all finite nerebcompletely
define a set from our point of view. It is always necessary &zgp which instruments
are used to describe (and to observe) the required set and;@asequence, to speak
about “the set of all finite numbers expressible in a fixed matrsystem”. For instance,
for Piraha “the set of all finite numbers” is the 4dt 2} and for Munduruku “the set

2This fact is one of the important methodological differeneeith respect to non-standard analysis
theories where it is supposed that infinite numbers do nohigefoN.
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of all finite numbers” is the seA from (3). As it happens in Physics, the instrument
used for an observation bounds the possibility of the olagemv. It is not possible
to say how we shall see the object of our observation if we mateclarified which
instruments will be used to execute the observation.

EXAMPLE 2. Infinite numerals constructed usitigallow us to observe various
infinite integers that are the numbers of elements of infsets. For examplé) — 1 is
the number of elements of a &t N\{b}, be N, andd + 1 is the number of elements
of a setA=NU{a}, wherea ¢ N.

Due to Postulate 3, positive integers that are larger thassgne do not belong
to N. However, numerals expressing such numbers can be easisfraoted and it
can be shown that they represent the number of elementstafrcerfinite sets. For
instance[J2 is the number of elements of the 8ebf couples of natural numbers

V ={(a1,a) a1 € N,ap € N}.

By increasinga; anday from 1 tod we are able to write down initial and final couples
forming this set:

(171)7 (1a2)a (1a|:|_1)a (1,D),
(27 1)7 (2a 2)5 (2a - 1)a (27 D)7
(0,1), (0,2), (0,0-1), (0,0).

Analogously, the number-2is the number of elements of the set
U={(ag,a2,...a0-1,an) 1a1 € {1,2},ap € {1,2},...an_1 € {1,2},a7 € {1,2} }
and the numberl” is the number of elements of the set
W={(a1,a2,...an_1,an) ;a1 € N,az € N,...an_1 € Njag € N}. O

As was mentioned above, the introduction of grossone gigebe possibility
to compose new numerals (in comparison with traditional exahsystems), and to
appreciate from them not only numbers like (3) but also aemambers larger than
0. We can speak about the setesftended natural numbe(gcludingN as a proper
subset) indicated &8 where

6) N={12..0-100+10+20+3,...,0°-1,0%0°+1,...}.

The number of elements of the s8tcannot be expressed within a numeral system
using only(d. Itis necessary to introduce in a reasonable way a more fpobnermeral
system and to define new numerals (for instahéd,], etc.) of this system that would
allow one to fix the set (or sets) somehow. In general, due $tude 1 and 2, for any
fixed numeral system there always be sets that cannot be described using

Let us give one more example illustrating properties of goog.
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ExampLE 3. Analogously to (4), the seE, of even natural numbers can be
written now in the form

) E={246 .. 0O-4 0-2 0.

Due to Postulate 3 and the IUA (see [18, 20]), it follows ti& humber of elements of
the set of even numbers is equal%oandD is even. Note that the next even number
is 0+ 2 but it is not natural. In fact, sindeé +2 > [, it is extended natural (see (6)).
Thus, we can write down not only initial (as it is done traatii@lly) but also the final
part of (1)

2, 4,6 8 10, 12 .. O-4 0-2, O
S ) ) T 1
1, 2, 3 4 5 8 U2 H_1 B

concluding thus (1) in a complete accordance with PostBlate

Suppose now that we have a gethat hask elements and all its elements are
multiplied by a constant in order to form the &t Then the number of the elements
of the resulting seB will be the same as in the initial sétindependently on the fact
whetherk is finite or infinite. For instance, if we tak& = N then it has grossone
elements. By choosing the $8t= {y : y = 2x,x € N}, we have (see (4)) that

B={246.8,...0-40-200+20+4,..20-4,20-220},

i.e. it also has grossone elements. All the elements of th8 see even. Numbers
2,4,6,8,...0 — 4,0 — 2,00 are even natural numbers ahd+ 2,0 + 4,...20 — 4,
20 — 2,200 are even extended natural numbers. O

It is worth noticing that the new numeral system allows usvimiéimany other
“paradoxes” related to infinities and infinitesimals (se8, [20, 23]). For instance,
let us return to Hilbert's Grand Hotel paradox presentedenti®n 1. In the original
formulation of the paradox, the number of rooms in the Hatetountable. In our
terminology, such a definition is not sufficiently precisé.isl necessary to indicate
explicitly the infinite number of rooms in the Hotel. Suppdhat it hasd rooms.
When a new guest arrives, it is proposed to move the guespgityuroom 1 to room
2, the guest occupying room 2 to room 3, etc. Finally, the gixrem roomQO should
be moved to roonil+1 but the Hotel has onlil rooms. As a result, the person from
the last room should leave the Hotel.

