
The difficulty of prime factorization is
a consequence of the positional numeral system

Yaroslav D. Sergeyev∗

Abstract

The importance of the prime factorization problem is very well known
(e.g., many security protocols are based on the impossibility of a fast factor-
ization of integers on traditional computers). It is necessary from a number k
to establish two primes a and b giving k = a · b. Usually, k is written in a po-
sitional numeral system. However, there exists a variety of numeral systems
that can be used to represent numbers. Is it true that the prime factorization is
difficult in any numeral system? In this paper, a numeral system with partial
carrying is described. It is shown that this system contains numerals allow-
ing one to reduce the problem of prime factorization to solving [K/2] − 1
systems of equations, where K is the number of digits in k (the concept of
digit in this system is more complex than the traditional one) and [u] is the
integer part of u. Thus, it is shown that the difficulty of prime factorization is
not in the problem itself but in the fact that the positional numeral system is
used traditionally to represent numbers participating in the prime factoriza-
tion. Obviously, this does not mean that P=NP since it is not known whether
it is possible to re-write a number given in the traditional positional numeral
system to the new one in a polynomial time.
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1 Introduction

In the prime factorization problem it is necessary from a number k written in a po-
sitional numeral system to reestablish two primes a and b such that k = a · b. The
importance of this problem is very well known. For instance, many security proto-
cols are based on the impossibility of a fast factorization of integers on traditional
computers. Numerous algorithms working with conventional and unconventional
paradigms have been proposed for this purpose (see, e.g., [1,3,6,25] and references
given therein). In particular, the result of Shor (see [25]) showing that this problem
can be efficiently solved on a quantum computer has attracted a great attention not
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only of specialists but also of a general public (on October 2016 Google Scholar
reports almost 6000 citations to his paper [25]).

Traditionally it is tacitly supposed that a number to be factorized is written in
a positional numeral system, and prime factors to be found should be written in
the same system, as well. This paper separates the problem of factorization of a
number from the problem of representation of the number. What will happen if
the positional system is substituted with another numeral system? Will the fac-
torization problem remain as difficult as it is with the usual positional system? In
fact, there exists a variety of other numeral systems that can be used to represent
numbers: Egyptian system, Roman system, unary system, etc. (see, e.g., [4] for nu-
merous examples of numeral systems). It is well known that operations with some
numerals are more difficult than with others. For instance, division with Roman
numerals is rather tricky (see, e.g., [8]).

In order to start the discussion it is obligatory first to consider the positional nu-
meral system. Such a system with a finite integer radix r uses symbols {0, 1, . . . , r−
1} called digits. In this system, an integer a is expressed by the record

(anan−1 . . . a1a0)r, (1)

where all digits ai satisfy the condition 0 ≤ ai ≤ r − 1, 0 ≤ i ≤ n, and the
numeral (1) represents the quantity calculated as follows

a = anr
n + an−1r

n−1 + . . .+ a1r
1 + a0r

0. (2)

Thus, the quantity that represents by each digit ai depends on its position in the
numeral (1). The finiteness of r and the fact that each digit ai satisfies the condition
0 ≤ ai ≤ r − 1, 0 ≤ i ≤ n, leads to the necessity to carry forward digits to the
position i+1 if a result of an arithmetic operation in a position i is larger than r−1.

Notice that there exist mathematical objects such that operations of multipli-
cation and addition with these objects are executed without carrying. The first
example is obviously polynomials. Let us consider, for instance, the following
multiplication

(a2x
2+a1x

1+a0) · (b2x2+ b1x
1+ b0) = k4x

4+k3x
3+k2x

2+k1x
1+k0. (3)

Carrying is not present here since the value of x is not defined and coefficients of
the resulting polynomial are calculated as follows

k4 = a2b2, k3 = a2b1 + a1b2, (4)

k2 = a2b0 + a1b1 + a0b2, k1 = a1b0 + a0b1, k0 = a0b0. (5)

The second example of addition and multiplication without carrying is a recently
introduced numeral system allowing one to execute numerical computations with
infinite and infinitesimal numbers (see [9,14,16,21,22] and the patent [18] describ-
ing the Infinity Computer able to work with this kind of numbers). In this numeral
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system, the radix b is infinite and all digits ai are finite. Thus, in practical compu-
tations where the number of operands is finite it cannot happen that multiplication
or addition of two digits is infinite and so there is no necessity for carrying. Com-
putations of this kind have shown to be very efficient in a number of applications
(see, e.g., [5, 7, 10, 13, 15, 17, 19, 20, 23, 24, 26, 27]).

