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Abstract. In the last decade the concept of context has been extensively exploited
in many research areas, e.g., distributed artificial intelligence, multi agent systems,
distributed databases, information integration, cognitive science, and epistemology.
Three alternative approaches to the formalization of the notion of context have
been proposed: Giunchiglia and Serafini’s Multi Language Systems (ML systems),
McCarthy’s modal logics of contexts, and Gabbay’s Labelled Deductive Systems.
Previous papers have argued in favor of ML systems with respect to the other
approaches. Our aim in this paper is to support these arguments from a theoretical
perspective. We provide a very general definition of ML systems, which covers all the
ML systems used in the literature, and we develop a proof theory for an important
subclass of them: the MR systems. We prove various important results; among
other things, we prove a normal form theorem, the sub-formula property, and the
decidability of an important instance of the class of the MR systems. The paper
concludes with a detailed comparison among the alternative approaches.

Keywords: Contextual Reasoning, Distributed Information-Oriented Theories,
Modal Logics, Multi Context systems, Normal Form, Proof Theory



2 L. Serafini and F. Giunchiglia

1. Introduction

We usually talk of distributed knowledge representation meaning that
knowledge is composed of a set of heterogeneous subsystems, each rep-
resenting a certain subset of the whole knowledge. Similarly, we talk of
distributed reasoning meaning that reasoning is the result of the com-
bination of partial reasoning processes each using only a subset of the
global knowledge. One important paradigm which has been proposed
for the formalization of distributed knowledge and reasoning is based
on the notion of context. Contexts were introduced by R. Weyhrauch
in (Weyhrauch, 1980) and subsequently developed by J. McCarthy
(McCarthy and Buvag, 1998) and F. Giunchiglia (Giunchiglia, 1993)
(see (Sharma, 1995) but also (Bouquet et al., 1999) for a survey of the
notion of context).

According to (Giunchiglia, 1993), the notion of context formalizes
the idea of localization of knowledge and reasoning. Intuitively speak-
ing, a context is a set of facts (expressed in a suitable language, usually
different for each different set of facts) used locally to prove a given
goal, plus the inference routines used to reason about them (which can
be different for different sets of facts). A context encodes a perspective
about the world. It is a partial perspective as the complete description
of the world is given by the set of all the contexts. It is an approzximate
perspective (in the sense described in (McCarthy, 1979)) as we never
describe the world in full detail. Finally, different contexts, in general,
are not independent of one another as the different perspectives are
about the same world, and, as a consequence, the facts in a context are
related to the facts in other contexts.

The work in (Giunchiglia and Serafini, 1994) provides a logic, called
Multi Language Systems (ML Systems), formalizing the principles of
reasoning with contexts informally described in (Giunchiglia, 1993). In
ML systems, contexts are formalized using multiple distinct languages,
each language being associated with its own theory (a set of formulas
closed under a set of inference rules). Relations among different contexts
are formalized using bridge rules, namely inference rules with premises
and consequences in distinct languages. ML systems have been applied
in many research areas. In (Giunchiglia, 1993; Benerecetti et al., 2000)
they have been used to formalize general reasoning with contexts. In
(Giunchiglia and Serafini, 1994) ML systems are shown to be an al-
ternative from modal logics for the formalization of meta reasoning
and propositional attitudes. In (Benerecetti et al., 1998a; Giunchiglia
et al., 1993; Giunchiglia and Giunchiglia, 2000; Fisher and Ghidini,
1999), ML systems are used for the formalization of reasoning about
beliefs. In (Bouquet and Giunchiglia, 1995) ML systems are used to
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formalize context based commonsense reasoning. (Dichev, 1993) pro-
vides an algebra of contexts formalized via ML systems. In (Cimatti
and Serafini, 1996) and (Benerecetti et al., 1998b) flexible reasoning
about static and dynamic aspects of multi agent systems are formalized
via ML systems. In (Mylopoulos and Motschnig-Pitrik, 1995; Serafini
and Ghidini, 2000; Subrahmanian, 1994), ML systems have been used
as a formal basis for the specification distributed and heterogeneous
multiple databases and for the partitioning of information bases. In
(Noriega and Sierra, 1996; Parsons et al., 1998), ML systems have been
used for modelling dialog and argumentation in electronic commerce.
In (Giunchiglia and Bouquet, 1998), ML systems have been used for
the formalization of mental representation in cognitive science. Finally
in (Penco, 1999) ML systems has been suggested as a formalism for
studying a subjective view of contexts as an alternative then objective
contexts.

The goal of this paper is to make a first step towards the develop-
ment of a proof theory for ML systems. We concentrate on a particular
subclass of ML systems, called MR systems. Inside this class we single
out a simple, but significant, MR system called MK and develop a
proof theory for it. The main results are a weak normal form theorem
(Theorem 32) and a strong normal form theorem (Theorem 40). The
weak normal form characterizes the set of contexts in which one has to
deduce a formula from a set of assumptions. An immediate consequence
of the weak normal form is the consistency of MK (Corollary 33). The
strong normal form result describes a standard shape of the deduc-
tions in MK, and it provides a complete strategy for inference rule
applications. The main consequence of the strong normal form is the
subformula property (Theorem 51), which, in turns, entails decidability
of MK. MR systems, and these results are important for at least two
reasons. First, MR systems constitute a large class, which encompasses
most of the ML systems used in the literature. Second, as it has been
shown in (Giunchiglia and Serafini, 1994), normal modal logics can
be embedded in MR systems. This implies that the proof theoretical
results provided in this paper are relevant also for modal logics. In
the related work section we indeed show how MK constitutes a more
natural alternative then other calculi for many of the modal logics
proposed in the literature.

The paper is structured as follows. We start by introducing the
basic definitions of ML systems (Section 2. In Section 3 we define the
class of MR systems. In Section 4 we prove the main results of the
paper, namely, the weak and strong normal form, and the sub-formula
property. We conclude the paper with a comparison of ML systems
with other similar formalisms, and in particular with Gabbay’s Labelled
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Deductive Systems (Gabbay, 1994), McCarthy’s Propositional Logics
of Contexts (McCarthy, 1993; Buvac and Mason, 1993), and Masini’s
2-Sequent Calculi (Masini, 1992).

2. ML Systems

The definition of ML system is given in two steps. First we provide
an abstract representation in terms of languages (set of well formed
formulas) and consequence relation (relations between formulas). Then,
we move to a concrete representation, where the consequence relation
is represented by a Natural Deduction calculus.

Abstractly, a single language formal system is composed by a lan-
guage and a consequence relation on the formulas of the language.
Similar components define an ML system. Let I be a not empty set
of indices. {L;}ier (hereafter {L;}) is a family of logical languages.
Intuitively I is a set of labels for the contexts in which the whole
knowledge is partitioned, and L; is the language adopted to express
the facts in the i-th context.

Two occurrences of the same formula in two distinct contexts may
have different meanings. To distinguish the formula A occurring in the
context ¢ from the occurrences of A in the other contexts, we write
i: A. We say that 7 : A is a wif and that A is an L;-wif. If G is a set of
L;-wffs, i : G denotes the set of wifs {i : A|A € G}. L; denotes the set
of all wifs, namely U;cz (7 : L;). Similar notations have been introduced
in various approaches; see for instance (Gabbay, 1994; Subrahmanian,
1994; Dinsmore, 1991; Masini, 1992; McCarthy and Buvaé, 1998). In
ML systems, indexes are not part of the languages. They are, rather,
a “metanotation” useful proof-theoretically to keep track of the local-
ity of the reasoning. See the related work section for a more detailed
discussion.

We define the consequence relation for ML systems as follows. We
start from Avron’s general definition of consequence relation for a logic
with one language (as described in (Avron, 1987)) and extend it to a
logic on multiple languages.

DEFINITION 1. A Multi- Language Consequence Relation (ML-C.R.)
on a family of languages {L;} is a relation, denoted by I, between sets
of wifs and wifs (namely, - C 287 x L) such that for all 4:

ML-RX(i) li:AFi: A

ML-CUT(i) ifTFi:A,andT,5: AFi:B,thenT"'Fi: B
DEFINITION 2. An abstract ML system is a tuple ({L;},F), where -
is a ML-C.R. on {L;}.
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We adopt a concrete representation of an ML—C.R.. based on Nat-
ural Deduction (ND) (Prawitz, 1965). The deduction machinery of an
ML system is, therefore, composed of a set of ND inference rules on
indexed formulas, called Multi Language inference rules (ML inference
rules). ML inference rules are specified as follows:

[T1] [Tn]
’iltAl ZnAn
i: A

A and Ay, are formula schemata, and I', is a finite set of indexed formula
schemata. If empty, Ty is omitted. iy : Ax is called the k-th premise
of 1; i : A is the consequence (or conclusion) of 1; each Ty is the set
of assumptions of the k-th premise discharged by 1. An ML inference
rule can be associated with a restriction (or applicability condition),
namely a criterion which states the conditions of its applicability. We
call unrestricted the inference rules with no applicability condition.
The reader can find the formal definitions about ML inference rules
in Appendix A.

I

DEFINITION 3. A concrete ML System is a triple ({L;}, {2}, A)
where {L;} is a family of logical Languages, {2; C L;} is a family of
set of azioms and A is a set of ML inference rules.!

We can distinguish two types of ML inference rules: rules with
premises, conclusion, discharged assumptions and restriction in the
same language L;, called i-rules, and rules with premises, conclusion,
discharged assumptions or restriction in more than one language, called
bridge rules. i-rules represent the part of a ML—C.R. which involves a
single language. They can be viewed as the translation of the single
language inference rules into the ML format. For instance the i-rules
defined in (1) are the ML versions in L; of the ND inference rules DE,
DI and L. defined in (Prawitz, 1965).

4 - A) i oAl
i: A Z.’_'BADB OB, _i:B _ _;  i:l | (1)
) i:ADB 7" 71: A

Bridge rules, instead, represent the inter-language properties of an ML—
C.R.. Examples of bridge rules are:

;izgj i:4 k]_';DB DE; j sk j: B S (2)
) . j:ADB e

! In the rest of the paper, we write ML system meaning concrete ML system, and
inference rule meaning ML inference rule.
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1 C j and DE; j_,; are bridge rules as their premises and conclusion
are in different languages. DI;_,; is a bridge rule as it discharges an
assumption in a language which is different from that of the premise
and the conclusion.

Examples of simple and complex ML systems can be found in all
the papers cited in the introduction. In the following we propose two
examples with the purpose of explaining the basic underlying intuitions.

EXAMPLE 4. Let ML3 be an ML system defined on the set of indexes
I = {1,2,3}, where: Li, Ly and L3 are propositional languages such
that Ly U Ly C L3, and A contains the i-rules defined in (1) for i =
1,2,3, and the bridge rules DE{ 2,3 and DEs 1,3, as defined in (2).
ML3 can be seen as modeling a situation with three agents 1, 2, and
3. For each agent i, the formula ¢ : A represents the fact that 7 knows
that A is true. The set of i-rules represent 7’s reasoning capability. The
bridge rules D E; 9,3 and D Ey 1,3 represent the fact that 1 and 2
use their mutual knowledge and “communicate” the result to 3. Notice
that 1 cannot communicate anything to 3 without agreeing with 2 and
vice-versa.

EXAMPLE 5. Let MLj be an ML system obtained from MLj3 by
replacing its bridge rules with 1 C 3 and 2 C 3 as defined in (2). 1 C 3
and 2 C 3 can be taken to represent the fact that two agents 1 and
2 communicate their knowledge to 3 independently of each other. The
result is that the knowledge of 3 contains that of 1 and 2.

EXAMPLE 6. Let MLj be obtained by adding to ML% the bridge rules
DI 3 and DIs_,3 In this situation, not only do 1 and 2 autonomously
communicate their knowledge to 3, but 3 can also perform hypothetical
reasoning based on the knowledge of 1 and 2. The intuition underlying
the bridge rule DI;_,3 is that 3 can conclude A D B if it is able to infer B
under the hypothesis that 1 knows A. This can be done independently
from the actual knowledge of 1 about A.

Figure 1 provides a graphical representation of the ML systems of
Example 4 and Example 5.
We now define deductions in an ML system MS.

DEFINITION 7. A formula-tree in MS recursively defined as follows:

1. i: A is a formula-tree;

M,... 10,
it A

2. if Iy, ..., II,, are formula-trees then is a formula-tree;
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DE2 143
DE12..3

Figure 1. ML3 and ML}

3. nothing else is a formula-tree.

The top formulae of a formula-tree II are the leaves of II and the
bottom formula of 11 is the root of II.

We write H e to mean a formula-tree with bottom formula 7 :

i
A. Deductions are formula-trees built by applying a finite number of
inference rules to a finite number of assumptions and axioms, possibly
belonging to distinct languages.