Thus, when the Hotel is full, no more new guests can be accatated in it if
one wants that all guests living in the Hotel before the atf the newcomer remain
inside. This result corresponds perfectly to Postulatedaihe situation taking place
in hotels with a finite number of rooms.

Let us consider now the issue regarding a more systematidavagoduce nu-
merals includind]. In order to express more numbers having finite, infinite, iand
finitesimal parts, records similar to traditional posisnumeral systems can be used
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(see [18, 20]). To construct a numliein the new numeral positional system to bake
we subdivideC into groups corresponding to powers[of

(8) C=cp, 0P +...4+cp 0P +cp 0P +cp 0P 1+ +cp OPK
Then, the numeral
(9) C= Cme Pm e Cpll:l pleOD pOCpilD P-1 . Cp,kD Pk

represents the numb€&; where all numerals; are expressed in a traditional numeral
system we are used to express finite numbers and are gatlesdigits They express
finite positive or negative numbers (i.e., gl 0) and show how many corresponding
units 0P should be added or subtracted in order to form the nur@ber

Numbersp; in (9) are sorted in the decreasing order with= 0
Pm> Pm-1>...> P1> Po> P-1> ... P_(k-1) > P—k-

They are calle@irosspowersand they themselves can be written in the form (9). In the
record (9), we writeé1P explicitly because in the new numeral positional system the
numbeli in general is not equal to the grosspowerThis gives the possibility to write
down numerals without indicating grossdigits equal to zero

The term havingpg = 0 represents the finite part 6fbecause, due to (2), we
havecod? = cp. The terms having finite positive grosspowers represensithplest
infinite parts ofC. Analogously, terms having negative finite grosspowersaggnt the
simplest infinitesimal parts &. For instance, the numbét—* = % is infinitesimal.
It is the inverse element with respect to multiplication far

(10) oto=0.0t=1

Note that all infinitesimals are not equal to zero. In pat&'cu% > 0 because it is the

result of division of two positive numbers. All of the numbéntroduced above can be
grosspowers as well, thereby giving the possibility of hgwarious combinations of

guantities and to construct terms having a more complextsire.

ExamPLE 4. In this example, it is shown how to write down numerals ia th
new positional numeral system and how the value of the numslsaiculated:

Cy = 1721052450721 1347181437 021052 10 92(-0.23)0 37"
— 1721052480721 | 13418143 | 7 02110 4 5210792 _ 0,230 370,

—-721 O 8143

The numbe€; above has two infinite parts of the tygg24- and , a finite
part corresponding ta®, and two infinitesimal parts of the type 2 and0~3"". The
corresponding grossdigits show how many units of each Kidilsl be taken (added
or subtracted) to forr;. O
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4. Numerical computations and modelling using the new methdology

Let us start by considering what we have instead of seriesywee apply the new
methodology; in particular, what happens in the case ofrdent series with alter-
nating signs. As was already mentioned, the numeras excluded from our new
mathematical language since we are able now to expressiglyptiifferent infinite
numbers. In fact, records of the typ& ; & become a kind o' "a and are not
sufficiently precise. In order to define a sum (independeftiyhether the number of
items in it is finite or infinite), it is necessary to indicategécitly how many items we
want to sum. If the number of items in a sum is infinite then, @ggens for the finite
case, different numbers of items in a sum lead to differesivans (that can be infinite,
finite, or infinitesimal). Let us give just two examples (s26,[24] for a more detailed
discussion).

ExXAMPLE 5. We start from the famous series
SS5=1-1+1-1+1-1+...

In the literature, there exist many approaches giving dhfii€ answers regarding the
value of this series (see [11]). All of them use various natiof average to calculate
the series. However, the notions of the sum and of an averagea different things.
In our approach, we do not use the notion of series and do pedfo an average. We
indicate explicitly the number of itemk, in the sum (wheré& can be finite or infinite)
and calculate it directly:

0 ifk=2n,

Sk)=1-1+1-1+1-1+1—... = { 1 ke 2ntl,

k

and it is not important whether the numbeis finite or infinite. For example, for
k =20 we haveS; (20) = 0, and fork = 200 — 1 we obtainS; (20 — 1) = 1. O

It is important to emphasize that, as happens in the case oite fiumber of
items in a sum, the resulting answers do not depend on theheateims in the entire
sum are rearranged. In fact, if we know the exact infinite nendf items in the sum
and the order of alternating the signs is clearly defined,ls@know the exact number
of positive and negative items in the sum.

Let us illustrate this point by supposing, for instancet the want to rearrange
the items in the sur; (20) in the following way:

SI(20)=1+1-1+14+1-14+1+4+1-1+...