In this paper, the problem of prime factorization where numbers k, a, and b are
represented in the positional numeral system (1), (2) is not discussed. A positional
numeral system with partial carrying is described (Section 2) and it is shown (Sec-
tion 3) that prime factorization in this system is much easier than the same problem
with numbers expressed in the system (1), (2). Examples are given in Section 4 and
Section 5 concludes the paper. Notice that the results obtained in this paper do not
imply that P=NP since it is not known whether it is possible to re-write a number
given in the traditional positional numeral system to the new one in a polynomial
time.

2 A positional numeral system with partial carrying

In the numeral system with partial carrying called Pr hereinafter prime numbers
are written in the usual positional way with the base r as in (1), (2) where r is a
positive integer. All other numerals are constructed as results of operations with
primes following the rules of operations with polynomials (see, e.g., [2] for detailed
discussions on work with polynomials), i.e., without carrying between powers of
x, where it is taken x = r. Let us show a way to construct numerals in Pr using
multiplication (that will be of a principal interest in this paper) and following an
analogy with multiplication of polynomials. A numeral obtained as the result of
multiplication of two prime numbers is called the generative form hereinafter.

We consider two prime numbers a and b and their product k = a · b written in
the system Pr in the generative form, i.e., as the result of multiplication of a and b
with partial carrying, where

a = (anan−1 . . . a1a0)r = anr
n + an−1r

n−1 + . . .+ a1r
1 + a0r

0, (6)

b = (bmbm−1 . . . b1b0)r = bmrm + bm−1r
m−1 + . . .+ b1r

1 + b0r
0, (7)

0 ≤ ai ≤ r − 1, 0 ≤ i ≤ n, 0 ≤ bj ≤ r − 1, 0 ≤ j ≤ m. (8)

and the result of multiplication is

k = kn+mrn+m + . . .+ k1r
1 + k0r

0, (9)
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where numbers ki, 0 ≤ i ≤ n+m, are calculated as follows

kn+m := anbm,
kn+m−1 := anbm−1 + an−1bm,
kn+m−2 := anbm−2 + an−1bm−1 + an−2bm,

. . .
ks :=

∑
j + j = s
0 ≤ i ≤ n
0 ≤ j ≤ m

aibj

. . .
k2 := a0b2 + a1b1 + a2b0,
k1 := a0b1 + a1b0,
k0 := a0b0,


. (10)

In the numeral system Pr, since it works following the rules of polynomials, con-
ditions analogous to (8) can be broken with respect to k during multiplication as
far as there is no carrying between powers of x = r. In fact, there can be numbers
ki such that ki > r and to express them in the positional system with the radix r
more than one symbol can be required, i.e., it can be that

ki > r, ki = (ki,jki,j−1 . . . ki,0)r, 0 ≤ ki,l ≤ r − 1, 0 ≤ l ≤ j. (11)

In case condition (11) holds for ki, it is called compound digit, whereas digits kj
consisting of one symbol only and satisfying condition 0 ≤ kj ≤ r − 1 are called
simple digits. The product k has so K+1 digits ki, 0 ≤ i ≤ K, where K = n+m
and some digits can be simple and other compound. The numeral system Pr is
called “with partial carrying” since the carrying is present inside compound digits
but is not executed between digits ki and ki+1, 0 ≤ i < K. In order to separate
compound and simple digits some signs should be used. For instance, compound
digits can be bounded by signs | or underlined in a way. Let us show hot to do it by
the following example.

We wish to multiply two prime numbers a and b using Pr and to compute
k = a · b where

a = (a2a1a0)r, b = (b2b1b0)r, (12)

digits of a and b satisfy (8), and k is calculated following (10). Since for both a and
b we have n = m = 2, it follows from (10) that K = 2 + 2 = 4 and the product k
will contain 5, digits: k4, k3, k2, k1, and k0. If we suppose that digits k4, k2, and
k0 are simple and digits k3 and k1 are compound such that k3 = (k3,2k3,1k3,0)r
and k1 = (k1,1k1,0)r, then the number k can be written either as

k = (k4|k3,2k3,1k3,0|k2|k1,1k1,0|k0)r

or as
k = (k4 k3,2k3,1k3,0 k2 k1,1k1,0 k0)r.