DEFINITION 8. A formula-tree is a deduction in MS of i : A depend-
ing on a set of formulas, according to the following rules:

1. if 4 : A is an axiom of MS, i.e. A € €;, then 7 : A is a deduction in
MS of i : A depending on the empty set;

2. if 4 : A is not an axiom of MS, i.e. A & €;, then 7 : A is a deduction
in MS of 7 : A depending on {7 : A};

3. if Tl is a deduction of i, : Ag depending on I', for any (1 < k < n),
then
Hl Hn
illAl ’iliAl
1t A

I

is a deduction in MS of 7 : A depending on I' where:

1] [Tr)
’illAl ZnAn

7: A I

is an instance of the inference rule 1; 1 is applicable; I' = Ui<<pn (T \
).
k

An ML system MS defines an ML.—C.R., denoted by h,s, defined in
terms its deductions.
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DEFINITION 9. A deduction II is a deduction in MS of i : A from T,
if and only if II is a deduction in MS of 7 : A depending on I" or some
subset of I'.

i: A is derivable from I' in MS, written as I' kg ¢ : A if and only if
there is a deduction in MS of 7 : A from I'.

A deduction of 7 : A from the empty set is a proof of i : A. 1 : A is
provable in (a theorem of ) MS, abbreviated as hyg 7 : A, if and only if
there exists a proof in MS of 7 : A.

With the above definitions it is easy to see that the relation g is
an ML-C.R. In the following we talk about i-theory, or simply theory,
meaning the set of theorems with index ¢ which are provable in an ML
system.

DEFINITION 10. A thread of a deduction II is a sequence § = 41 :
Aq,...1, : A, such that:

1. 41 : Ay is a top formula of II;
2. ip : Ay is the bottom formula of IT;

3. for every 1 < k < n, iy : Ax and ig4q : Ag41 are a premise and the
consequence of an application of an inference rule.

DEFINITION 11. 4 : A is an assumption of a deduction IT in MS, if
and only if, it is a top formula of II and it is not an axiom of MS.
An assumption i : A is (un)discharged in a deduction according to the
following rules:

1. % : A is undischarged in 7 : A;
2. if II is of the form

then, if 4 : A is discharged in IIj, then it is discharged in TI. If
1 : A is undischarged in Ilg, and 7 : A is an assumption of the k-th
premise discharged by 1, then 7 : A is discharged in IT at j : B;
otherwise 7 : A is undischarged in II.

EXAMPLE 12. (Examples 4 and 5 — continued) The following is a
simple example of deduction in MLg.
2: A

——=— 2l
: : 3
1: A 32: AA DA “Eiss (3)
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(3) is a deduction of 3 : A from 1 : A. 1 : A is an undischarged
assumption. The assumption 2 : A is discharged by the application of
DIy. The threads of (3) are

71 = 1:A,
2: A

3:4
T2 — 2: A

, DA3:A

(3) shows that 1 : A hyr, 3 : A under the hypothesis that A is an Lo-
wif. This deduction can be interpreted as the communication of 1 to 3
of the fact A, with the “permission” of 2. The “permission” is given by
agent 2, only if it is “aware” of A, namely if A belongs to the language
of 2.

Notice that in general ML3 and ML} are not equivalent, namely they
don’t define the same ML-C.R. This is the case, for instance when, L,
contains a formula, say A, which is not in Ly. In this case, indeed,
l:AI—ML133:A,but1:AI7§,[L33:A.

Conversely ML} is stronger than MLg, meaning that the ML-C.R.
defined by the former contains the one defined by the latter. Notice
indeed that DEj 2,3 and DEg 1,3 are derived inference rules in MLj.
Consider, for instance, the following derivation in ML}

1: A

3.41E3

2:ADB
3:ADB
3:B

2C3
DE3

The above derivation states that 1 : 4,2 : A D B hy, 3 : B, which
corresponds to the rule DE; 9_,3. In the limit case in which L; N Ly = 0,
DE1 23 and DEg 1,3 are never applicable, as there is no wif A € L,
such that A D B € Lo and vice versa. If, vice-versa, L1 = Lo, then
ML; is equivalent to MLS.

This last example highlights the fact that the relation between lan-
guages in an ML system plays a crucial role with many interesting
applications. For example, in the formalization of belief, we are often
interested in non-omniscient agents whose reasoning capabilities are
bounded by their languages. In a single language approach, a “bound-
ary” in the language must be explicitly formalized by means of some
meta-theoretic predicate or modal operator, whose meaning is given by
a particular axiomatization (see for example the “awareness” operator
introduced by Fagin and Halpern in (Fagin and Halpern, 1988)). In
the ML approach this kind of limitation can be directly induced by the
choice of the languages. An in depth discussion and several examples of
ML systems for non-omniscient believers can be found in (Giunchiglia
et al., 1993).
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3. MR systems

Let us focus on the special class of ML systems called MR systemms.
After the basic definitions, in Subsection 3.2 we provide several in-
stances of MR systems with the purpose of showing their relation with
modal logics, but also how they can be (and have actually been) ex-
ploited for the formalization of relevant issues in distributed knowledge
representation.

3.1. THE BASIC DEFINITION

Informally MR systems formalize the situation where contexts are orga-
nized in a hierarchy. The hierarchical structure of contexts is formalized
by an acyclic directional graph (I, <). Intuitively i < j means that
contexts j contains facts about the facts of context ¢. This implies that
if © < j, the language L; is a metalanguage of L;. Bridge rules are
admitted only between adjacent contexts (i.e., contexts labelled with ¢
and j, with 7 < j), and they are of the following simple form:

i: A i e;(“A”

Frean et T R g
with any computable applicability restriction. In (4), e;(“A”) is an
atomic, ground formula of L;. We require that, if A and B are distinct
formulas in L;, then o;(“A”) and e;(“B”) are distinct formulas in L;.
Notice that, in L; there are infinite atomic formulas of the form e;(“A”),
one for each formula of L;.

The bridge rules of the form (4) are called reflection rules. Ryp. is
called reflection up, Rqy,, reflection down. Reading “e;” as “provable in
i”, Rgn. and Ry, can be thought as statements of the soundness and
completeness of the metatheory j with respect to provability in .

DEFINITION 13. An ML system MS = ({L;},{Q;},A), is an MR
system if and only if:

1. I is a not empty at most enumerable set of indexes;

2. a recursive binary relation < is defined on I, such that its transitive
closure <7 is not reflexive;

3. for each i < 7, and for each L;-wif A, L; contains an atomic ground
formula e;(“A”), which is recursively computable from A, and for
any L;-wif B distinct from A, ;(“A”) is distinct from e;(“A”);

4. the bridge rules of A are of the form (4), with 7 < j.
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Condition 1 of Definition 13 ensures that the cardinality of the set
of languages is at most enumerable; this restriction is justified by the
fact that we want to avoid an uncountable set of formulas e;(“A”)
(see condition 3). The first part of condition 2 guarantees that the
applicability of Ry,; and Rgn; are decidable; the second part of the
same condition ensures that < induces an acyclic graph on I, which pre-
vents theories from being self-referential. 3 is the minimal expressivity
condition under which L; can be used as metalanguage for a theory in
L; (see (Giunchiglia et al., 1992) for more details). Condition 4 ensures
that, if 4 £ j and j £ ¢ then there are no bridge rules between 7 and j,
and that the only bridge rules are reflection rules. Reflection rules can
have any form of restriction on their applicability. One such example
is:

RESTRICTION ON THE PREMISE a bridge rule is applicable only if there
are no undischarged assumptions with index equal to that of the
premises of the rule itself.

In the following we will call restricted Ryp. the reflection rule Ry, with
the above restriction on the premise.

3.2. SOME IMPORTANT MR SYSTEMS

MPK is the basic propositional system for the formalization of the-
orem proving with metatheories (Giunchiglia and Traverso, 1996). In
metatheoretic reasoning, one usually starts with the object theory and
then defines its metatheory, its metametatheory and so on. Analo-
gously, in MPK (see Figure 2), the bottom theory, labeled with 0, is any
object theory in a propositional language L, the theory labeled with 1
is its simplest metatheory, the theory labeled with 2 is the simplest
metatheory of that labeled with 1, i.e. the metametatheory of the
bottom theory, and so on. The simplest metatheory of an object theory
with language L, is a theory with the minimal linguistic and axiomatic
requirements. The language of such a metatheory is T'(“L”), namely
the propositional language whose only atomic wifs are {T'(“A”) : A is
an L-wif}, its set of axioms is the empty set.

DEFINITION 14. The MR system MPK is defined as follows:
1. I is the set of positive integers (with 0), and 7 <7 + 1;

2. Ly = L, and L;y; is the propositional language containing the
atomic formulas T'(“A”), with A any L;-wff;

3. Q; =0;
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@ Lo = LU B(“L1”)
— L U B(“L U B(“L27!)7!)

Y

— LUB(“L UB(“LUB(“L;;”)”)”)
@) Ly = T(“L1”) (2 Ly = LUT(“L1”) =...
= T(“T(“L")") =LuT(LUT(Lo”)) (1) ;1 _ 1 B(<Ly")
= LU B(*L UB(*Lg")")
4 — LUB(“L UB(“LUB(“L4”)”)”)
O T(“L”) s LUT(“Lo”) =

(2> Lo ; LU B(“Lg”)

— LU B(“L @] B(“L4”)”)

Y
— LUB(“L UB(“LUB(“LE,”)”)”)
@LOZL @LOZL =...

Figure 2. Structures and languages of MPK, MK, and MBK.

4. A contains the ML version of the propositional classical ND rules
inin L;, Ry, ; from i + 1 to 7, and restricted Ryp; from 4 to 4 + 1.

MK is the MR system studied in detail in this paper. Analogously
to MPK, MK is an ML system for the formalization of metatheoretic
reasoning (Giunchiglia and Serafini, 1994; Giunchiglia and Traverso,
1996). Indeed MK is defined as MPK except for the fact that the
language of each metatheory contains the language of the object theory.
Hence in MK, if the language of the theory i-th is L, then the language
of its metatheory theory is L UT(“L”) (see Figure 2).

DEFINITION 15. MK is defined by replacing clause 2 of Definition 14
of MPK with

2. Ly = L, and L;; is the propositional language containing L; and
the atomic formulas T'(“A”) with A any L;-wff.

In MK the predicate “T"” has the same properties as the operator O in
modal K (see below for more details). Certain results, like the equiv-
alence with modal logics, are stated only under this hypothesis (see
(Giunchiglia and Serafini, 1994)). (Giunchiglia et al., 1992) presents a
version of MK with L;  1;.4.

MBK is the basic ML system for the representation of the beliefs of
a single agent. (Giunchiglia and Serafini, 1994; Giunchiglia et al., 1993;
Giunchiglia and Giunchiglia, 2000; Giunchiglia and Ghidini, 1998). The
idea underlying MBK is that there is an agent a who has beliefs about
the world and beliefs about its own beliefs. Given a proposition A
about the state of the world, B(“A”) means that A itself is believed by
a or, in other words, that A holds in a’s view of the world. Similarly
B(“B(“A”)”) means that B(“A”) is believed by a, namely that A holds
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in a’s view of its beliefs about the world, and so on. In MBK each view
is modeled as a theory with its own language. The basic structure of
MBK is reported in Figure 2.

DEFINITION 16. The MR system MBK is defined as follows:
1. I is the set of positive integers (with 0), and ¢ + 1 < 3;

2. each L; is the propositional languge containing L and the atomic
formulas B(“A”) with A any L;-wff;

3. Q;, =0;

4. A contains the ML version of the propositional classical ND rules
in L;, Rqp.it1 from 4 to 1+ 1, and restricted Ryp ;41 from i + 1 to i.

Analogously to what happens for MK, in MBK the predicate “B” has
the same properties as O in modal K.

MB4, MB5, MB45 are extensions of MBK, where the predicate B
has the same properties of O in the modal systems K4, K5, and K45
respectively (Giunchiglia and Serafini, 1994).

DEFINITION 17. MB4, MB5, and MB45 are defined by extending
clauses 1 and 4 of Definition 16 of MBK as follows:

1. for MB4, MB5, MB45 add i + 2 < 4;
4 for MB4 add restricted Ryp. 42 from ¢ + 2 to i;
4 for MBb5 add Rgp 42 from 4 to ¢ + 2;

4 for MB45 add Rgn.it2 from 4 to 7 + 2 and restricted Ryp.it2 from
14+ 2 to 1.

MBK(n) is the basic MR system for the representation of multiagent
beliefs (Giunchiglia et al., 1993; Giunchiglia and Serafini, 1994; Cimatti
and Serafini, 1996; Benerecetti et al., 1999). The idea underlying the
formalization of multiagent belief is that there is a set of agents A =
{a1,as...a,}, who have beliefs about the world, beliefs about their own
beliefs, and beliefs about the other agents’ beliefs. The basic structure
of MBK(n) is reported in Figure 3.