We know that the sum hagRitems and the number2is even. This means that in
the sum there arél positive and] negative items. As a result, the rearrangement
considered above can continue only while the positive itprasent in the sum are not
exhausted, after which it will be necessary to continue joia@nly negative numbers.
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More precisely, we have

S(20) =14+41-1+141-14...4141-1 —-1-1-...-1-1-1= 0,

0 positive andg negative items 5 negative items

where the result of the first part in this rearrangement isutated ag1+1—1)-5 = 3
and the result of the second part is equaH%.

ExAMPLE 6. Let us consider now the following divergent series
$=1-24+3-4+...

Again we should fix the number of iterms,in the sumS; (k). Suppose that it contains
grossone items. Then it follows that

S(0) =1-243-4+...—(0-2)+(0-1)—0

= (14+3+5+..4(0-3)+(0-1)) = (24+4+6+...+(0—2)+0)

O j O
5 Items = Items

a1y — (1+0-1y0 (2+0)0  D°-20-0° O
o 4 4 N 4 2
Obviously, if we change the number of itenks then, as it happens in the finite case,

the results of summation will also change. For instancellibivs thatS;(0 — 1) = %
andS(0+1) =5 +1. O

By analogy to the passage from series to sums considere@ alvevare able
now to move from limits of expressions to the exact evaluatibthese expressions at
points (finite, infinite or infinitesimal) of our interest. Meover, we can calculate an
expressiorf (x) independently of the existence of any limit. We are able tangfe our
way of thinking in the sense that instead of formulating peats in terms of limits by
asking “What happens whentendsto 0?” we can ask “What happens at different
points of infinity?”

In this manner, limits are substituted by computation, &ecgnt pointsx, of
precise resultd (x) that can assume infinite, finite or infinitesimal values aml loa
evaluated also in the cases in which limits do not exist. Ade, the calculated values
are different for different infinite, finite, or infinitesirha&alues ofx. Note that the
possibility of the direct evaluation of expressions is viemportant (in particular, for
automatic computations) because it eliminates indetataiforms from the practice
of computations.

For instance, in the traditional language, if for a finaeimf(x) =0 and
yILrQog(y) = oo then

lim f(x)- lim g(y)

X—a y—00
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is indeterminate. In the new language, this means that fprxaa a+ z wherez is
infinitesimal, the valuef (a+ z) is also infinitesimal and for any infinitg it follows
thatg(y) is also infinite. In order to be able to execute computatisesshould behave

as we are used to doing in the finite case. Namely, it is negess@hoosez andy,

to evaluatef (a+ z) andg(y). After we have performed these operations it becomes
possible to execute multiplicatioi{a+ z) - g(y) and to obtain the corresponding result
that can be infinite, finite or infinitesimal depending on tladues ofz andy and the
form of expression$(x) andg(y).

It is possible also to execute other operations with infgiitels and infinities
asking questions with respect fda+ z) andg(y) that could not even be formulated
using the traditional language using limits. For instameecan ask about the result of
the following expression

(12) f(a+2) (% - 1-259()/2)3)

for two different infinitesimalz;, z» and two different infinite valueg , y».

EXAMPLE 7. Letus consider an illustration regarding computatiothefprod-
uct f(a+2)-g(y). For the sake of simplicity we take= 0, g(y) =y, and

2x, x<0,
fx)=< 1, x=0,
X3, x>0.

If we want to calculate the product at poiats: 0! andy = O then it follows that
fa+2)-gy)=f(0Y g0)=0°0=072
Analogouslyz = 01 andy = 0% give
f(0Y.g0%=0"230%=0?
and forz= —20~ andy = [J we obtain
f(—20Y.g0)=-40"t.0=-4

We end this example by calculating the result of the expoes&i2) forz; = —201,
2 =-50"%y; =02 andy, = O

2
fa+z) (fgﬂ - 1-259(yz)3) = f(-507%) <%

3
@tz —1.259(0) )

Dfl

2
— —100°% ( 4D 1.2553> —_100°%. (70.255371.2553) —150-1 O
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Figure 1: What is the probability that the rotating disk stép such a way that the
point A will be exactly in front of the arrow?

We conclude the paper by showing how the distinction betweathematical
objects and tools of their observation helps us in solvirgpbpbilistic questions and
introduces the ideas of relativity in Mathematics. In pardar, we intend to show that
the new approach allows us to distinguish the impossiblatdvaving the probability
equal to zero (i.eP(=) = 0) from those events that from the traditional point of view
have probability equal to zero but can occur.