Let us give a numerical example (the first way to separate compound digits is used
hereinafter). Suppose that we wish to multiply prime numbers a = 127 and b =
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359 written using r = 10. Then in the traditional decimal system we have k =
127 · 359 = 45993. In the numeral system P10, by applying formulae (3)–(5) we
get

k = 1·3·104+(1·5+2·3)·103+(1·9+2·5+7·3)·102+(2·9+7·5)·101+(7·9)·100 =

3 · 104 + 11 · 103 + 40 · 102 + 53 · 101 + 63 · 100 = 3|11||40||53||63|. (13)

It should be emphasized that Pr allows multiple representations of integers.
Together with the generative way of constructing new numerals other representa-
tions are also possible as results of addition, subtraction, and division. For instance,
the quantity represented by the numeral k from (13) can be obtained as the result
of addition

1 + 1 + 1 . . .+ 1 + 1︸ ︷︷ ︸
45993 addends

= |45993|

giving us only one compound digit equal to 45933. It can be represented also as
numerals obtained by adding lacking quantities to generative numerals obtained by
multiplication of two primes less than a = 127 and b = 359, etc.

Notice also that, as it happens for polynomials where their coefficients can
be positive or negative, subtraction in Pr can lead to numerals having negative
(compound or simple) digits. Signed-digit representations are well known (see,
e.g., [11,12] and references given therein for discussions on advantages and disad-
vantages of several kinds of these systems).

3 Generative representation and prime factorization

Let us consider now the problem of prime factorization using numerals written
in Pr. Suppose that there are two prime numbers a and b from (6), (7) and their
product k = a · b from (9) is written in the system Pr in the generative form, i.e.,
as the result of multiplication of a and b with partial carrying calculated follow-
ing (10). Suppose also that numbers n and m are known. Our goal is to reestablish
numbers a and b from k.

To do so let us consider (10) as a system of n+m+1 equations with n+m+2
unknowns ai, 0 ≤ i ≤ n, and bj , 0 ≤ j ≤ m, and the known numbers ki, 0 ≤
i ≤ n+m.

anbm = kn+m,
anbm−1 + an−1bm = kn+m−1

anbm−2 + an−1bm−1 + an−2bm = kn+m−2

bm−3 + an−1bm−2 + an−2bm−1 + an−3 = kn+m−3

. . .
b3 + a1b2 + a2b1 + a3 = k3
a0b2 + a1b1 + a2b0 = k2
a0b1 + a1b0 = k1
a0b0 = k0,

(14)
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The following theorem then follows.

Theorem 1 Suppose that primes a and b and their product k = a · b are written
in the system P2 in the generative form and numbers n and m from (6), (7) are
known, then system (14) can be reduced to a system with n+m− 1 equations and
n+m− 2 unknowns giving so the possibility to find a and b.

Proof. Since the product k is written in the generative form, numbers ki, 0 ≤
i ≤ n+m, are known. Then, due to the fact that r = 2 and n and m are known, it
should be an = bm = 1. Numbers a and b are primes, therefore, they are odd and
this implies that a0 = b0 = 1. Thus, (14) re-written using the established values
an = bm = a0 = b0 = 1 (and with the first and the last lines omitted since they
are identities) becomes

bm−1 + an−1 = kn+m−1

bm−2 + an−1bm−1 + an−2 = kn+m−2

bm−3 + an−1bm−2 + an−2bm−1 + an−3 = kn+m−3

. . .
b3 + a1b2 + a2b1 + a3 = k3
b2 + a1b1 + a2 = k2
b1 + a1 = k1

(15)

This system contains n+m− 1 equations and n+m− 2 unknowns. 2

Suppose now that we know only the value K = n +m but numbers n and m
are unknown. Then the following Corollary holds.

Corollary 1 Given the number k, [K/2] − 1 systems of the kind (15) should be
solved to find a and b, where [u] is the integer part of u. One of these systems gives
the solution and the others are inconsistent.