DEFINITION 18. Let A = {a1,a9,...,a,} be a set of n symbols and
A* the set of finite (possible empty) sequences of symbols in 4. Let
e € A* denote the empty sequence. The MR system MBK(n) on the
propositional language L is defined as follows:
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1. I is the set A*, and aa < @, for each @ € A* and a € A;

2. Lg is the propositional language containing L and the atomic for-
mulas B,(“A”) with A any Lg,-wif;

3. Qa: @,

4. A contains the ML version of the propositional classical ND rules
in Lz, Ran.ga, from @ to @a and restricted Rypg, from @a to a.

MBK(n) formalizes situations where the state of the world does not
change, and where the agents don’t change their beliefs about such
a state. A logic which deals with dynamic world and dynamic beliefs
about the world is MATL (Multi Agent Temporal Logic), introduced
in (Benerecetti et al., 1998b). MATL allows us to model situations
where the state of the world changes, and where agents can change
their beliefs (but also other propositional attitudes, such as desire and
intentions) about the evolution of the world. Restricting to a single
propositional attitude (e.g., belief), MATL has the same structure as
MBK(n) (see Figure 3) with the only difference that the language of
each view @ € A* is the temporal language CTL (Clarke et al., 1994).

DEFINITION 19. MATL is defined by replacing clauses 2, 3, and 4 of
Definition 18 of MBK(n) with the following clauses:

2. Lg is the CTL language containing L and the atomic formulas
B,(“A”) with A any Lg,-wff;

3. Qg is the set of CTL axioms for Lg;

4. A contains the ML version of a propositional ND rules in Lz, Ran ga,
from @ to @a and restricted Ry 3, from @a to a.

3.3. THE MR sysTEM MK

MK, as defined in Definition 15, is constituted of a hierarchy of theories
labelled with natural numbers. In MK we replace the formulas e;(“A”)
with T'(“A”), to emphasize the fact that 7'(“A”) should be read “A is
a theorem”. Notice that the reference to the theory in which A is a
theorem is not specified in the formula T'(“A”). Indeed, the intuitive
meaning of T'(“A”) depends on the context where it is stated. If T'(“A”)
is stated in 1 (i.e. 1: T(“A”), then it should be read as “A is theorem
of 0”, while, if it is stated in 4 (i.e. 4 : T'(“A”)), it should be read as “A
is a theorem of 3”. In general the predicate T' refers to theoremhood
in the theory below. The set of inference rules of MK, reported in
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e Le=LUB(“L1”)U...U Bp(“Ly”)

Lp =LUB1(“Ln1”) U...U By (“Lpn”)

AN

oo o

Lny=LU Bl(<an11:’) U...uU Bn(‘anl

Figure 8. Structure and languages of MBK(n)

Figure 4, contains the ML version in L; of the classical propositional
ND inference rules, and the bridge rules Rgn; from ¢ + 1 to %, and
restricted Ryp; from 4 to ¢ + 1.

There are several reasons why we choose MK as a case study. First,
it is simple and has a clear interpretation in terms of metatheoretic
concepts (see (Giunchiglia et al., 1992)). Its simple structure allows
us to minimize the technical overhead in the development of the proof
theory. A second reason the structure of MK is easily mappable in other
MR systems. For instance MPK can be seen as MK with restrictions
on the languages; MBK can be seen as an upside-down version of MK;
MBK(n) can be seen as an infinite set of upside-down versions of MK,
corresponding to the infinite branches of the tree shown in Figure 3.
MB4, MB5, and MB45, can be seen as an upside-down version of MK
with some extra relation between theories ¢ and 7 + 2. Finally MATL is
an upside-down version of MK, where each theory is CTL rather than
propositional. A third reason is that normal modal logics have been
proved to be embeddable in MK and its extensions (see (Giunchiglia
and Serafini, 1994)). A proof theory for MK is therefore relevant also
to modal logics, and in particular, to modal K. We will show, indeed,
that MK enjoys important properties such as the subformula property,
which do not hold in most other calculi for modal logics. These results
are reported in Section 4. We give below some preliminary results which
give the “feeling” on how MK behaves.
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[i: A]

i:B , i:A i:ADB _
iiA>B i:B O
i:A i:B o 1:ANBi:ANB ]
i:ANB Al i A i: B AE;

A _i:B - AV B [i:é] [i:g]
i i: ) 1: AV i i: )
iiAvBi:Avp "Vl i:C VE:

[i:—A]

il
i:A i+1:T(“A”)
R . .
i+ 1:T(%47) i A Ran.s

RESTRICTION: L ; can be applied if A is not of the
form 1. Ry;.; can be applied only if 7 : A does not
depend from any assumptions with index equal to
i.

Figure 4. Inference rules of MK

Concerning the relation between MK and modal K, we have that,
for any L; formula A:

i+ 1 T(“4 D BY) 5 (T(“A’) 5 T(“B”))  (5)
huci: A implies  hyx i+ 1:T(“A”) (6)

Notice that (5) is the MK version of the modal axiom K (0O(A D B) D
0A D OB), and (6) corresponds to the necessitation rule (- A = +
OA). The proofs of other theorems of MK corresponding to K-valid
formulas are reported in Appendix B. An example of a proof of (5) in
MK is the following:

iH1:T(A7) it 1:T(ADBY) o
’lA dn.z ZADB dn.?
i: B R OF;
i+1:T(“B") (7)
¥ 1 T(A) S T(B) ~
Z+ 1 . T(“A D B”) D (T(“A”) D T(“B’?))

Dlits
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For a detailed discussion on the relation among MK and modal
logics see (Giunchiglia and Serafini, 1994). Here we report the main
correspondence theorem, as proved in (Giunchiglia and Serafini, 1994).

THEOREM 20. Ai,...A, b A if and only if there is an ¢ > 0 such
thati: Af,... i Al by i AT, where ()7 is a mapping from modal
formulas to formulas of MK languages, that maps OA into T(“A”) and
distributes over connectives.

One of the most important aspects of ML systems concerns how the-
ories affect one another, or, in other words, how the truth/derivability of
a set of formulas in a language affect the truth/derivability of formulas
in another language. This relation tightly depends from the form of the
bridge rules. In the case of MK, for instance, despite the fact that there
are bridge rules from ¢ to ¢ + 1, theory 7 does not affect theory 7 + 1.
Indeed, in MK upper theories affect lower theories but not vice-versa.
This is formalized by the following theorem.

THEOREM 21. T byg @ @ A if and only if T'>; byx 1 : A, where
I>y={j:Bel|j=>i}.

Proof. The “if” direction is trivial as I'>; C I'. The “only if” direction
can be proved by induction on the complexity of the deductions in MK.
The base case and the induction step for ¢-rules and Ry, ; are trivial. If
a deduction of i + 1 : T'(“A”) from I" ends with an application of Ry,
to i : A, then the restriction on the applicability of Ry, ; implies that
the conclusion 7 + 1 : T'(“A”), depends only from assumptions greater
than or equal to ¢ + 1, and therefore contained in I'>; 4. O

The intuitive interpretation of Theorem 21 is that an assumption at
one level doesn’t have any effects on the upper levels. We call I'>; the
subset of effective assumptions at level 7 of T'.

A second point that has to be clarified concerns lemma composition,
namely the possibility of combining subdeductions in order to obtain
other deductions. We need the following notation. If II is a deduction
of i : A and IT' is another deduction then,

(i 4) ®)
HI

is IT" itself if TI' does not contain any undischarged assumptions of the

form 7 : A, or it is the formula tree obtained by writing II, without its

bottom formula ¢ : A, above all the undischarged assumptions of IT' of
the form 7 : A.
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LEMMA 22 (Composing deductions). If II is a deduction of i : A
depending on T and II' is a deduction of j : B depending on X, then
(8) is a deduction of j: B from T'U(X\ {i: A}).

Proof. Notice that the operation described in (8) replaces all the
undischarged assumptions of the form ¢ : A with a new set of assump-
tions I', from which i : A is derivable. To prove Lemma 22 it is enough
to show that (8) is a deduction in MK, namely that any application of
a restricted rule (i.e., Ryp.) in I’ is still possible in (8). Therefore, we
show that, if an occurrence k : C in I’ depends on a set of assumptions
with index greater than or equal to h, then the same occurrence in (8)
depends on a set of assumptions with index greater than or equal to
h. This holds because, if k : C does not depend from 7 : A in IT’, then
k : C in (8) depends on the same set of assumptions as in II'; otherwise,
if k : C depends from i : A in IT', then, by Theorem 21, ¢ > h, and,
since i : A depends on T in I, by the same theorem, the indexes of the
formulas in I' are greater than or equal to 4 > h. This implies that k : C
depends on a set of assumptions with indexes greater than or equal to
h. O

THEOREM 23. If T hyxi: A, and i: A, S byg j : B, then T, % by
j:B.

Proof. Let II be a deduction of i : A depending on I'' C I, and II'
a deduction of j : B depending on ¥ C Y U {i : A}. By Lemma 22,
(8) is a deduction of j : B from I UX'\ {i : A} which is contained in
rus. O

MR-CUT is stronger than ML-CUT(i) (Definition 1) as in ML-
CUT(i) the index of the conclusion (j : B) must be the same as that of
the “cut” formula (7 : A). In MR-CUT, instead, this is not necessary.
A consequence of MR-CUT is the deduction theorem.

THEOREM 24. T,i: Abyxi: B ifand only if T hyxi: A D B.
Proof. If 11 is a deduction of ¢ : B from I',7 : A, then
ri:A
. HB
iiA>B
is a deduction of 7 : A D B from I'. Vice-versa, sincei : A,7: A D B hux
i:B,ifT'hyki: AD B, by (MR-CUT) we have I',i : Ahyk i: B. O

Notice that Theorem 24 holds only when the assumption and the
conclusion of II belong to the same language, (in this case L;). Deduc-
tion theorem cannot be applied when ', : A ki j : B, if 1 # j, as
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there is no language where to express the implication of A and B. A
consequence of this fact is that derivability in MK cannot be reduced
to provability.

4. Normal Forms for Deductions in MK

The goal of this section is to study the structure of deductions in MK.
First, we characterize the subset of indexes which must be used in order
to prove a theorem. This leads to the definition of the weak normal
form. Deductions in weak normal form enjoy the sublevel property,
which states that, to prove a theorem with index ¢, it is enough to
reason in the space of the formulas with index < 4. A consequence
of the sublevel property is the consistency of MK. Subsequently we
define the normal form for MK deductions, which in turn, allows us
to provide the subformula property. Roughly speaking, the subformula
property guarantees that, to prove 7 : A, it is enough to reason in the
finite space of subformulas of 7 : A (where the notion of subformulas
for labelled formulas has to be defined properly).

4.1. WEAK NORMAL DEDUCTIONS AND SUBLEVEL PROPERTY

In MK there are two main reasoning patterns that can be combined
to prove a theorem in ¢. The former starts in %, switches down, by
Rgn.i—1 to i — 1, reasons in the space of formulas with index lower
than 4, and finally switches back, by Ry,i—1, to 7. An example of this
reasoning pattern is proof of i +1: T'(“A D B”) D T(“A”) D T(“B”)
(deduction (7)). The latter runs in the opposite direction: it starts in 4,
it switches up, by Ryp., to ¢+ 1, it reasons in the space of the formulas
with index greater than ¢, and finally it switches back, by Rgn;, to
. However notice that, the application of R,p; transforms a complex
formula A into an atomic formula T'(“A”) in 7 4 7. From the fact that
the local inference rules in 4 and ¢ 4+ 1 are equal, and from the fact
that in the ¢ + 1-th theory there are no specific axioms for T'(“A”),
the same reasoning performed on T'(“A”) in i + 1, can be performed
on A in 4. So the reasoning pattern that first switches up and then
down does not add any new theorems to the i-th theory. This intuition
is proved by showing that each deduction can be reduced to a weak
normal form, which do not contain any instances of such a redundant
reasoning pattern.

DEFINITION 25. If II is a deduction of i : A from I'<; then an
occurrence k : B in Il is an overflowing formula of 11, if and only if
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i,j < k. Il is a weak normal deduction (is in weak normal form) if and
only if it does not contain any overflowing formula.

EXAMPLE 26. Consider the following deduction of 0 : ¢ from 1 :
T(p > 1) > T(0),

O0:p

O:pDp To
1:T(pop”) ™)
1
(o)2 . T(“T(“p D) p”)”) Rup (9)

[43 99 d . [43 99 {9 }]

L:T(p2p’) ™ 1:T(*pDp") DT(“¢")
[{P%)] DEl
1:T("¢")

0: q Rdn.O

The occurrence labelled with (*) is an overflowing formula of deduc-

tion (9).

Overflowing formulas correspond to redundant reasoning steps. To re-
move overflowing formulas from a deduction II, we define the operator

II’, which pushes down to i all the occurrences of IT with index greater
than i. This operator is based on a simpler operator (.)~! on wffs.
Intuitively (.) ! transforms an L;,;-wff into an L;-wff by removing, if
any, the “most external” occurrences of the predicate T'.