Let us consider the problem presented in Fig. 1 from the pafiniew of tra-
ditional probability theory. We start to rotate a disk hayimadiusr with the pointA
marked at its border and we would like to know the probabHitiz) of the following
eventE: the disk stops in such a way that the pofntvill be exactly in front of the
arrow fixed at the wall. Since the poiAtis an entity that has no extent, it is calculated
by considering the following limit

h
P(E) = lim — =0.
(B) hILnOZT[r 0

whereh is an arc of the circumference containidgnd 2t is its length.

However, the poinA can stop in front of the arrow, i.e., this event is not impos-
sible and its probability should be strictly greater tharozee.,P(E) > 0. Obviously,
this example is a particular manifestation of the genexltfzat, if§ is any continuous
random value andis any real number thel(§ = a) = 0. While for a discrete random
variable one could say that an event with probability zelimigossible, this cannot be
said in the terms of traditional probability theory for argntinuous random variable.

Let us see what we can say with respect to this problem by ubiegew
methodology. The problem under consideration deals withtpdocated on the cir-
cumferenceC of the disk. Thus, we need a definition of the term “point” anattine-
matical tools allowing us to indicate a point on the circurafece. If we accept (as is
usually done in modern Mathematics) thai@ntis determined by a numerakalled
thecoordinate of the poinivherex € § andS is a set of numerals, then we can indicate
the point by its coordinate and are able to execute required calculations. The choice
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of the numeral systeré defines both the kind of numerals expressible in this system
and the quantity (finite or infinite) of these numerals (sek B3] for a detailed discus-
sion). As a consequence, we are not able to work with thosgpwaihich coordinates
are not expressible in the chosen numeral syst€racall Postulate 2).

Different numeral systems can be chosen to express cotedinfthe points
in dependence on the precision level we want to obtain. Inessemse, the situation
with counting points is similar to the work with a microscopee decide the level of
the precision we need and obtain a result dependent on tteeichevel. If we need
a more precise or a more rough answer, we change the levet afcturacy of our
microscope. In the moment when we have have decided whish(temnmeral system)
we put in the microscope we decide which objects (pointss,atc.) we are able to
observe, to measure, and to work with.

The formalization of the concept “point” introduced abollewas us to execute
more accurate computations having, as always happens ipraogss of the measure-
ment, their own accuracy. Suppose that we have chosen a ausgstems allowing
one to observ& points on the circumference. Definition of the notipaint allows
us to define elementary events in our experiment as follomesdisk has stopped and
the arrow indicates a point. As a consequence, we obtairthbatumberN(Q), of all
possible elementary events, in our experiment is equal t§ whereQ = UiN:(f)a is
the sample space of our experiment. If our disk is well baddnell elementary events
are equiprobable and, therefore, they have the same ptitpelual toﬁ and the

accuracy of any further computation with this probabitistiodel will be equal t%.

Thus, we can calculate(E) directly by subdividing the numbeN(E), of favorable
elementary events by the numbiér= N(Q), of all possible events.

For example, if we use numerals of the ty'@, i € N, thenK = [0 and, since
the number of the points is infinite and the length of the eirference is finite, our
points are infinitesimally close, i.e., the probabilistiosel is continuous. The chosen
numerals define the accuracy of the model and do not allow asgwer to questions
regarding objects having an extension on the circumferthates less thaﬁmﬂ.

The numbeN(E) depends on our decision about how many numerals we want
to use to represent the poiat If we decide that the poink on the circumference is
represented byn numerals we obtain

P(E)%Eg>0,

where the numbel is infinitesimal ifmis finite. Note that this representation is very
interesting also from the point of view of distinguishing thotions “point” and “arc”.
Whenmis finite than we deal with a point, whenis infinite we deal with an arc.
Inthe case we need a probabilistic model with a higher acguwae can choose,
for instance, numerals of the ty3éX, 1 < i < (12, for expressing points on the cir-
cumference. In this way we also obtain a continuous modél antorder that is higher

than in the previous case. It follows thigt= 02 and for a finitem we obtain the
infinitesimal probabilityP(E) = 13 > 0.
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In contrast, if we need a rough probabilistic model and de¢alwork with
a finite numbeK of points on the circumference, then we have the discreteemod
In this case, the probabilit?(E) will be finite, and the model does not allow us to
answer questions regarding objects having an extensioheonitcumference that is
less thareX .

As we have shown by the example above, in our approach, fordases, the
discrete and the continuous one, only the impossible exspiobability equal to zero.
All other events have positive probabilities that can bedior infinitesimal according
to the accuracy of the chosen probabilistic model. Thus,ptiedabilities obtained
are not absolute, i.e., there is again a straight analody Rlitysics where results of
the observation have a precision determined by the insmuatopted. Moreover, the
new approach allows us to view the same mathematical olgextratinuous or discrete
(as happens in Physics for physical objects) dependingealitbsen instrument of the
observation (see [24] for a detailed discussion relateHisissue).
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