Proof. The proof is straightforward. Without loss of generality let us suppose
that n < m in (15). Since the numeral k consists of K + 1 digits and in P2

the smallest prime consists of 2 digits ((3)10 = (11)2) then the possible pairs of
n and m giving K + 1 digits in k are: (2,K − 2), (3,K − 3), . . . (l, g), where
l = g = K/2 in case K is even and l = g − 1 = [K/2] if K is odd. Since
numbers a and b are prime, only one of these systems gives the solution and the
other systems are inconsistent. 2

4 Examples of factorization

Suppose that we have a number k being the product of two primes, written in the
generative form using the numeral system P2, and consisting of K+1 digits, simple
and/or compound. Then, as it has been established in the previous section, in order
to find its prime factors a and b, it is necessary to solve at maximum [K/2] − 1
systems (15). Notice that, since all digits ai and all bj should be nonnegative,
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equations having ki = 0 help a lot to solve (15). Namely, they either allow us to
determine that several digits in a and b are equal to zero simplifying so (15) or to
establish that the system (15) under consideration is inconsistent.

Let us consider as an example multiplication with a = 13 and b = 19 giving
a · b = k = 247. In the system P2 we obtain

a · b = 1101 · 10011 = k = 110|10||10|111 =

1 · 27 + 1 · 26 + 0 · 25 + 10 · 24 + 10 · 23 + 1 · 22 + 1 · 21 + 1 · 20. (16)

Thus, the problem consists of finding a and b from k = 110|10||10|111. This
numeral has K = 7 and it consists of 8 digits

k7 = 1, k6 = 1, k5 = 0, k4 = 10, k3 = 10, k2 = 1, k1 = 1, k0 = 1,

where k4 and k3 are compound and the remaining digits are simple.
Since K = 7, it follows from Corollary 1 that we should consider two systems:

n = 2,m = 5 and n = 3,m = 4. Let us consider the first pair, n = 2,m = 5, i.e.,
we test the hypothesis that multipliers a and b have the following form

a = a2a1a0, b = b5b4b3b2b1b0.

Taking into account that a2 = b5 = a0 = b0 = 1 system (15) becomes

a1 + b4 = 1
b3 + 1 + a1b4 = 0
a1b3 + b2 + b4 = 10
b1 + b3 + a1b2 = 10
a1b1 + 1 + b2 = 1
b1 + a1 = 1

(17)

Since all ai and all bj should be nonnegative, it follows immediately from the
second equation of (17) that this system has no solution.

Let us consider now the second hypothesis, i.e., that multipliers have the form

a = a3a2a1a0, b = b4b3b2b1b0.

Since in this case n = 3 and m = 4 and a3 = b4 = a0 = b0 = 1, system (15)
becomes 

b3 + a2 = 1
b2 + a2b3 + a1 = 0
b1 + a2b2 + a1b3 + 1 = 10
b3 + a1b2 + a2b1 + 1 = 10
b2 + a1b1 + a2 = 1
b1 + a1 = 1

(18)

This system having six equations and five unknowns can be easily solved. As it was
in the previous case, equations with the right-hand part equal to zero show to be
very useful. In this case regarding system (18), the second equation of (18) allows
us to conclude immediately that b2 = a2b3 = a1 = 0. Then, the last equation
gives us b1 = 1, the penultimate one provides a2 = 1, and the first one b3 = 0
completing so the reconstruction of the factors a and b from (16).
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5 A brief conclusion

In this paper, the prime factorization problem was considered from the point of
view of numeral systems used to represent integers. The question that was in-
vestigated was: ‘Is it true that the prime factorization is difficult in any numeral
system?’

A numeral system with partial carrying has been described. The concept of
digit in this system is more complex than the traditional one, namely, each digit
can consist of several symbols. It was shown that this system contains numerals
allowing one to reduce the problem of prime factorization to solving [K/2] − 1
systems of binary equations, where K is the number of digits in the number k that
should be factorized and [u] is the integer part of u. One of these systems of binary
equations gives the solution and the others are inconsistent. A method allowing
one to solve the systems easily has been suggested. Examples of factorization
were given.

Thus, the numeral system P2 with partial carrying and the information that the
numeral k written in this system has been obtained as a result of multiplication of
primes a and b give the possibility to find the two multipliers a and b. This means,
that the difficulty of the problem of prime factorization is due to the usage of the
traditional positional system for representing numbers and not due to the problem
of factorization itself. It should be stressed that the obtained results cannot be
considered as a proof of P=NP, since it is not known whether it is possible to re-
write a number given in the traditional positional numeral system to the new one
in a polynomial time.
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