DEFINITION 27. The operator (.)~! is defined as follows:
1. L7t =1,
2. p~! = p, if p is a propositional constant;
3. T(“A”)" ! = A
4. (.)~! distributes over connectives.

Furthermore, for each n > 1, A™" is the result of n applications of
()7 to A.

EXAMPLE 28. Some examples of applications of (.) ™:

't =p
(T(“pAg)Vr)™h = (pAg) VT
(p/\T(“q”) /\T(“T(“T”)”))_l — p/\qAT(“T”)
(p/\T(“q”) /\T(“T(“’I‘”)”))_Q — p/\q/\T

Note that, if A is an L;-wff, then A7 is an L;_,-wff if and n < 1,
and an Ly-wif otherwise.
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DEFINITION 29. For any natural number 4, 7 : A'i0 is g : A(?O_") if
i > g and i : A otherwise. If ' is a set of wifs, T ={i:4":i:
A €T} If TI is a deduction, then II" is the formula tree obtained by

substituting every occurrence i : A in IT with 7 : A"° and by removing

all the consequences of Ryp; and Rgn.i+1, with 7 > 4.

EXAMPLE 30. Let IT be deduction (9). T is the deduction

0:
57 2l
'“ 99 R '0 «©, 99 [{P%}]
1:T(“pop’) ™ 1:T(p3p)DT(q)DE (10)
[{P )] 1
1:T( q)R
O:q dn.0

of 0: ¢ from1:T(“p Dp”) DT(“g”). Notice that in (10) the overflow-
ing formula of (9) has been removed without changing the assumptions
and the conclusions of (9).

LEMMA 31. If II is a deduction of i : A from T, then o is a
deduction of i: A" from T ™.

Proof. We prove by induction that, if II is a deduction of 7 : A
depending on T', then 1" is a deduction of i:A° fromT". .

(Base Case) If T is i : A theni: A" is a deduction of 7 : A" from
i A,

(Step Case) If II ends with an application of an i-rule, then the

theorem trivially follows from the distributivity of (.) " and from the
fact that the i-rules are the same in all levels.

If it ends with an application of a R,y ;, then II is of the following
form:

r
HI
i A
R : SR -
i+ 174" "

By induction, IF ° is a deduction of 7: A" from T''°. We have two
cases: 1 < 19 and @ > dg. '
If i < ig, then i : A is i : A and, by induction, II ° is

i

i
e
i1 A
4 g
i+1:T(%4”) "

i

Then, since R,p; is applicable in II, the indexes of the elements of T

are greater than ¢ and 7 < 4. Hence Ry} ; is also applicable in T, This
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implies that " is a deduction of i + 1 : T(A)™® =i4+1:T(4A”)
from T, ) ] .
If i > ip, then II"™ is IT' ™, that is a deduction of 7 + 1 : T(“A”) "° =
7 A" from T,
If it ends with an application of a Ry, ;, then II is of the form:

T

HI
i+1:T(“A7)
a4 faw

By induction T  is a deduction of i + 1 : T(“A”) " from T™. As for
Ry, we have two cases: 1 < 49 and ¢ > ig.
If i < i then IT" is:
r"
"
i+ 1:T(4A7)

i A Rdn.i

which is a deduction of i : Aj =1: A from T, )
If 4 > ig, then II" is I, which is a deduction of i: A" =
i+1:T(“A")" from T®, O

THEOREM 32. If T'kyxi: A, then there is a weak normal deduction
of i: A fromT.

Proof. Let II be a deduction of i : A depending on I C T' and i
the maximum index of I” U {i : A}. By Lemma 31, II"”* is a deduction
of 7: A" from T7°. Since 49 is the greatest index of the elements of
T"U{i: A}, we have ' = TV and 7: A = i : A. Furthermore,
TT” does not contain any overflowing formula, and it is a weak normal
deduction of i : A from T'. O

COROLLARY 33 (Consistency). For any i >0, Vixi: L.

Proof. By contradiction. Let IT be a proof of ¢ : 1. By Lemma 31,
Il is a proof of 0 : L. Since it does not contain any occurrence with
index greater than 0, TT° does not contain any application of reflection
rules. Thus TT° is a proof of | in Classical Propositional Logic, which
does not exists. O

Not only is any theory of MK consistent, but inconsistency does not
propagate upwards. This corresponds to the fact that a metatheory can
consistently speak about an inconsistent object theory. Notice that this
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is an important feature which is not supported by logical systems where
object theory and metatheory are amalgamated in a unique theory (see
for instance (Bowen and Kowalski, 1982)).

COROLLARY 34. Foranyi>0,4: L Hgxci+1: 1.

4.2. NORMAL DEDUCTIONS

The normal form for deductions in MK is a natural generalization of
the normal form for propositional classical ND as defined in (Prawitz,
1965). Before defining normal form for MK, we first extend the termi-
nology to deal with the reflection rules.

By I-rule we mean one of DI, AL, VI and R, ; by E-rule we mean one
of DE, AE, VE and Ryg,.. The reflection rules Ry, and Rqn. are seen as
the introduction of T and the elimination of T, respectively. Further-
more, we say that an occurrence A is a premise or the consequence of
a rule when A is a premise or the consequence of an application of that
rule.

DEFINITION 35. In an application of an DE;,4: A D B and i : A are
called major premise and minor premise, respectively. In an application
of an VE;, i : AV B and the ¢ : C’s are called major premise and minor
premises, respectively. The premises of the application of any other rule
are major premises.

DEFINITION 36. An occurrence 7 : A in a deduction is a mazimum
formula if and only if it satisfies one of the two conditions:

1. 7 : A is the consequence of an I-rule and the major premise of an
E-rule;

2. 1 : A is the consequence of a 1-rule and the major premise of an
E-rule other than Ry, ; 1.

A deduction is in normal form (or is normal) if and only if it does not
contain any maximum formula.

EXAMPLE 37. The following deductions are not in normal form.

) ) 7: A _ ]
(,Z)SA Z:B/\Ii 775:ADADIZR .(.).'L:J_ .
2147/\3 AE; @i+1:T(“AD A”) P 2147/\3 AE; (11)
1: A TTAS A Ryn.; 11 A

(a) (b) ()
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The occurrences labelled with (*) are maximum formulas. As over-
flowing formulas, maximum formulas correspond to redundant reason-
ing steps. These steps can be removed by suitable transformation. As
an example, the non normal deductions (11.a-c) can be reduced to the
following equivalent deductions:

. i: A i:
A iAot Al
(a) (b) (c)

The proof of the existence of a normal deduction is based on a
procedure that removes maximum formulas from deductions. Lemma 38
and Lemma 39 describe how to remove maximum formulas satisfying
point 1 and 2 in Definition 36, respectively.

LEMMA 38. If T' byx @ : A, then there exists a deduction of 1 : A
from T with no occurrence which is both the consequence of an I-rule
and the major premise of an E-rule.

Proof. Let TI be a deduction of 7 : A from I". The occurrences which
are consequences of an I-rule and major premises of an E-rule different
from reflection rules, can be removed from II by applying the reduction
steps described in (Prawitz, 1965), and reported in Appendix C. The
reduction step for Ryp; and Ry, j, called T-reduction, is the following:

.Hl
L“” Rup.j 1L
j—i—l:T(C’)Rd . jl_:[C (13)
j:C - 2
I,

The reduction steps defined in Appendix C and (13) are applied to
those maximum formulas which have the greatest complexity, where
the complexity of a formula is the number of nested connectives and
T predicates. It is easy to show that repeated applications of such
reduction steps converge to a deduction without occurrences which are
consequences of an I-rule and maximum premises of an E-rule. The
convergence is guaranteed by the fact that the application of a reduction
step to a maximum formula which has the greatest complexity removes
it, without introducing other maximum formulas of the same or greater
complexity. O

By Lemma 38, any deduction in MK can be reduced to a deduction
where the consequence of any I-rule is not the maximum premise of an
E-rule. To obtain a normal deduction we have to remove also the conse-
quences of the L-rule which are major premises of an E-rule. Following
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what originally done in (Prawitz, 1965), to simplify the treatment, we
consider the ML system MK’ obtained from MK by excluding the rules
for V. MK’ is equivalent to MK once we uniformly rewrite A V B as
—-A D B. Deductions in MK’ can be reduced in a form where the
consequences of the L-rule are atomic. This implies that they cannot
be the premise of E-rules with the exception of Ry, ..

LEMMA 39. If T byx t : A, then there is a deduction where the
consequences of all the applications of a L-rule are atomic.

Lemma, 39 can be proved by applying the reduction step “%—reduction”
described in (Prawitz, 1965) and reported in Appendix C.

THEOREM 40. If T' byx i : A, then there is a normal deduction of
i: A fromT in MK'.

Proof. By Lemma 39, there is a deduction II of 7 : A from I where
all the consequences of a |-rule are atomic. By Lemma 38, IT can be
reduced to a deduction IT', where any consequence of an I-rule is not
the major premise of an E-rule. Since the reduction steps defined in
the proof of Lemma 38 only introduce atomic consequences of | -rules,
we can conclude that IT’ is normal. O

4.3. THE FORM OF NORMAL DEDUCTIONS

In this section we study the form of normal deductions in MK'. This
study is necessary in order to prove the subformula property.

DEFINITION 41. Let 8 =141 : A1,...,in : A, be the initial part of a
thread 7 in a deduction II. We say that 8 is a branch of 1I if and only
if it satisfies one of the following two conditions:

1. ip : Aj, is the first formula occurrence of 7 that is the minor premise
of an application of DE; ;

2. iy, : Ay is the last formula occurrence of 7 and no minor premise of
DE occurs in .

A branch which satisfies condition 2 is called main branch.

EXAMPLE 42. The branches of the deduction:

i—i—l:T(“A:)C”) i-AAB
TTASC R Ty AR
. DE; .
i:C 1:-C
- DE;
i L I
ii~(AAB) " i -C (14)

I;
i:(AANB)A-C A

1:2C D-(AANB)A-C
14+ 1:T(“~C D -(AANB)A-C”)

DI;

up.i
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are:

B = i+1:T(“ADC”) B = i:ANB
i:ADC i A
i:C

ﬂ3 = ¢:-C ﬁ4 = i:-C
i: 1 i:(AANB)AC
i:(AAB) i:2C D-(AANB)A-C
i:~(AAB)AC i+1:T(“oC > ~(AAB) A-C”)
i:-CD-(AANB)A-C

i+1:T(“-CD-(AANB)A-C")

B3 and B4 are the main branches of 14.

DEFINITION 43. A part (or subpart) 7' of a thread 7 is a sequence
of adjacent elements of 7.

THEOREM 44. Let I be a normal deduction and 8 = i1 : A1, 4o
Ay, ..., iy : An a branch of II. There is an occurrence ip : Ap in
B, called minimum formula of £, which separates B in two possibly
empty parts, called the E-part (iy : A1,...,ip1: Ap_1) and the I-part
(ihs1: Apa1s---ip 2 Ap) of B, with the following properties:

1. The E-part is either empty or composed of m + 1 (m > 0) not
empty parts of B, called subE-parts. The k-th subE-part from the
top of B is called subEy-part;

2. each subE-part, except the first, begins with a premise of a Ran.;

3. each occurrence of the subE-parts, except the last (occurrence), is
a major premise of an E-rule;

4. each subFE-part, except the last, ends with a premise of a 1 -rule;

5. the minimum formula iy, : Ay of B, provided that k # n, is the
premise of a L-rule or of an I-rule;

6. each occurrence in the I-part, except the last, is the premise of an
I-rule.

Figures 5 and 6 give two graphical views of the form of branches in
a normal deduction. An example is given below.
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5:(pAQT(*r D T(*r S T(‘gA=a")")")

subFEy-part

3: 1
3 . T(l‘p D T(qu/\r”)”)
2:pDT(“gAT”)

subFE;-part

2: 1
2:T(“pDgA-r")
l:pDgA-r

subFE»-part
0:~q

I-part

4 : T(“p”) D T(“T(Llr”) 3 q”)

Figure 5. The increasing/decreasing complexity of formulas in a branch of a normal
deduction.

EXAMPLE 45. Consider the deduction:

1+2:A 142:-A
i+2: 1 iy
i+2:T(‘BAT(“*Co>Dy) '

DE;t2

R n.g
i+1:BAT('CO D) o it 15)
i+1:T(“C>D") o
i:C i:C>D dnt

i:D B

i+1:T(“D”)

Rup.i
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. i1 Ar
( assumption

subEg-part

gyt L
N «, ” J_i)"l ’ .A
gyt T(“C1”) Ty P Aky
—_ dn.ig, —1
1y — 1:Cy k1

subE;-part

gyt L
y . [ ” J_ikZ .
Ty + T( Cs ) ko :A;c2
A Thdnidg,—1
E-part { fky —1:C2

subEy-part

subE,,_1-part

\ subEj,-part
minimum formula int Ap
introductions
I-part bottom formula

or minor premise
of an DE

in : An

ik1>ik2>--->ikm>ihsin

Figure 6. Shape of a branch 8 =141 : A1,...,4, : A, in a normal deduction.

The parts of the main branch of deduction (15) are shown in the
following picture:

i+2:-A
14+2: 1L
1+2: T(“BANT(“C D D")")
i+1: BAT(“C D D”)
i+1:T(“C D D")
1:C DD
minimum formula = 1: D
I-part = {i+1:T(“D”)

subEop-part =

subE;-part =
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Notice that a subE-part can contain formulas of different layers.

Proof (of Theorem 44). Let 8 be the branch of a normal deduction,
as shown in Figure 6. In S all the applications of E-rules and 1-rules
precede all the applications of I-rules. Indeed, if this were not the case,
since the consequence of an I-rule cannot be the premise of an L-rule,
then there should be an occurrence that is the consequence of an I-rule
and major premise of an E-rule. But this contradicts the fact that II is
normal.

Let 45, : Ay be the first occurrence in 8 that is the premise of an
I-rule, if it exists; otherwise let iy : Ap be i, : A,. Let i : Ap be
the minimum formula. Let the E-part of 8 be the subpart of 8 which
starts with 4; : A; and ends with 4;_1 : Aj_1. Let the I-part of 8 be
the subpart of 8 which starts with 451 : Ap+1 and ends with i, : A,,.

Let ig, : Ag,,-.., 1, : Ak, be all the occurrences of the E-part of g
which are consequences of a L -rule and premises of Ry, (see Figure 6).
Let the subE-parts be the subparts of the E-part separated by these
occurrences. Each subE-part, but the first one, begins with 45, : Ag;.

Items 1, 2 and 5 are verified by the choice of the subE-parts.

Let us consider item 3. Let 7 : A be any occurrence of a subE-part. It
is not the premise of an I-rule. If it is the premise of a L-rule, then the
consequence is either the premise of an I-rule and ¢ : A is the minimum
formula, or the premise of R4, and i : A is the last occurrence of the
subE-part.

Let us consider item 6. Let i : A be any occurrence in the I-part. It
is not the premise of an E-rule. If it is the premise of a L-rule, then it
cannot be the consequence of an I-rule and it cannot be the consequence
of a L-rule (see restriction on the L-rule in Definition 15). Therefore
it is the consequence of an E-rule, which means that it is the minimum
formula %5, : Ap. This contradicts the fact that it occurs in the I-part.
We can conclude that i : A is either the last occurrence of the I-part or
the premise of an I-rule.

4.4. THE SUBFORMULA PROPERTY

The subformula property says that, if A is derivable from a set of
assumptions I', then there is a deduction containing only subformulas
of T and A. One of the main consequences of the subformula property is
that, in order to prove that a certain formula is a theorem, it is sufficient
to reason in the space of its subformulas, which is finite. If a deduction
system enjoys the subformula property, it can be used to support the
development of complete automatic methods of proof search and for
the definition an automatic decision procedure.
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Let us start by defining when a labelled formula ¢ : A is a subformula
of another labelled formula j : B. Recall that in a language L, a formula
A is a subformula of a formula B, if A appears as a constitutive element
of B, according to the inductive definition of the formulas of L.

DEFINITION 46. i : A is a subformula of j : B according to the
following rules:

1. if A is a subformula of B in L;, then ¢ : A is a subformula of i : B;
2. i: Ais subformula of i+ 1:T(“A”);

3. if i: Ais a subformula of j: B, and j : B is a subformula of k : C,
then i : A is a subformula of k : C.

Our notion of subformula is the natural extension of the corre-
sponding notion for propositional languages. In particular we keep the
property that any formula has a finite number of subformulas.

In the classical natural deduction system C’, as defined in (Prawitz,
1965), the subformula property holds under very general hypotheses.
That is: all the occurrences of a normal deduction are subformulas
of the assumptions, or of the conclusion, except for the assumptions
discharged by the application of a L.. One of the critical points in
the proof of subformula property for C’' concerns the effects of the
1. rule. Prawitz in (Prawitz, 1965) solves this problem by restricting
the applications of the 1 .-rule to those with atomic consequences. He
provides a way to replace the applications of the |, rules in normal
deductions with applications of the | .-rule with atomic consequences.
This has the nice effect that no E-rule can be applied after a L .-rule.
The presence of multiple layers makes this trick not sufficient. Indeed,
in MK, atomic formulas can be premises of E-rules (namely the atomic
formula T'(“A”) can be a premise of a Rqy. ). To understand the effects
of this fact on the subformula property, consider the following simple

deduction:
i+1: 1L

i+1:T(“A”) (16)
it A Ran.i

(16) is in normal form, but it does not have the subformula property.
Indeed @ + 1 : T(“A”) is not a subformula of 4+ 1 : L nor of i :
A. Due to counterexamples such as (16), we need to adapt Prawitz’s
idea as follows. In a first step (Lemma 47) we prove a weak version
of subformula property, which holds for all normal deductions, and, in
particular, for deductions such as (16). In a second step (Lemma 50) we
exploit the weak version of subformula property to show how deductions
of the form (16) can be transformed into normal deductions which enjoy
the subformula property.
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LEMMA 47. Ewery formula occurrence in a normal deduction of i :
A from T', with the exception of the assumptions discharged by an
application of the L -rule, and the occurrences of the form j : L oc-
curring immediately below an assumption, has one of the following
properties:

1. it is a subformula of an element of T', or
2. it is a subformula of i : A, or

3. it is a subformula of the premise of an Rg,. which is a consequence
of a L-rule,

Proof. We define the order of a branch in a normal deduction as
follows. The main branches have order 0. A branch that ends with a
minimum premise of an DE-rule, whose maximum premise belongs to
a branch with order n, has order n + 1.

Let 8 be a branch of order n 4+ 1. Let j : B be an occurrence of the
I-part of B. Then j : B is a subformula of an element of a branch of
order n.

Let 7 : B be an occurrence of the subEy-part of . Then j : B
is a subformula of an assumption that, either belongs to I, or it is
discharged in the I-part of 3, or in the I-part of a branch of order less
then or equal to n.

Finally, let j : B be an occurrence the subEg-part (with £ > 0) of
B. Then j : B is a subformula of the first occurrence of the subEg-part,
which is a consequence of a |-rule and a premise of a Ry, .. O

In order to prove the subformula property, we have to provide a
way to remove those formulas which are both consequences of 1-rules
and premises of Rgyn.. If the index of these formulas is less than, or
equal to that of the conclusion, they can be removed. This operation
is described in Lemma 48. There are cases, however, where this is not
possible (see deduction (16)). In these cases, by Lemma 50, we provide
a way to reduce them to a small, and finite, set of special cases.

LEMMA 48. If I' byx i : A, there is a normal deduction of i : A from
I', where all the occurrences which are both consequences of a L-rule
and premises of a Rqn. have index greater than 1.

Proof. Let II be a normal deduction for i : A. Let j +1 : T(“B”)
be a consequence of a L-rule and a premise of Rqn ;, with j <4. As II
ends in 7 and j < 4, there must be an occurrence below j +1: T(“B”)
which is a consequence of Ry, ;. Let j + 1 : T(“C”) be the first of
such occurrences. To remove j + 1 : T(“B”), we apply the following
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transformation:
,7+]- (“B”)
i : B
j+1:-T(“B") JHQ
I -
j+1:1 _J¢ '
i+1:T(“B) JH1:T(*C7) j+1:-T(“C7)
j:B j+1:1 (17)
oI G 1 TCB)
T 1. sy 1
LT J
j+1:T(“C)
I3

O

We are now left with the consequences of the |-rule which are
premises of Ry, with index greater than the index of the conclusion.
As shown by the counterexample (16), there are cases where a normal
deduction cannot be reduced anymore and “not-subformula” occur-
rences cannot be removed. We overcome this problem by restricting
such occurrences to the single formula 7°(“L1”).

DEFINITION 49. Given a normal deduction IT of i : A from I, we
call redundant formulas of II those occurrences that:

1. have index j > 1;
2. are not of the form j : T'(“L”);
3. are consequences of a L-rule and premises of Ry ;j_1,

4. are not subformulas of any element in I'U {7 : A}.

The next lemma shows how to remove all redundant formulas, pos-
sibly by replacing them with occurrences of the form j : T(“L”). The
underlying idea can be seen by noticing that deduction (16) can be
rewritten as:

1+ 1:1 1
i+ 1:T(“17)
Z-:—J_J_Rdn.z'

it A

LEMMA 50. If T'byxi: A, then there is a normal deduction of i: A
from T, without redundant formulas.
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Proof. Let II be a normal deduction of 7 : A from I'. Lemma 50 is
proved by defining an operator that either removes redundant formulas,
or replaces them with occurrences of the form j+ 1: T'(“L”).

Let 7+ 1:T(“B”) be a redundant formula of II, such that all the
other redundant formulas have index lower than or equal to 7 + 1, and
such that all the redundant formulas with index equal to 7 + 1 occur
below j + 1 : T(“B”). Then, II is of the form:

Ts; j+1:-T(“B”)

IL;
il
j+1:7(B") (18)
j.—BRd”
I,
A

The operation that, either removes j + 1 : T(“B”), or replaces it by
j+1:T(“L”), is defined in two steps:

(Step 1) We remove all the occurrences of the form j + 1 : T(“B”)
which are consequences of R, ; and which occur above the redundant
formula j + 1 : T'(“B”). We do this by transforming the subdeduction
IT; of II, shown in (19), either into the deduction (20), or into the
deduction (21).

P>j j+1: —|T(“B”) P>j j+1: —|T(“B”)
I Iy
j + 1 . T(“Bl”) ' j + 1 . T(“Bn”) '
7: B Ran.j ... j: By Ran g
1
j:B (19)
: «n” Rup.j
j+1:T(“B”)
Hl'l'
j+ L
] + 1 T(“B”) +1
j:B Rdn]

In (19), IT} is a deduction of j : B from j : By,...,j : By, with indexes
lower than, or equal to 7. We consider two cases, either there is a By
(1 <k <n)equal to B, or, for all 1 < k < n, By is different from B.
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In the first case deduction (19) is reduced as follows:

I's; j+1:-T(“B”)

k
ITy
J+1:T(“By”)
"
Iy (20)
f+1: L
]_I_Jl . T(“B”) J‘j"’l
—————— Ran;
j:B
Otherwise (19) is rewritten as follows:
F>j j+1: —rT(“B”) F>j i1 —|T(“B”)
i ny
j—f—l:_lT(“Bl”) j+1:T(“Bl”) . j—'—l:_lT(“Bn”) j+1:T(“Bn”) .
j+1:L1 2Bj+1 i+1: L OEj41
s ‘7 ‘“ ” LJ+1 ‘77.“77 L]+1
j+1:T(“B1”) . j+1:T(“Bp”) .
-5 Rdn.] - Rdn.]
j:B1 j:Bn
I
j:B
(21)

Notice that, in the transformation from (19) to (21), we do not intro-
duce new redundant formulas. Indeed, from Lemma 47, j : T(“By”) is
a subformula of an assumption in T" or of i : A, and therefore it cannot
be a redundant formula.

(Step 2) From the previous step we obtain a deduction of 7 : A from
I'and j+1:-T(“B”), such that j + 1: T(“B”) does not appear as a
consequence of Ry ;. The next step is to substitute 7'(“B”) with L in
all the occurrences k : C, such that j + 1 : T(“B”) is a subformula of
k : C. We also replace each application of R4y to j+1:T(“B”) with
the following deduction:

j+1:1
JH1:T(17)

j:L
J_.
j:B 7

Ry, j

As a result we obtain a deduction of i : A from I' and —L. This
deduction can be easily rewritten into a deduction of 7: A from I'. O

We can finally prove our main theorem.

THEOREM 51. If T'<k bux @ : A, there is a normal deduction II of
1: A from T« such that every formula occurrence of II is a subformula
either of an element of Tep, orof i: A, orof j:T(“L”) withk >j>
i, with the exception of the assumptions discharged by an application of
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the L-rule, and the occurrences of the form j : L occurring immediately
below an assumption.
Proof. The proof follows from Lemma 48 and Lemma 50. O

5. Related Work

In the area of logical frameworks for the formalization of contexts, there
are various approaches which are somehow similar to ML systems. In
particular we consider Gabbay’s Labelled Deductive Systems (LDS)
(Gabbay, 1994) and McCarthy’s propositional logic of contexts (Buvac
and Mason, 1993). We discuss below Masini’s 2-sequent calculi (Masini,
1992), because of its similarity with MK and their relation to modal
logics.

5.1. GABBAY’S LABELLED DEDUCTIVE SYSTEMS

LDSs are very general logical systems. They are based on two logical
languages: a data language and a labelling language. The data lan-
guage, usually a propositional, modal or first order language, allows to
express facts about a specific domain. As it happens with ML systems,
in LDSs facts are stated in a context, which is a point, in an algebraic
structure. The labelling language, which in most cases is a first order
language, allows us to predicate about such an algebraic structure. A
theory in an LDS is composed of two classes of statements: declarative
units, namely pairs label : formula (e.g., A : A) representing the fact
that a formula holds at a point in the algebraic structure, and formulas
in the labelling language (e.g., A1 < A2), which express properties of the
algebraic structure. Analogously, the deductive machinery of an LDS
allows one to reason about both declarative units and formulas in the
labelling language.

The most natural analogy between LDSs and ML systems can be
obtained by seeing LDS’s labels as indexes in ML systems. This analogy
is reasonable as indexes in ML systems allow to structure a flat set of
statements into a set of interacting theories, and labels in LDS allow
to structure a flat set of statements into a set of points of an algebraic
structure.

A first main difference between the two approaches concerns the
data languages. An LDS contains a single data language, while in ML
system each index has associated its own data language. In LDSs, any
formula of the data language can be stated in any point of the algebraic
structure, namely, the set of declarative units is the cartesian product
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of the set of labels (= terms of the labelling language) and the formulas
of the data language. Differently in ML systems, formulas can be stated
only in those contexts where they belongs to the associated language.

The second main difference concerns labels. In LDSs, labels are
part of the logic while in ML systems labels (indexes) are not. This
means that an LDS contains terms for labels (constant variables, and
functions) denoting points in the algebraic structure and predicates on
labels representing relations among points of an algebraic structure.
Moreover in LDSs, it is possible to reason about labels. In ML systems
indexes (labels) are just constants, they are not part of a logical lan-
guage, and there is no specific set of inference rules to reason about
them.

A more effective and detailed comparison among ML systems and
LDSs can be done by focusing on a specific sub-class of LDSs. A spe-
cial class of LDSs, called Modal LDSs (MLDSs), have been studied in
(Russo, 1996) and used to provide a uniform natural deduction style
proof system for all normal modal logics. The class of MLDSs is the
analogous of the class of MR systems. To make this analogy clearer let
us recall some intuitions and terminology of MLDSs.

The data language of MLDSs is any propositional modal language,
and its labelling language is a first order language containing the binary
relation R. The data language represents the syntax of modal logics and
the labelling language formalizes the set of Kripke frames on a set of
possible worlds, where labels denote possible worlds, and the relational
symbol R denotes the accessibility relation. An MLDS is associated
with a labelling algebra, which is a set of axioms about R. An MLDS
configuration is composed of a set of R-literals (expressions of the
form R(A1,A2) ["R(A1, A2)] with the intuitive meaning that Ay is [not]
accessible from A1) and a set of declarative units. Inference rules for
MLDS are given in a Natural Deduction style. They are defined among
configurations. The application of an inference rule to a configuration
can add new declarative units and/or R-literals.

In MLDSs there are three classes of rules, namely, Classical Rules,
Modal Rules, and Structural Rules. Classical Rules infer a declarative
unit from a set of declarative units with the same label. An example of
Classical Rule is the following:

CA:ANB)
C'(n:4)y

with the following meaning: from the configuration C containing A :
A A B, it is possible to infer a configuration C' containing C' and X : A.
Classical Rules correspond to i-rules in MR systems.
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Modal Rules allow for the introduction and elimination of modal
operators. This is done by inferring declarative units in a label A from a
declarative unit in a label X’ that is related with X via R. Two examples
of Modal Rules are the following;:

C([R(X, box A (A))])

C(\:OA, R(\N)) C’(bo;z:A:()\) . A)
C'(N : A) e C"(\: OA)

[Zug] can be read as follows: if OA holds in possible world A (A :
0A) and ) is accessible from A (R(\,\')), then A holds in . [Zg/]
can be intuitively read as, to prove that 0A holds in A, consider any
world accessible from A, (notice that this world depends from A and
from A then it is denoted by box4(A)), if A is true in such a world
(box4(X) : A), then it is possible to conclude that OA is true in .
Modal Rules correspond to reflection rules in MR systems. The above
rules, for instance, correspond to Rgn. and restricted Ry respectively.
Notice that the technical trick of introducing the label boz4()) is the
counterpart of the restriction in the application of the Ry rule.

Finally, Structural Rules allow us to infer R-literals from the axioms
of the labelling algebra of an MLDS. Structural Rules are composed of
a rule for classical first order reasoning in the labelling language, and
rules for propagation of L through accessible worlds. These rules don’t
have any counterpart in MR systems, as in MR systems there is no
reasoning about the structure of contexts.

Let’s now discuss analogies and differences between MR systems and
MLDSs. The first point concerns the different intuitive interpretation
of labels. In MLDS a label, in most cases, denotes a possible world
in a Kripke Structure (in some cases, a label denotes a point with no
associated possible world, when a label A is such that A : L holds), while
in an MR system an index (label) i denotes a theory in the language
L;, i.e., set of interpretations of L; (truth assignments to the atoms
of L;). As a consequence, the assumption A : A in a deduction of an
MLDS formalizes the hypothesis “let’s suppose that A holds at the
world A”, while the assumption 7 : A in a deduction of an MR system
formalizes the hypothesis “let’s suppose the set of interpretations of L;
that satisfy A”. The accessibility relation R of an MLDS corresponds to
the partial order < in an MR system. The correspondence, however, is
not straightforward, as R and < are defined on different objects (worlds
versus theories). The R-literal R(\,A’) in an MLDS configuration cor-
responds, in MR systems, to the fact that, if A denotes a world with
a the truth assignment which is a model of the ¢-th theory, and j < 4,
then )\’ denotes a world with a truth assignment which is a model of

Inr



38 L. Serafini and F. Giunchiglia

the j-th theory. The analogy is deeper when we consider the special
label box 4(A). Such a label, indeed, is supposed to span over a set of
possible worlds accessible from A and associated with A. Therefore if A
denotes a world with an assignment which is a model of the i-th theory,
and j < 4, then boz4(\) denotes any world with an assignment which
is a model of the j-th theory.

The second difference concerns the structure of the labels/indexes.
An MR system contains a single relation < on the set of indexes. There
is no trivial way to consider multiple or partially specified accessi-
bility relations. In an MLDS, instead, it is possible to reason about
partially specified accessibility relations. An MR system corresponds
to an MLDS in which the labelling algebra has a single model. This
difference makes MR systems not applicable when label structure is
partially known and it is necessary to reason about it. On the other
hand, MR systems are more suitable when the structure of the labels
is completely known. Such a structure can be left implicit both in the
syntax (there is no logical language and inference rules for labels) and in
the semantics (there is no specific model for the domain of the labels).
This is the case, for instance, of well known modal logics. Indeed the
MR systems for normal modal logics MBK, MB4, MB5, and MB45
defined in Subsection 3.2, result simpler than the analogous MLDSs,
as they don’t contain any structural rule (i.e., rules for labels).

5.2. McCARTHY’S PROPOSITIONAL LoGIicS OF CONTEXTS

In (Buvac and Mason, 1993) Buvat and Mason proposed a propositional
modal logic (called, from now on, BM-logic) which formalizes Mc-
Carthy’s intuitions about contexts, as discussed in (McCarthy, 1993).
Given a set K of labels, intuitively denoting contexts, BM-Logic is a
multi modal logic based on a set of atomic propositions P and the
modality ist(k, ¢) for each context (label) k € K. Differently from MR
systems, where formulas are stated in contexts, in BM-logic formulas
are stated in (possible empty) sequences of contexts & = ki ... k.
Intuitively the sequence of contexts k1k9 represents how context kg is
viewed from context k1. As a consequence, the intuitive meaning of the
formula ist(k, ¢) in the empty sequence of contexts, is that ¢ holds in
the context k; while the intuitive meaning of the same formula in the
sequence composed of the single context «’, is that ¢ holds in context &
as viewed from context x'. In general a formula ist(k, ¢) in a sequence of
contexts ki ...k, is interpreted as ¢ is true in the context x according
to how context 1 sees context ko ... sees context k.

The semantics of BM-logic is a function which assigns to each se-
quence of contexts K a set of truth assignments for a subset Vocab(%g) of
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the set of propositions P. Satisfiability is defined as usual; in particular
ist(k, @) is satisfied at & by an assignment, if ¢ is satisfied at K by all
the assignments associated to ®k. (RKk is the sequence obtained by the
concatenation of the sequence ® with the context label k € K). Fixed
a vocabulary Vocab, the axiomatization of the validity in the class of
models based on Vocab (i.e., the models that associate to each sequence
of contexts % a set of interpretations for Vocab(®)) contains the axioms
in each % for modal K restricted to Vocab(%), Modus Ponens, a form
of Necessitation rule (similar to our reflection up), and the following
axiom schema:

bz ist(ky,ist(ke, A) V B) D ist(k1,ist(ke, A)) Vist(k1, B) (A)

A detailed comparison between ML systems and MB logic is provided
in (Bouquet and Serafini, 2000). In the following we provide some hints,
without entering into the technical details. BM-logic can be reformu-
lated in a specific MR system. The ML system corresponding to the
BM-logic for a finite number n of contexts,? called MMCC (ML system
for McCarthy’s Contexts) is based on MBK(n), with the following
simple changes on the languages and on the applicability restriction
of Ryp.:

— The language of Lz is built on the set of propositions of Vocab(g);

— Ryprx is applicable with no restrictions if its premise of the form
Kk 1 ist(k', ¢). Otherwise it is applicable with the usual restriction.

As proved in (Bouquet et al., 1999), MB and MMCC are equivalent.
This equivalence is based on the analogy between the axiom (A) and
the relaxation on the restriction of Ry, %. Indeed both formalize the
semantic property that the assignments to the formula ist(x,$) in
the context Kk coincide in all Kk models, as they depend only on the
assignments to ¢ in the contexts ®xk'. In Appendix D we provide a
deduction of the formula in MMCC corresponding to the axiom (A)
above. In spite of their equivalence, there are two main differences
between MMCC and BM-logic.

The first difference is that MB logic, being a modal logic, does not
support the notion of logical consequence between formulas in different
context sequences. Satisfiability of a formula is defined with respect
to a context sequence; notationally this corresponds to the fact that
the satisfiability symbol is indexed by context sequence (}=g). The
logical consequence definable on the basis of =g is “local” to the
context sequence K. This approach does not allow for a definition of

2 The same process can be applied for a countable set.
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a logical consequence relation between formulas in different context
sequences. This limitation is reflected by the calculus of MB logic.
This calculus, indeed, allows one to prove only that a formulas is valid
in a context ® (denote by Fg), but it does not allow one to derive
the consequences in &' of a set of assumptions in & different from %'
Differently, MMCC allows us to derive a formula in a context under a
certain set of assumptions in different contexts.

A second difference concerns how BM-logic extends the multi modal
logic K(n). BM-logic extend K(n) with the axiom (A), while MMCC
simply modifies MBK(n) by weakening the applicability restriction of
R,p.. From the proof theoretical point of view, (A) is a complex axiom
schema and it might constitute an obstacle to the development of an
elegant proof theory and automatic decision procedures by generalizing
those for K(n). On the other side, MMCC is a simple extension of
MBK(n) (just a weakening of an applicability condition, no new rules
are introduced). This allows for a relatively easy adaptation of the
proof theoretical results of MBK (analogous to that of MK) to MMCC.
Finally the equivalence between MBK(n) and multi modal K, allow
for the definition of decision procedures for MMCC, which are simple
variants of the decision procedure for modal K(n).

5.3. MASINI’S 2-SEQUENT CALCULI

2-sequent calculi were introduced by Masini in (Masini, 1992) with
the goal of providing a cut free sequence calculus for the classical
and intuitionistic modal logics KD = K+-0O_1. Conceptually, 2-sequent
calculi are very similar to ML systems and LDSs. Indeed, as for ML
systems and LDSs, the intuition behind 2-sequents is to introduce more
structure in a set of formulas, and in particular in Gentzen sequents.
Masini, however, does not add structure using labels; he rather intro-
duces a vertical dimension in sequents. The resulting sequences are
called 2-sequents. Roughly speaking, 2-sequents are layered sequents.
The formulas on the two sides of the F symbol are arranged in a (pos-
sible infinite) number of layers. 2-sequents are graphically represented
as follows:

A

B,C | E,F

bf b6 (22)
H

(22) represents a 2-sequent composed of 4 layers. From top to bot-
tom, the first layer contains the formula A on the left hand side, and no
formula on the right hand side; the second layer contains the formulas
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B and C on the left side, and the formulas E and F on the right
hand side, and so on. 2-sequents are interpreted in Kripke Structures;
a 2-sequent I' - A is true at a world w; of a Kripke Structure, if, for
any sequence of worlds wi,ws, ... such that w; 1 is accessible from w;,
either there is a layer ¢ and a formula A € I at layer i such that w; [= A,
or for all layers j and for all formulas B € A at layer j, w; = B. For
instance, 2-sequent (22) is satisfied in w; if and only if, for any 4-tuple
of worlds w1, we, w3 and wy such that, each w;41 is accessible from w;,
we have that

wy = A and
wy = B and wq = C and
w3 |: D

wy = FE or wy = F or
w3 =G or
’UJ4|:H

implies that

The definition of satisfiability for 2-sequents suggests that layers in
2-sequents are similar to indexes of the MR system MBK (see also
Definition 16). A 2-sequent I' - A, with I finite and A a singleton or
empty, can be translated into a statement on the consequence relation
of MBK. Namely the 2-sequents:

Iy [y
T, - A T; k
r, r,

are translated in the following statements about MBK consequence
relation:

0:T¢g,...,i:0..oom:Tpy F i A
0:T¢g,...,:0...,n:T, F 0: L

2-sequents with multiple consequences cannot be directly translated
into statements about an ML.C.R.. However, we have that, because
of the definition of satisfiability, any 2-sequent with multiple conse-
quences can be transformed into an equivalent 2-sequent with a single
consequence. This can be done by negating and moving to the left of
the sequent sign all the consequences but one of the lower level. With
this simple transformation any finite 2-sequent can be translated in a
statement of a ML.C.R.. For instance the 2-sequent (22) corresponds
to

0:4, 1:B, 1:C, 2:D, 1:-E, 1:-F, 2:-G + 3:H (23)
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Masini defines a sequent calculus (called C-2SC) for 2-sequents, which
is sound and complete w.r.t. the modal logic KD. C-2SC is composed
of structural rules, rules for connectives, and rules for modal operators.
Structural rules and rules for connectives are a trivial generalization of
the corresponding rules for plain sequents; they involve only formulas
in a single layer. Rules for left and right introduction of the modal
operator [, instead, involve multiple layers. These rules are reported
in the following:

T

o A
gAm A T u

I A
—or — o

N re A
(Jz,DA}_A u, 0A

5

RESTRICTION: I~ O is applicable only if I' does not contain any formula
at a layer below p.

Under the standard translation of the modal formulas OA into B(“A”),
and of 2-sequents into statements about an ML consequence relation
(see above), C-2SC is logically equivalent and structurally very similar
to MBK extended with a special bridge rule, called L-Prop, which
propagates L to upper layers.

1+1: 1

1P
T rop

The extension of MBK with the L-Prop rule is justified as MBK is
equivalent to modal K, while C-25C is equivalent to KD. The differ-
ence between K and KD concerns the propagation of L through the O
operator. In K, indeed, 1 does not propagate through O, which means
that 01 D L is not K-valid; while in KD, | propagates, and OL D L
is KD-valid.

Not only is MBK+ _L-Prop equivalent to C-2SC, but it is also struc-
turally similar. Indeed, the rules for left and right introduction of the
connectives at level i correspond to the i-rules of MBK; the inference
rule O F applied to a formula at level ¢ corresponds to Rg,; and the
rule - O applied to a formula at level 4 corresponds to restricted Ryp.;-
Notice also the analogy between the restriction of the application of
F O and that on the applicability Ryp.; in MBK (see Definition 13).

An important difference between 2-sequents and MBK (and in gen-
eral ML systems) concerns the propagation of inconsistency through
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layers. In 2-sequents there is a notion of global inconsistency. Global
inconsistency is represented by the empty set of layers. For instance
the 2-sequent

A

BI—

states that B cannot hold in a world w which is accessible from a
world w’ where A holds. On the other hand 2-sequents do not allow
the representation of the fact that inconsistency is localized inside a
single layer. For instance, the following 2-sequent

AN-A
A/\—uA}_ (24)

is valid in C-2SC. (24) represents the fact that if layer 1 is inconsistent,
then the upper layer is inconsistent as well. Differently, in MBK, it is
possible to have inconsistency localized in a context (see Corollary 34).
While the weakest modal system formalized by C-2SC is KD, MR
systems allow for the formalization of normal modal logic K and also
for weaker systems (see (Giunchiglia and Giunchiglia, 2000)). As a last
remark, notice that the generalization of 2-sequents to multi modal
logics is not trivial, in the sense that the vertical structure of the
sequents should be translated in a more complex tree structure.

6. Conclusion

The work presented in this paper is part of a much larger project whose
goal is to provide logical and philosophical foundations for distributed
knowledge representation and reasoning systems. As argued in the
seminal paper (Giunchiglia, 1993) and in other successive papers, MR
systems closely resemble the current practice in distributed knowledge
representation and reasoning systems. In this paper we have provided a
proof theory for a large subclass of ML systems the class of MR systemms.
The result we have proved have the following main consequences. The
first concerns the representational properties of ML systems. Indeed,
this work offers an in depth understanding of the behaviour of a spe-
cific ML system, which can be reused for similar ML systems. The
second concerns the proof theoretical methodology for working with
ML systems. Indeed, the proof theory of MK (and its generalization to
MR systems) can be used as a guideline for the developement of the
proof theory of other ML systems. The last consequence concerns the
proof of properties of logical systems which can be embedded in ML
systems. Indeed, by proving the subformula property for MK we have
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indirectly proved the subformula property for a calculus for modal K.
Furthermore the generalization of subformula property to MR systemns,
such as MB4, MB5 and MB45, (equivalent to modal K4, K5, and K45)
will constitute a positive answer to the problem of the esistence of a
calculus with normal form for these logics.

Acknowledgements

The research described in this paper owes a lot to the openness and
sharing of ideas which exists in the Automated Reasoning Area at IRST
and in the Mechanized Reasoning Group of the University of Trento
and Genoa. Alex Simpson and Vanni Criscuolo have provided useful
feedback on many of the topics described in this paper. The discussions
with Massimo Benerecetti, Paolo Bouquet, Alessandro Cimatti, Chiara
Ghidini, Enrico Giunchiglia, Paolo Traverso, have provided useful in-
sights. We also thank Alessandro Agostini for his reading of earlier
versions of this paper.

References

Avron, A.: 1987, ‘Simple consequence relations’. LFCS Report Series, Laboratory for
the Foundations of Computer Science, Computer Science Department, University
of Edinburgh.

Benerecetti, M., P. Bouquet, and C. Ghidini: 1998a, ‘Formalizing Belief Reports
— The Approach and a Case Study’. In: F. Giunchiglia (ed.): Proceedings
AIMSA’98, 8th International Conference on Artificial Intelligence, Methodology,
Systems, and Applications, Vol. 1480 of LNAIL Sozopol, Bulgaria, pp. 62-75,
Springer Verlag.

Benerecetti, M., P. Bouquet, and C. Ghidini: 2000, ‘Contextual Reasoning Distilled’.
Journal of Theoretical and Ezperimental Artificial Intelligence. To appear.

Benerecetti, M., E. Giunchiglia, L. Serafini, and A. Villafiorita: 1999, ‘Formal spec-
ification of beliefs in Multi-Agent Systems’. International Journal of Intelligent
Systems 14(10), 1021-1040.

Benerecetti, M., F. Giunchiglia, and L. Serafini: 1998b, ‘Model Checking Multiagent
Systems’. Journal of Logic and Computation, Special Issue on Computational
& Logical Aspects of Multi-Agent Systems 8(3), 401-423. Also IRST-Technical
Report 9708-07, IRST, Trento, Italy.

Bouquet, P. and F. Giunchiglia: 1995, ‘Reasoning about Theory Adequacy. A New
Solution to the Qualification Problem’. Fundamenta Informaticae 23(2—-4), 247-
262. Also IRST-Technical Report 9406-13, IRST, Trento, Italy.

Bouquet, P. and L. Serafini: 2000, ‘Two formalizations of Context: a comparison’.
Technical Report 0006-01, ITC-IRST, Trento, Italy.

Bouquet, P., L. Serafini, P. Brezillon, M. Benerecetti, and F. Castellani (eds.): 1999,
‘Modelling and Using Context — Proceedings of the 2nd International and In-
terdisciplinary Conference (9-11 September 1999, Trento, Italy)’, Vol. 1688 of
Lecture Notes in Artificial Intelligence. Springer Verlag - Heidelberg.



A Proof Theory for Contexts 45

Bowen, K. and R. Kowalski: 1982, ‘Amalgamating language and meta-language in
logic programming’. In: S. Tarlund (ed.): Logic Programming. New York, pp.
153-173, Academic Press.

Buvac, S. and I. A. Mason: 1993, ‘Propositional logic of context’. Proc. of the 11th
National Conference on Artificial Intelligence.

Cimatti, A. and L. Serafini: 1996, ‘Multi-Agent Reasoning with Belief Contexts
II: Elaboration Tolerance’. In: Proc. 1st Int. Conference on Multi-Agent Sys-
tems (ICMAS-95). pp. 57-64. Also IRST-Technical Report 9412-09, IRST,
Trento, Italy. Commonsense-96, Third Symposium on Logical Formalizations
of Commonsense Reasoning, Stanford University, 1996.

Clarke, E., O. Grumberg, and D. Long: 1994, ‘Model Checking’. In: Proceedings of
the International Summer School on Deductive Program Design. Marktoberdorf,
Germany.

Dichev, C.: 1993, ‘Theory Reations and Context Dependencies’. In: Proceedings of
the 6th Australian Joint Conference on Artificial Intelligence (AI-93). Melburne,
pp. 266-272.

Dinsmore, J.: 1991, Partitioned Representations. Kluwer Academic Publishers.

Fagin, R. and J. Halpern: 1988, ‘Belief, awareness, and limited reasoning’. Artificial
Intelligence 34, 39-76.

Fisher, M. and C. Ghidini: 1999, ‘Programming Resource-Bounded Deliberative
Agents’. In: Proceedings of the Sizteenth International Joint Conference on
Artificial Intelligence (IJCAI’99). pp. 200-206, Morgan Kaufmann Publ., Inc.

Gabbay, D.: 1994, ‘Labeled Deductive Systems Volume 1 — Foundations’. Technical
Report MPI-1-94-223, Max-Planck-institut fir Informatik.

Giunchiglia, E. and F. Giunchiglia: 2000, ‘Ideal and Real Belief about Belief’. Journal
of Logic and Computation. To appear, Also IRST-Technical Report 9605-04,
IRST, Trento, Italy.

Giunchiglia, F.: 1993, ‘Contextual reasoning’. Epistemologia, special issue on I
Linguaggi e le Macchine X VI, 345-364. Short version in Proceedings IJCAI’93
Workshop on Using Knowledge in its Context, Chambery, France, 1993, pp.
39-49. Also IRST-Technical Report 9211-20, IRST, Trento, Italy.

Giunchiglia, F. and P. Bouquet: 1998, ‘A Context-Based Framework for Mental Rep-
resentation’. In: Proceedings of the Twentieth Annual Meeting of the Cognitive
Science Society - CogSci’98. Madison, Wisconsin.

Giunchiglia, F. and C. Ghidini: 1998, ‘Local Models Semantics, or Contextual Rea-
soning = Locality + Compatibility’. In: Proceedings of the Sizth International
Conference on Principles of Knowledge Representation and Reasoning (KR’98).
pp. 282-289, Morgan Kaufmann. Also IRST-Technical Report 9701-07, IRST,
Trento, Italy.

Giunchiglia, F. and L. Serafini: 1994, ‘Multilanguage Hierarchical Logics (or: how
we can do without modal logics)’. Artificial Intelligence 65, 29-70. Also IRST-
Technical Report 9110-07, IRST, Trento, Italy.

Giunchiglia, F., L. Serafini, E. Giunchiglia, and M. Frixione: 1993, ‘Non-Omniscient
Belief as Context-Based Reasoning’. In: Proc. of the 13th International Joint
Conference on Artificial Intelligence. Chambery, France, pp. 548-554. Also
IRST-Technical Report 9206-03, IRST, Trento, Italy.

Giunchiglia, F., L. Serafini, and A. Simpson: 1992, ‘Hierarchical meta-logics: in-
tuitions, proof theory and semantics’. In: Proc. of META-92, Workshop on
Metaprogramming in Logic. Uppsala, Sweden, pp. 235-249, Springer Verlag. Also
IRST-Technical Report 9101-05, IRST, Trento, Italy.



46 L. Serafini and F. Giunchiglia

Giunchiglia, F. and P. Traverso: 1996, ‘A Metatheory of a Mechanized Object The-
ory’. Artificial Intelligence 80(2), 197-241. Also IRST-Technical Report 9211-24,
IRST, Trento, Italy, 1992.

Masini, A.: 1992, ‘2-Sequent calculus: a proof theory of modalities’. Annals of Pure
and Applied Logic 58, 229-246.

McCarthy, J.: 1979, ‘Ascribing Mental Qualities to Machines’. In: M. Ringle (ed.):
Philosophical Perspectives in Artificial Intelligence. pp. 161-195, Humanities
Press. Also in V. Lifschitz (ed.), Formalizing common sense: papers by John
McCarthy, Ablex Publ., 1990, pp. 93-118.

McCarthy, J.: 1993, ‘Notes on Formalizing Context’. In: Proc. of the 13th In-
ternational Joint Conference on Artificial Intelligence. Chambery, France, pp.
555-560.

McCarthy, J. and S. Buva¢: 1998, ‘Formalizing Context (Expanded Notes)’. In:
A. Aliseda, R. van Glabbeek, and D. Westerstahl (eds.): Computing Natural
Language, Vol. 81 of CSLI Lecture Notes. Center for the Study of Language and
Information, Stanford University, pp. 13-50.

Mylopoulos, J. and R. Motschnig-Pitrik: 1995, ‘Partitioning Information Bases
with Contexts’. In: Third International Conference on Cooperative Information
Systems. Vienna.

Noriega, P. and C. Sierra: 1996, ‘Towards Leayered Dialogical Agents’. In:
J. P. Miiller, M. J. Wooldridge, and N. R. Jennings (eds.): Proceedings of the
Third International Workshop on Agent Theories, Architectures, and Languages
(ATAL-96), ECAI-96, Vol. 1193 of LNAIL Budapest, Hungary.

Parsons, S., C. Sierra, and N. Jennings: 1998, ‘Agents that reason and negotiate by
arguing’. Journal of Logic and Computation 8(3), 261-292.

Penco, C.: 1999, ‘Objective and Cognitive Contexts’. In: P. Bouquet, L. Serafini, P.
Brezillon, M. Benerecetti, and F. Castellani (eds.): Modelling and Using Context
— Proceedings of the 2nd International and Interdisciplinary Conference, Con-
text’99, Vol. 1688 of Lecture Notes in Artificial Intelligence. pp. 270—283, Springer
Verlag - Heidelberg. http://www.dif.unige.it/epi/hp/penco/pub/0C.ps.

Prawitz, D.: 1965, Natural Deduction - A proof theoretical study. Almquist and
Wiksell, Stockholm.

Russo, A.: 1996, ‘Modal Logics as Labelled Deductive Systems’. Ph.D. thesis,
Imperial College of Science, Technology and Medicine, University of London,
London, UK.

Serafini, L. and C. Ghidini: 2000, ‘Using wrapper agents to answer queries in
distributed information systems’. In: Proceedings of the Fourth International
Conference on MultiAgent Systems (ICMAS’2000). IEEE Computer Society
Press. Long version in IRST-Technical Report 9911-01, IRST, Trento, Italy.

Sharma, N.: 1995, ‘On Formalising and Reasoning with Contexts’. Technical Re-
port Technical Report 352, Department of Computer Science, The University of
Queensland, Australia.

Subrahmanian, V.: 1994, ‘Amalgamating Knowledge Bases’. ACM Trans. Database
Syst. 19(2), 291-331.

Weyhrauch, R.: 1980, ‘Prolegomena to a Theory of Mechanized Formal Reasoning’.
Artificial Intelligence 13(1), 133-176.



A Proof Theory for Contexts 47
Appendix
A. ML inference rules

An n-any inference rule is a tuple of three elements: an n+1-ary relation
between formulas, which represents all the possible applications of the
rule; n discharging functions, one for each premiss, each computing the
assumptions discharged by any application of the rule; and a restriction
relation which represents the cases where the rule is not applicable.

DEFINITION 52. An n-ary inference rule I from 41,...%, to 4, is
composed of:

1. an n + l-ary relation:
p(1) is a recursive subset of (41 : Lj; X ... X ip 1 Ly, X1 : L;);

2. n discharging functions:
di(1),...,d,(1) are n recursive functions where d (1) : p(1) — 27,
for each 1 < k < n.

3. an applicability restriction:
rest(I) is a recursive subset of (217 x 4y : L) x ... x (287 x iy, :
LG) X g : Lz
We say that (i1 : A1,...,%, : Ap,i: A) is an application of 1if and only
if it is in p(1).
An ¢-rule is defined as a multi-language version of some ND inference

rule at 1.

DEFINITION 53. If 1 is an n-ary ND inference rule, described as a
tuple (p(1),d1(1),...,d,(1), rest(1)), then its multi-language version with
index 7 is 1; = (p(1;),d1 (L), - - ., dn (1), rest(1;)) where:

1. (it Ay, .oy Apyis A) € p(1;) if and only if (Ay,...,4,,A4) € p(1)
2.i:Bedi(y)(i: A1,...,i: Ay, i: A)ifand only if B € di(1)(A41,..., 4, A).

3. ((T1,i = A1),...,(Tpyi = Ap),i @ Ap) € rest(y;) if and only if
((G1,A1),...,(Gp, A)pn, A) € rest(1). wherei: Gy, CTy (1 <k <n)
is the set of all the wifs with index 7 occurring in T'.

A bridge rule is any ML inference rule which is not an i-rule.

B. MK basic properties

PROPOSITION 54. Let A, B and C be any L;-wffs. Then the following
are theorems of MK:
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1.i+1:T(“AANB”)=T(“A”) NT(“B”)
2.1+ 1:T(“A”)VT(“B”) DT(“AV B”)
3.1+1:T(“AVB”) D (T(“ADC”)ANT(“BD>C”) DT(“C”))
4.1+ 1:T(“L”) DT(%A”)
5.1+ 1:-T(“L”) D (T(“A”) D =T (“~A”))
6.1+1:T(“A”) DT(“BD A”)
7.i+1:T(“-A") DT(“AD B”)
8.1+1:T(“ADB”) D (-T(“~A") D -T(“~B”))
9.1+ 1:(T(“A”)AN=T(“B”)) D -T(“~(AAN-B)")
10. i+1:T(“Av B”) D (-T(“-~A”)VT(“B”))
11. i+ 1: -T(“~(AD B)")VT(“B D> A”)
12.i+1:-T(“-(AD B)”) = (T(“A”) D =T (“~B”))
18. i+1: (=T (“~A") D T(“B”)) D T(“A D B”)
14. i+ 1:(=T(“=A") DT(“B”)) D (-T(“=A”) D -T(“=B”))
15.i+1:T(“ADB”) D> ((-T(“B”) DT(“A”)) DT(“B”))

Proof. We provide the proofs of the first six theorems, we let the
others to the reader.

b i+1:T(“A> B) i1 T(A”)
i:ADB Ran.i i:AD
i: B
i+1:T(“B)
i+1:T(“4") > T(‘B") .
i+1:T(“A>B") > (T(“A) 5 T(*B))

Rdn.i

E;

Rup.i

Dlit1

i+1:T(“AAB”) i+1:T(“AAB")
i:AAB o dn.i i:AAB o Ran.s
4 Rup.i @B R,
i+1:T(“A") i+1:T(“B") AL
i+1:T(“A")AT(“B”) B
i+1:T(“AAB’) D T(“A”) AT(“B”) Plits
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i+1:T(“A’) AT(“B) i+1:T(“A") AT(“B)

AE; AE;
i+1:T(“A) " i+1:T(“B") s
R Rdn.i - < Rdn.i
i: A i1: B AL
i:AAB R . ‘
i+1:T(“AAB) ™" o
i+1:T(“A)AT(“B") DT(“AAB)
3.
i41:T(“A” i+1:T(“B”
# Ran.i # Ran.i
_itA e _i:B VL
i:AVB " ) i:AVB " )
i+1:T(“A)VT(“B”) i+1:T(“AvB) ™" i4+1:T(“AV B”) VEN
i+1:T(“AV B") o o
i+1:T(“A")VT(“B") D T(“AvB") ~ '™
4.
i+1:T(“ADC")AT(“B > C”) i+1:T(“ADC")AT(“B D C”)
; « ” AEit1 . < " AE; 41
i+1:T(“ADC”) i+1:T(“ADC")
i+1:T(*AV D) it A i:A>C dnd i:B i:B>C dn-d
i:AVB Ran. i:C oF i:C -

1:C VE;
i+1:T(“C”)
i+ 1:T(“ADC")AT(“BDC”) DT(“C”)

Rup.i

DLi+1

DI;
i+1:T(“AVB") D (T(“AD C")AT(“BD C”) DT(“C")) ~
5.
i+1:T(“L”)
————— Ruani
il
- 1,
7: A R
sy
i+1:T(L(J_”):)T(L(A”) it1
6.
i+1:T(“A”) i+1:T(“A”)
————— Rani ————5— Rani
i: A 7: A
- DE;
il Rue s
i+ 1:-T(“L”) i+1:T(eL)
- DEit1
t4+1:1 1L
i+ 1: T (“=A”) o o
i+1:T(“A”) D -T(“-A") "
DLiy1

,L'+ 1 : _|T(“J_7’) D (T(“A”) D ﬂT(“ﬂA”))

PROPOSITION 55. Let A, B and C be L;-wffs. Then:

1i+1:T(“A")VT(“B”),i+1:T(“AD C”),i+1:T(“B D C”) hyx
i1:C
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2.i+1:T(“A")VT(“B"),i: ADC,i: B> Chuxi:C

3.i+1:-T(“A”) DT(“B”),i:—Abyxi:B
Proof. 1

i+1:T(“A>C”) i+1:T(“B) i+1:T(“B>C”)
T ASC T B Rani—Tp50C dni
1:C * i:C
L TeA) VTeEY)  TETITCC) LT
i1 T(C™)

i:C

i+1:T(“A”)
DE;

i: A

Rup.i

VE;t+1

Rup.i

Ran.;

i+ 1:T(“A”) i+1:T(“B”)
——— Ran. ————%— Ran.
i: A i: B
- VI, - VI
i: AV B i: AV B

. Rup.i
Pt i f1:T(cAv BY) Pt
VE;4+1
i:A 1:ADC i:B i:BDOC
T C DE; T C
G LY VE;

i+1:T(“A”)VT(“B”) i+1:T(“AV B”) R
i+1:T(“AV B”)
i:AVB dn.i
i:C

3
i4+1:-T(“A”) i+1:-T(“A”) D T(“B”)
- DE;11
i+1:T(“B")
1: B
1:mADB oL R
i+1:T(“~“AD>B”)  "Pi+1:=T(“-AD B”)
i+1: 1
— = |,
i+1:T(cA7)
T aia Bar gy -
iil o !
i:B '
i:-ADB i
i+1:T(“~AD B")

dn.i

DE;11

Ru .1
PY i 41:=T(“-AD B”)

DEit+1

1+1: 1 Iy
it1:T(“~A>B") "

1:mADB Ran.s 7:-A SE;

i: B ¢

C. Normal Form for MK

The reduction steps for the connectives described in (Prawitz, 1965)

are the following:
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A-reduction:

-Hl .H2
‘77 ¢ j:D AL .Hl
j:C/\D/\E_ {j:C} (25)
j:C* J I3
I3

IT' is a deduction of i : A from T'. Indeed j : C in II' depends on a
subset of the assumptions of j : C* in II.
V -reduction:

I [1:C] [i:D] 11
_J:C g I T (7:0)
j:CvD "7 j:E j:EVE- I, (26)

j:E I {j : B}
H4 H4

IT" is a deduction of i : A from T'. Indeed by Lemma 22, j : E in IT'
depends on a subset of the assumptions of j : E*® in II. The symmetrical
versions of the A-reduction and of the V-reduction, (when the conse-
quence of AE; is i : D and the premiss of the VI; is ¢ : D respectively)
are defined analogously.

D -reduction:

[Jﬁc] I,
1 :
Do T ) (27)
C>D 77 j4:.cC ol
! i D® ] DE] {.7 : D}
Jf[3 HB

IT' is a deduction of 4 : A from I'. Indeed by Lemma 22 the occurrence
j : D in II', depends on a subset of the assumptions of j : D*® in II.
L_reduction

A
J C/\DAEj . j:,C/\D/\Ej
j:C j.CDE~ j:—-D ]:DDE_
. J . y]
j:~(CAD) j:l DIJ' #Dlj
I (4:=(CAD)) (4:=(CAD))
j: L I, (28)
J:%./\D j:J_J_- j.J_J_-
’ i:C " i:D W
{j:CAD} ’
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%—reduetion

j:D j:-D
j:—(C D D) J:i
Iy (j: =(C D D))
gL I (29)
j:C>D gL
Iy j:D
j:C>D
I,

D. From BM-logic to MMCC

Proof of the A-axiom schema of Buva¢ and Masons’s propositional
logics of contexts:

(A) ist(ky, “ist(ke, “A”)V B”) D ist(ky, “ist(kq, “A”)”) Vist(k1, “B”)

In the following proof Prem(A) and Cons(A) denote the premise and
the consequence of A.

% : Prem(A) Re -
Rk @ ist(ke, A) V B dn.Rr1 kK1 : B

RK1 :ist(ka, A)

R —
K :ist(k1,ist(ka, A)) v;p.nm
% : Cons(A) " % : 7Cons(A)
— D)
K:l n
K :ist(k1, L) R -
Rk T dn.KK1
kK1 : B
— . ./ Py Ru KK
R :ist(k1, B) VIf. !
%:Cons(A) 7" % : ~Cons(A)
k: L PR

% : Cons(A) =



